首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 352 毫秒
1.
Introducing nitrogen-fixing tree species in fast-growing eucalypt plantations has the potential to improve soil nitrogen availability compared with eucalypt monocultures. Whether or not the changes in soil nutrient status and stand structure will lead to mixtures that out-yield monocultures depends on the balance between positive interactions and the negative effects of interspecific competition, and on their effect on carbon (C) uptake and partitioning. We used a C budget approach to quantify growth, C uptake and C partitioning in monocultures of Eucalyptus grandis (W. Hill ex Maiden) and Acacia mangium (Willd.) (treatments E100 and A100, respectively), and in a mixture at the same stocking density with the two species at a proportion of 1 : 1 (treatment MS). Allometric relationships established over the whole rotation, and measurements of soil CO(2) efflux and aboveground litterfall for ages 4-6 years after planting were used to estimate aboveground net primary production (ANPP), total belowground carbon flux (TBCF) and gross primary production (GPP). We tested the hypotheses that (i) species differences for wood production between E. grandis and A. mangium monocultures were partly explained by different C partitioning strategies, and (ii) the observed lower wood production in the mixture compared with eucalypt monoculture was mostly explained by a lower partitioning aboveground. At the end of the rotation, total aboveground biomass was lowest in A100 (10.5 kg DM m(-2)), intermediate in MS (12.2 kg DM m(-2)) and highest in E100 (13.9 kg DM m(-2)). The results did not support our first hypothesis of contrasting C partitioning strategies between E. grandis and A. mangium monocultures: the 21% lower growth (ΔB(w)) in A100 compared with E100 was almost entirely explained by a 23% lower GPP, with little or no species difference in ratios such as TBCF/GPP, ANPP/TBCF, ΔB(w)/ANPP and ΔB(w)/GPP. In contrast, the 28% lower ΔB(w) in MS than in E100 was explained both by a 15% lower GPP and by a 15% lower fraction of GPP allocated to wood growth, thus partially supporting our second hypothesis: mixing the two species led to shifts in C allocations from above- to belowground, and from growth to litter production, for both species.  相似文献   

2.
Significant increases in aboveground biomass production have been observed when Eucalyptus is planted with a nitrogen-fixing species due to increased nutrient availability and more efficient use of light. Eucalyptus and Acacia are among the most popular globally planted genera with the area of Eucalyptus plantations alone expanding to over 19 Mha over the past two decades. Despite this, little is known about how nutrition and light availability in mixed-species tree plantations influence water use and water use efficiency (WUE). This study examined to what extent water use and WUE have been influenced by increased resource availability and growth in mixed-species plantations. Monocultures of Eucalyptus globulus Labill. and Acacia mearnsii de Wildeman and 1:1 mixtures of these species were planted. Growth and transpiration were measured between ages 14 and 15 years. Aboveground biomass increment (Mg ha−1) was significantly higher in mixtures (E. globulus; 4.8 + A. mearnsii; 0.9) than E. globulus (3.3) or A. mearnsii monocultures (1.6). Annual transpiration (mm) measured using the heat pulse technique was also higher in mixtures (E. globulus; 285 + A. mearnsii; 134) than in E. globulus (358) and A. mearnsii (217) monocultures. Mixtures exhibited higher WUE than monocultures due to significant increases in the WUE of E. globulus in mixtures (1.69 kg aboveground biomass per cubic metre water transpired) compared to monocultures (0.94). The differences in WUE appear to result from increases in canopy photosynthetic capacity and above- to belowground carbon allocation in mixtures compared to monocultures. Although further studies are required and operational issues need to be resolved, the results of this study suggest that mixed eucalypt–acacia plantations may be used in water-limited environments to produce a given amount of wood with less water than eucalypt monocultures. Alternatively, because mixtures can be more productive and use more water per unit land area (but use it more efficiently), they could be utilized in recharge zones where rising water tables and salinity result from the replacement of vegetation (fast growing trees) that uses higher quantities of water with vegetation (shallow rooted annual crops) that use lower quantities of water.  相似文献   

3.
The sustainability of plantation forests is closely dependent on soil nitrogen availability in short-rotation forests established on low-fertility soils. Planting an understorey of nitrogen-fixing trees might be an attractive option for maintaining the N fertility of soils. The development of mono-specific stands of Acacia mangium (100A:0E) and Eucalyptus grandis (0A:100E) was compared with mixed-species plantations, where A. mangium was planted in a mixture at a density of 50% of that of E. grandis (50A:100E). N2 fixation by A. mangium was quantified in 100A:0E and 50A:100E at age 18 and 30 months by the 15N natural abundance method and in 50A:100E at age 30 months by the 15N dilution method. The consistency of results obtained by isotopic methods was checked against observations of nodulation, Specific Acetylene Reduction Activity (SARA), as well as the dynamics of N accumulation within both species. The different tree components (leaves, branches, stems, stumps, coarse roots, medium-sized roots and fine roots) were sampled on 5–10 trees per species for each age. Litter fall was assessed up to 30 months after planting and used to estimate fine root mortality. Higher N concentrations in A. mangium tree components than in E. grandis might be a result of N2 fixation. However, no evidence of N transfer from A. mangium to E. grandis was found. SARA values were not significantly different in 100A:0E and 50A:100E but the biomass of nodules was 20–30 times higher in 100A:0E than in 50A:100E. At age 18 months, higher δ15N values found in A. mangium tree components than in E. grandis components prevented reliable estimations of the percentage of N derived from atmospheric fixation (%Ndfa). At age 30 months, %Ndfa estimated by natural abundance and by 15N dilution amounted to 10–20 and 60%, respectively. The amount of N derived from N2 fixation in the standing biomass was estimated at 62 kg N ha−1 in 100A:0E and 3 kg N ha−1 in 50A:100E by the 15N natural abundance method, and 16 kg N ha−1 in 50A:100E by the 15N dilution method. The total amount of atmospheric N2 fixed since planting (including fine root mortality and litter fall) was estimated at 66 kg N ha−1 in 100A:0E and 7 kg N ha−1 in 50A:100E by the 15N natural abundance method, and 31 kg N ha−1 in 50A:100E by the 15N dilution method. The most reliable estimation of N2 fixation was likely to be achieved using the 15N dilution method and sampling the whole plant.  相似文献   

4.
Fast-growing exotic trees are widely planted in the tropics to counteract deforestation; however, their patterns of water use could be detrimental to overall ecosystem productivity through their impact on ecosystem water budget. In a comparative field study on seasonal soil-plant water dynamics of two exotic species (Cupressus lusitanica Mill. and Eucalyptus globulus Labill.) and the indigenous Podocarpus falcatus (Thunb.) Mirb. in south Ethiopia, we combined a 2.5-year record for climate and soil water availability, natural-abundance oxygen isotope ratios (delta(18)O) of soil and xylem water, destructive root sampling and transpiration measurements. Soil was generally driest under C. lusitanica with its dense canopy and shallow root system, particularly following a relatively low-rainfall wet season, with the wettest soil under E. globulus. Wet season transpiration of C. lusitanica was twice that of the other species. In the dry season, P. falcatus and C. lusitanica reduced transpiration by a factor of six and two, respectively, whereas E. globulus showed a fivefold increase. In all species, there was a shift in water uptake to deeper soil layers as the dry season progressed, accompanied by relocation of live fine root biomass (LFR) of C. lusitanica and P. falcatus to deeper layers. Under P. falcatus, variability in soil matric potential, narrow delta(18)O depth gradients and high LFR indicated fast water redistribution. Subsoil water uptake was important only for E. globulus, which had low topsoil LFR and tap roots exploiting deep water. Although P. falcatus appeared better adapted to varying soil water availability than the exotic species, both conifers decreased growth substantially during dry weather. Growth of E. globulus was largely independent of topsoil water content, giving it the potential to cause substantial dry-season groundwater depletion.  相似文献   

5.
Early weed control may improve the growth of forest plantations by influencing soil water and nutrient availability. To understand eucalypt growth responses to weed control, we examined the temporal responses of leaf gas-exchange, leaf nitrogen concentration (N) and water status of 7-month-old Eucalyptus globulus L. trees in a paired-plot field trial. In addition, we monitored the growth, leaf N and water status of the competing vegetation in the weed treatment. By the end of the 11-month experiment, complete weed control (WF treatment) of largely woody competitors increased the basal diameter of E. globulus by 14%. As indicated by pre-dawn water potentials of >?-?0.05 MPa, interspecies competition for water resources was minimal at this site. In contrast, competition for N appeared to be the major factor limiting growth. Estimations of total plot leaf N (g m(-2) ground) showed that competing vegetation accounted for up to 70% of the total leaf N at the start of the trial. This value fell to 15% by the end of the trial. Despite increased leaf N(area) in WF trees 5 months after imposition of weed control, the photosynthetic capacity (A(1500)) of E. globulus was unaffected by treatment suggesting that the growth gains from weed control were largely unrelated to changes in leaf-level photosynthesis. Increased nutrient availability brought about by weed control enabled trees to increase investment into leaf-area production. Estimates of whole-tree carbon budget based on direct measurements of dark respiration and A(1500) allowed us to clearly demonstrate the importance of leaf area driving greater productivity following early weed control in a nutrient-limited site.  相似文献   

6.
Many tropical plantations in Central America are monocultures of fast growing, mostly exotic species such as a teak, eucalypts and pines. This has been perceived as a problem for ecosystem stability, pest control, local biodiversity and long-term nutrient availability. In our study, we followed the effects of increasing tree diversity (1, 3 and 6 native species) on aboveground nitrogen (N) and phosphorus (P) pools in a young experimental biodiversity plantation (central Panama) over two subsequent years. Our results show a positive but not consistent net effect of biodiversity on the N and P pools, mainly explained by the complementarity effect. N and P use efficiencies strongly varied among the investigated tree species and the species richness gradient. Anacardium excelsum and Luehea seemannii were associated with higher N and P use efficiencies while Hura crepitans and Tabebuia rosea were less efficient in aboveground biomass production per unit N or P. Tree species tended to have lower P use efficiencies in the intermediate diversity level compared to monocultures and six-species mixtures. Although the environmental conditions explained a large part of the variation in the N and P pools (58%) in our experiment, we argue that incorporating tree mixtures in the management can bring additional benefits and improve tree growth and nutrient uptake as compared to the monocultures.  相似文献   

7.
Mixtures of litter from different plant species often show non-additive effects on decomposition and net N release (i.e., observed effects in mixtures differ from predictions based on litter of the component species), with positive non-additive (i.e., synergistic effects) being most common. Although large amounts of C and N reside in soil organic matter that contribute significantly to the overall C and N cycle, only a few studies have compared species monoculture vs. mixture effects on soil C and N dynamics. We studied the interactive effects of black spruce (Picea mariana), tamarack (Larix laricina), and white pine (Pinus strobus) on soil C respiration and net N mineralization in a plantation in northern Minnesota, USA. The trees were planted in monoculture and in all three possible two-species combinations (mixtures). After 10 years, we measured aboveground plant biomass and soil C respiration and net N mineralization rates in long-term (266 days) and short-term (13 days) laboratory incubations, respectively. Soil C respiration and net N mineralization were significantly lower in mixtures with tamarack than would be predicted from the monocultures of the two component species. Possibly, mixing of lignin rich litter from black spruce or white pine with N rich litter from tamarack suppressed the formation of lignolytic enzymes or formed complexes highly resistant to microbial degradation. However, these antagonistic effects on soil C respiration and net N mineralization in mixtures with tamarack did not result in reduced aboveground biomass in these plots after 10 years of growth. It remains to be seen if these antagonistic effects will affect long-term forest productivity and dynamics in boreal forests.  相似文献   

8.
In sodic soils, excessive amounts of salts have an adverse effect on soil biological activity and stability of soil organic matter. The study analyzes the role of silvopastoral systems to improve soil organic matter and microbial activity with a view for effective management of soil fertility. The silvopastoral systems for the present study (located at Saraswati Reserved Forest, Kurukshetra; 29°4′ to 30°15′ N and 75°15′ to 77°16prime; E) are characterized by tree species of Acacia nilotica, Dalbergia sissoo and Prosopis juliflora along with grass species of Desmostachya bipinnata and Sporobolus marginatus. Soil microbial biomass carbon was measured using the fumigation extraction technique and nitrogen mineralization rates using aerobic incubation method. The microbial biomass carbon in the soils of D. bipinnata and S. marginatus treatments were low. In silvopastoral systems, microbial biomass carbon increased due to increase in the carbon content in the soil – plant system. A significant relationship was found between microbial biomass carbon and plant biomass carbon (r = 0.83) as well as the flux of carbon in net primary productivity (r = 0.92). Nitrogen mineralization rates were found greater in silvopastoral systems compared to 'grass-only' system. Soil organic matter was linearly related to microbial biomass carbon, soil N and nitrogen mineralization rates (r = 0.95 to 0.98, p < 0.01). On the basis of improvement in soil organic matter, enlarged soil microbial biomass pool and greater soil N availability in the tree + grass systems, agroforestry could be adopted for improving the fertility of highly sodic soil. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Larch (Larix spp.) is widely distributed in the boreal and temperate areas. Nitrogen (N) is considered as the major limiting element for these areas. Thinning is a common forest management practice. Thus, it is imperative to obtain a better understanding on how thinning could affect N status of larch plantations, and thus optimize the thinning intensity for sustainable forest management. In this study, we measured N concentrations and 15N natural abundance (δ15N) of needles and surface soil (0–10?cm) in a larch plantation with T0, T25 and T50 treatments (0%, 25% and 50% thinning intensities, respectively) in Northeast China. We found that needle and soil δ15N in T25 was the lowest, and the highest in T50. No significant differences were observed for needle and soil N concentrations among the thinning intensities. T25 exhibited the highest N resorption efficiency, indicating highest N use efficiency. Overall, N cycling in T25 was more closed than the control, and with lower soil N availability, while N cycling in T50 was more opened. Our study indicates that foliar 15N natural abundance is sensitive to thinning and can be potentially used to optimize thinning intensity from the perspective of N cycling.  相似文献   

10.
Nitrogen-fixing plant species may respond more positively to elevated atmospheric carbon dioxide concentrations ([CO2]) than other species because of their ability to maintain a high internal nutrient supply. A key factor in the growth response of trees to elevated [CO2] is the availability of nitrogen, although how elevated [CO2] influences the rate of N2-fixation of nodulated trees growing under field conditions is unclear. To elucidate this relationship, we measured total biomass, relative growth rate, net assimilation rate (NAR), leaf area and net photosynthetic rate of N2-fixing Alnus glutinosa (L.) Gaertn. (common alder) trees grown for 3 years in open-top chambers in the presence of either ambient or elevated atmospheric [CO2] and two soil N regimes: full nutrient solution or no fertilizer. Nitrogen fixation by Frankia spp. in the root nodules of unfertilized trees was assessed by the acetylene reduction method. We hypothesized that unfertilized trees would show similar positive growth and physiological responses to elevated [CO2] as the fertilized trees. Growth in elevated [CO2] stimulated (relative) net photosynthesis and (absolute) total biomass accumulation. Relative total biomass increased, and leaf nitrogen remained stable, only during the first year of the experiment. Toward the end of the experiment, signs of photosynthetic acclimation occurred, i.e., down-regulation of the photosynthetic apparatus. Relative growth rate was not significantly affected by elevated [CO2] because although NAR was increased, the effect on relative growth rate was negated by a reduction in leaf area ratio. Neither leaf area nor leaf P concentration was affected by growth in elevated [CO2]. Nodule mass increased on roots of unfertilized trees exposed to elevated [CO2] compared with fertilized trees exposed to ambient [CO2]. There was also a biologically significant, although not statistically significant, stimulation of nitrogenase activity in nodules exposed to elevated [CO2]. Root nodules of trees exposed to elevated [CO2] were smaller and more evenly spaced than root nodules of trees exposed to ambient [CO2]. The lack of an interaction between nutrient and [CO2] effects on growth, biomass and photosynthesis indicates that the unfertilized trees maintained similar CO2-induced growth and photosynthetic enhancements as the fertilized trees. This implies that alder trees growing in natural conditions, which are often limited by soil N availability, should nevertheless benefit from increasing atmospheric [CO2].  相似文献   

11.
Effects of three forage harvesting regimes-total removal of foliage and branches once (T-12) or twice a year (T-6) and 50% removal every 2 months (P-2)-on growth and biological dinitrogen fixation of Gliricidia sepium (Jacq.) Walp were studied under subhumid tropical conditions in Guadeloupe, French Antilles. Gliricidia sepium was grown in association with the perennial C(4) grass Dichantium aristatum (Poir) C.E. Hubbard in a two-storied fodder production system. The medium-term effects of pruning on N(2) fixation were assessed by the (15)N natural abundance method. Gmelina arborea Roxb. was used as the non-fixing reference. The trees in the T-12 regime followed the natural phenological cycle, and flowering and podfilling at the beginning of the dry season reduced both foliage and nodule biomass. The T-6 regime impeded flowering, and only a few flowers, on older branches, were produced in the P-2 regime. In trees in the T-12, T-6, and P-2 regimes, fixed N comprised 54-87, 54-92, and 60-87%, respectively, of the total N in aboveground biomass, depending on sampling date. Total annual accumulation of N in harvestable aboveground biomass was highest in trees in the T-6 regime at 313 kg ha(-1), of which 204 kg ha(-1) of N was fixed from the atmosphere. In all treatments, about 70% of the N exported per year from the plot in the fodder harvest came from N(2) fixation. Thus, N(2) fixation makes an important contribution to the N economy of the G. sepium-D. aristatum forage production system, and greatly reduces the need for fertilizer application.  相似文献   

12.
为了解蓝桉人工林地土壤肥力的变化情况,进行了蓝桉施肥和造林后的林地土壤肥力监测和分析。经对设于保山市辛街3种施肥处理的蓝桉人工林地,进行为期两年(1993、1994年)的土壤11项化学性状监测得出:土壤的有效N、P、K的含量随林地的施肥而增加;造林两年后,土壤的pH(H2O)、pH(KCl),有机酸,全氮,有效N、P、K,水解酸,交换性Ca(++)、Mg(++)的指标均低于造林前。  相似文献   

13.
Tree plantations are increasingly common in tropical landscapes due to their multiple uses. Plantations vary in structure and composition, and these variations may alter soil fauna communities. Recent studies have demonstrated the important role of soil fauna in the regulation of plant litter decomposition in the tropics. However, little is known about how plantation species affect soil fauna populations, which may in turn affect the biogeochemistry of the plantation system. We measured soil macroinvertebrate abundance and biomass in 9-year-old N2-fixing Leucaena leucocephala, Casuarina equisetifolia, and non-N2-fixing Eucalyptus robusta plantations on a degraded site in Puerto Rico. Nutrient concentrations and standing stocks of forest floor litter were also determined to examine the relationship between litter chemistry and soil macroinvertebrates. Leucaena plantations had significantly higher abundances and biomass of millipede species than Casuarina and Eucalyptus. Earthworm biomass did not differ among plantation treatments. Nitrogen, P, and K concentrations were generally higher in Leucaena litter, which resulted in higher standing stocks of these nutrients in fragmented, moderately decomposed litter (Oe horizon). Millipede biomass was highly correlated to N concentration and C/N ratio in the Oi litter horizon. These results suggest that plantation species differ in their influence on soil fauna, and the biomass and abundance of soil fauna can be regulated through careful selection of plantation species in degraded tropical lands.  相似文献   

14.
黑荆树巨尾桉混交造林与效益分析   总被引:3,自引:0,他引:3  
设计了以黑荆树与巨尾桉混交的3个模式、黑荆树纯林、巨尾桉纯林共5个处理进行试验。经过一个轮伐期6a的观测研究,结果表明以黑荆树4巨尾桉1的混交比例作株间混交的模式最为理想,6年生林分总蓄积量达72.1m3·hm-2,其中巨尾桉46.1m3·hm-2,黑荆树26.0m3·hm-2,投入产出比为1∶3.4。  相似文献   

15.
This paper summarizes several studies on N recycling in a tropical silvopastoral system for assessing the ability of the system to increase soil fertility and insure sustainability. We analyzed the N2 fixation pattern of the woody legume component (Gliricidia sepium), estimated the recycling rate of the fixed N in the soil, and measured N outputs in tree pruning and cut grass (Dichanthium aristatum). With this information, we estimated the N balance of the silvopastoral system at the plot scale. The studies were conducted in an 11-year-old silvopastoral plot established by planting G. sepium cuttings at 0.3 m × 2 m spacing in natural grassland. The plot was managed as a cut-and-carry system where all the tree pruning residues (every 2-4 months) and cut grass (every 40-50 days) were removed and animals were excluded. No N fertilizer was applied. Dinitrogen fixation, as estimated by the 15N natural abundance method, ranged from 60-90% of the total N in aboveground tree biomass depending on season. On average, 76% of the N exports from the plot in tree pruning (194 kg [N] ha–1 yr–1) originated from N2 fixation. Grass production averaged 13 Mg ha–1 yr–1 and N export in cut grass was 195 kg [N] ha–1 yr–1. The total N fixed by G. sepium, as estimated from the tree and grass N exports and the increase in soil N content, was about 555 kg [N] ha–1 yr–1. Carbon sequestration averaged 1.9 Mg [C] ha–1 yr–1 and soil organic N in the 0-0.2 m layer increased at a rate of 166 kg [N] ha–1 yr–1, corresponding to 30% of N2 fixation by the tree. Nitrogen released in nodule turnover (10 kg [N] ha–1 yr–1) and litter decomposition (40 kg [N] ha–1 yr–1) contributed slightly to this increase, and most of the recycled N came from the turnover or the activity of other below-ground tree biomass than nodules. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
We estimated nitrogen (N) use by trees of three poplar species exposed for 3 years to free air CO(2) enrichment (FACE) and determined whether the CO(2) treatment affected the future N availability of the plantation. Trees were harvested at the end of the first 3-year rotation and N concentration and content of woody tissues determined. Nitrogen uptake of fine roots and litter was measured throughout the first crop rotation. The results were related to previously published variations in soil N content during the same period. We estimated retranslocation from green leaves and processes determining N mobilization and immobilization, such as mineralization and nitrification, and N immobilization in litter and microbial biomass. In all species, elevated CO(2) concentration ([CO(2)]) significantly increased nitrogen-use efficiency (NUE; net primary productivity per unit of annual N uptake), decreased N concentration in most plant tissues, but did not significantly change cumulative N uptake by trees over the rotation. Total soil N was depleted more in elevated [CO(2)] than in ambient [CO(2)], although not significantly for all soil layers. The effect of elevated [CO(2)] was usually similar for all species, although differences among species were sometimes significant. During the first 3-year rotation, productivity of the plantation remained high in the elevated [CO(2)] treatment. However, we observed a potential reduction in N availability in response to elevated [CO(2)].  相似文献   

17.
The objective was to analyse how differences in the initial proportions of tree species and site fertility affect carbon sequestration in living biomass and soil. We used the individual-based simulation model EFIMOD, which is able to simulate spatially explicit competition between trees for light and nutrients. Simulations were carried out for three site types with distinct initial stocks of soil nutrients. For each site, the 100-years undisturbed dynamics of monocultures and mixtures of three tree species (Betula pendula Roth, Pinus sylvestris L. and Picea abies (L.) H. Karst.) was predicted. Changes in the proportions of competing tree species were dependent on the fertility of the site: on poor sites, pine was the most competent species, while on rich sites, spruce increased its proportion during stand succession. Net primary production (NPP) and soil respiration were the highest in stands of two coniferous species and in stands with a high initial proportion of pine. Mixed stands were more productive than monocultures; the highest overyielding was observed with mixtures of two coniferous species. Simulated NPP and carbon stocks in all pools increased from poor to rich sites. The highest carbon stocks in standing biomass were observed for mixtures of conifer species and three-species mixtures; the greatest accumulation of forest floor occurred in stands with high proportions of pine.  相似文献   

18.
黑木相思与尾叶桉苗期氮素传递的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以尾叶桉、黑木相思苗木混栽为研究对象,采用15N土壤和叶片标记法,在温室盆栽下研究2种植物间在根系完全隔离、部分隔离及无隔离处理下的生长变化及N素传递。结果表明:黑木相思的苗高、地径及生物量等生长指标随着根系隔离的减少而逐渐降低;相反,尾叶桉在根系无隔离处理下,其生长指标都要显著高于根系完全隔离处理,结果表明尾叶桉具有强大的养分吸收能力,混栽条件下会抑制黑木相思的生长。在15N土壤或叶片标记下,尾叶桉在根系部分隔离、无隔离下的总15N含量显著高于完全隔离处理(5.0和59.6倍);在土壤标记下,根系无隔离处理的黑木相思总15N含量显著低于完全隔离、部分隔离处理,而在叶片标记下的完全隔离黑木相思,其总15N含量显著低于其余2种处理。无论土壤或是叶片标记,黑木相思都能将N素传递至相邻尾叶桉,其N素传递率、传递量随着根系隔离的减少而提高。研究结果表明尾叶桉、黑木相思间能通过土壤渗透等方式传递N素,为桉树、相思的混交模式提供可靠的理论依据。  相似文献   

19.
A significant and well-supported hypothesis is that increased growth following nitrogen (N) fertilization is a function of the relationships among photosynthesis, tissue N content and the light environment-specifically, the within-canopy allocation of N among leaves and the within-leaf allocation of N between Rubisco and chlorophyll. We tested this hypothesis in a field trial that included annual applications of N,P,K fertilizer (from planting) to a Eucalyptus globulus Labill. plantation growing on uniform leached sands. Growth of 4-year-old E. globulus increased significantly in response to fertilization. Leaf N and phosphorus concentrations were 0.1-0.5 g m(-2) and 0.4-0.5 g m(-2) higher in fertilized trees compared to unfertilized trees, respectively. Stomatal conductance (g(s)) at the maximum photosynthetic rate (A(max)) was between 0.2 and 0.4 mol m(-2) s(-1) higher in fertilized trees, but A(max) and the concentration of Rubisco (Rub(a)) were unaffected by fertilization. This seeming paradox, where there was no response of A(max) to fertilization despite increases in g(s) and leaf N concentration, was explained by reduced in vivo specific activity of Rubisco in fertilized trees. Acclimation to light, measured by redistribution of N between Rubisco and chlorophyll, was unaffected by fertilization. Distribution of leaf N followed irradiance gradients, but A(max) did not. Maximum photosynthetic rate was correlated with leaf N concentration only in unfertilized trees. These findings indicate that the relationships among photosynthesis, N and the light environment in E. globulus are affected by N,P,K fertilization.  相似文献   

20.
Recovery following defoliation can be modified by co-occurring site resource limitations. The growth response of young Eucalyptus globulus saplings to two defoliation events was examined in an experimental plantation with combinations of low (-) or high (+) water (W) and nitrogen (N) resources. Artificial defoliation was applied at 3 and 9 months of age to remove ~40 and 55% of leaf area in the upper crown, respectively. At 18 months of age, height, stem diameter and leaf area were not significantly different between control and defoliated saplings, across all resource treatments. However, stem volume, bark volume and branch number were significantly increased in defoliated saplings, including a significant interaction with resource treatment. Total above-ground biomass of saplings in response to defoliation was significantly higher (almost double) than controls for the low water (N?+?W-) treatment only. Significantly increased foliar starch content (and a trend for increased soluble sugars) in the upper crown zone was found in the defoliated saplings of the N?+?W- treatment compared with the upper zone of control saplings. Foliar total non-structural carbohydrates were significantly correlated to stem biomass regardless of resource treatment or defoliation, and we suggest that foliar resources are most important for stem growth in E. globulus rather than stored carbon (C) from other tissues. After repeated defoliation and several months recovery, E. globulus saplings were generally not C limited in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号