共查询到14条相似文献,搜索用时 125 毫秒
1.
不同水氮管理模式对玉米地土壤氮素和肥料氮素的影响 总被引:4,自引:0,他引:4
为了解决东北地区灌溉条件下水氮合理施用问题,以大田试验为基础,采用15N同位素示踪技术,设置3个灌水定额水平(W1:40 mm,W2:60 mm,W3:80 mm)和3个施氮量水平(N1:180 kg/hm~2,N2:240 kg/hm~2,N3:300 kg/hm~2),分析比较了不同水氮管理模式对玉米地土壤氮素的吸收、土壤无机氮残留、土壤-作物氮平衡以及肥料氮去向的影响。结果表明:随着施氮量的增加,0~100 cm土层铵态氮、硝态氮的含量和累积量均呈现增加的趋势;提高灌水量可以提高60~100 cm土层铵态氮累积量、80~100 cm土层硝态氮累积量。对土壤-作物氮平衡的研究表明,增加施氮量可以提高土壤无机氮残留量和氮素盈余,而作物氮素吸收量随着施氮量的增加呈先增后减的趋势,氮素盈余量和表观损失量随灌水量的增加表现为先降低后增加。肥料氮累积量随着施氮量的增加呈先增后减的趋势,施氮量300 kg/hm~2时肥料氮累积量占比21. 27%~31. 23%,肥料氮残留量和损失量所占比例均有所提高。玉米植株氮素中有66. 70%~75. 05%来自于对土壤氮的累积,随着施氮量的增加,玉米植株土壤氮素累积量呈先增后减的趋势。综合不同水氮管理模式对玉米地土壤无机氮残留、土壤-作物氮平衡以及肥料氮去向的影响得出,灌水60 mm、施氮240 kg/hm~2的水氮组合可保证肥料氮的充分利用,减少无机氮的残留和损失。 相似文献
2.
4.
合理的水肥运筹对提高水稻氮素利用效率和水稻产量有很大影响。根据大田试验资料,分析了不同水分管理和氮肥管理对水稻氮素吸收利用及在植株体内分布的影响。结果表明:控制灌溉模式显著改善了水稻对氮素的吸收,促进氮素在籽粒中的积累;实地氮肥管理(SSNM)模式有效控制了生育前期营养器官对氮素的吸收,有效促进了水稻秸秆中累积的氮素参与再分配与再利用;控灌与SSNM联合调控有效地控制无效分蘖,显著降低秸秆氮素含量,提高了水稻营养器官氮素的转运量。控灌和SSNM处理节省了水肥的投入,提高了水肥利用效率,为南方灌区实现合理的水肥管理提供了依据。 相似文献
5.
水肥交互作用对稻田氮素利用率和氮素平衡的影响 总被引:2,自引:0,他引:2
采用蒸渗仪方法和同位素示踪技术研究了稻田常规灌溉和节水灌溉条件下不同施肥水平和施肥方式的氮素利用率和氮素平衡,结果表明:稻谷氮素累积量占植株氮素累积量一半左右,间歇灌溉模式和传统淹灌模式氮素累积量的差异反应在茎和绿叶和实粒,而在黄叶和秕粒中差别不大;差值法测得氮肥利用率比同位素法偏高,但二者均表现为间歇灌溉氮肥利用率高于淹灌模式,且间歇灌溉模式下低氮水平氮肥利用率高于高氮处理;根据同位素示踪法计算氮素平衡,氮素在稻田系统中的分配为氨挥发和反硝化占37.4%~51.7%,土壤残留占20.4%~37.7%,作物吸收占9.2%~36.4%,淋失占0.3%~16.4%。 相似文献
6.
不同水氮调控模式对稻田土壤氮素分布与有效性的影响 总被引:3,自引:0,他引:3
为了进一步阐明寒地黑土区不同水氮调控模式对铵态氮、硝态氮在不同土层累积及土壤氮素有效性的影响,以田间小区试验为基础,结合~(15)N示踪微区试验,研究了不同水氮调控模式下土壤剖面的无机氮以及肥料氮素的NH_4~+-~(15)N和NO_3~--~(15)N累积情况,并根据同位素测定结果分别计算了土壤氮素有效性“A”值,从不同角度分析了不同水氮调控模式对土壤氮素有效性的影响。研究结果表明:控制灌溉和常规灌溉两种灌溉模式下土壤无机氮和以无机氮形态残留的肥料氮素在土壤剖面的累积量均随施氮量的增加而增大,并随土层深度的增加而减少。不同施氮量下稻作控制灌溉模式表层土壤(0~20cm)中无机氮和以无机氮形态残留的肥料氮素的累积量均高于常规灌溉,20~40cm和40~60cm土层的无机氮和NO_3~--~(15)N总累积量均低于常规灌溉,不同灌溉模式间20~60cm土层中NH_4~+-~(15)N的累积量差异不显著(P0.05)。相同施氮量下常规灌溉模式20~40cm土层的NO_3~--~(15)N累积量较控制灌溉模式增长了10~11倍;40~60cm土层的NO_3~--~(15)N累积量较控制灌溉模式增长了近3倍。不同施氮量下稻作控制灌溉模式水稻成熟期氮素积累量中77.77%~84.51%来自于土壤氮素,较常规灌溉提高了12.91%~23.12%,且相同施氮量下稻作控制灌溉模式土壤氮素有效性“A”值较常规灌溉模式分别提高了9.41%、5.65%和3.69%。不同施氮量下与常规灌溉相比,稻作控制灌溉模式可以有效提高稻田土壤氮素有效性,减少肥料氮素的淋溶损失,起到了节水减排的作用,研究结果可为制定黑土区稻田合理的水氮调控措施提供参考。 相似文献
7.
水氮耦合对甜瓜氮素吸收与土壤硝态氮累积的影响 总被引:8,自引:0,他引:8
在西北干旱半干旱地区,设置3个水分水平和3个氮素水平,共9个处理,应用完全随机区组试验设计,研究不同水氮处理组合对温室甜瓜氮素吸收分配、产量及土壤硝态氮分布和累积的影响。试验结果表明:甜瓜成熟期地上部干物质量以及氮素累积量以中水中氮(W2N2)处理为最大,甜瓜采收后各处理硝态氮含量在0~15 cm土层内最高,随土层的加深硝态氮含量逐渐减小。0~60 cm土层内硝态氮累积量随施氮量的增加而增大,随灌水量的增加而减小。甜瓜产量随灌水量和施氮量的增加而提高,但是在高水和高氮条件下略有下降。滴灌施肥的施氮量和灌水量控制在N2(130 kg/hm2)和W2(1.0ETc)时,有利于提高甜瓜产量,是试验地区膜下滴灌条件下温室甜瓜生产中适宜的水氮组合。 相似文献
8.
为阐明不同水氮管理模式下玉米叶片衰老过程对玉米中氮素转移的影响,进行了大田试验,通过设置3个灌溉水平(150、300、450m3/hm2)和4个施氮水平(0、180、220、260kg/hm2),探究不同水氮组合下玉米叶片衰老启动时间、叶片衰老速率、最大绿叶衰减速率出现时间及叶片衰老过程对叶片氮转移效率和籽粒灌浆过程的影响。结果表明:各处理叶片衰老启动时间均发生在吐丝后10d左右,其受灌水和施氮影响较小;在灌水充足条件下,增加施氮量可以降低叶片衰老速率,延长最大绿叶衰减速率出现时间;施氮量相同时,随灌水量增加吐丝期叶片氮素积累量呈先增加、后减小的趋势;在一定范围内,叶片氮转移效率随最大绿叶衰减速率出现时间的增加而提高,最高可提升25.78个百分点;籽粒灌浆速率呈先慢后快、最后趋于平缓的变化规律,且在吐丝后30~40d达到最大,延缓叶片衰老速率有助于提高百粒质量;当灌水量为300m3/hm2、施氮量为260kg/hm2时,最大绿叶衰减速率出现时间为吐丝后48.90d,叶片氮转移效率最高,百粒质量最大,是最佳灌水、施氮组合。 相似文献
9.
水氮互作对宁夏沙土春玉米产量与氮素吸收利用的影响 总被引:2,自引:0,他引:2
为探明滴灌不同水氮调控对宁夏沙土地区春玉米生长、产量、氮素吸收和根区土壤硝态氮分布及残留量的影响,设计灌水和施氮2因素、3个灌水量水平(W0.6,0.6KcET0; W0.8,0.8KcET0; W1.0,KcET0,Kc为作物系数,ET0为潜在作物蒸发蒸腾量)和4个施氮量水平(N150,150 kg/hm~2; N225,225 kg/hm~2; N300,300 kg/hm~2; N375,375 kg/hm~2),进行了大田试验。结果表明:相同灌水条件下,春玉米地上部干物质累积速率和氮素累积速率(W0.8灌水水平除外)均随施氮量的增加先增加后减小。快增期内,W1.0N300处理的春玉米地上部干物质平均累积速率和W0.8N375处理的氮素平均累积速率最大,分别为513.71、2.75 kg/(hm~2·d)。春玉米地上部干物质累积量(W0.8N375除外)和产量随施氮量的增加先增加后减小,其中W0.8N300处理的产量最大,为16 387 kg/hm~2。相比其他灌水处理,W0.8灌水水平下的营养器官氮素转运量较大,最大为41.14 kg/hm~2。随着灌水量和施氮量的增加,60~100 cm土层硝态氮累积量所占的比例逐渐增加,其中,W0.6灌水水平下,土壤残留的硝态氮主要聚集在0~60 cm土层中,W0.8灌水水平下,土壤残留的硝态氮主要聚集在0~90 cm土层中。考虑试验区年际降雨量分布不均,选取灌水量与有效降雨量之和为532 mm、施氮量300 kg/hm~2为宁夏沙土地区适宜的滴灌灌水施肥制度。 相似文献
10.
猪场废水灌溉对土壤氮素时空变化与氮平衡的影响 总被引:1,自引:0,他引:1
利用地中渗透仪测坑开展了田间灌溉试验,研究了猪场废水和等氮投入清水处理土壤铵态氮、硝态氮含量在时间、剖面上的变化规律,根据氮平衡原理对不同处理氮输入和氮输出项进行对比分析,估算了不同处理的氮矿化量。结果表明:各处理土壤铵态氮和硝态氮含量在时间上的变化规律基本一致,表现为追肥期出现峰值,随后下降的趋势;土壤铵态氮含量随土层深度的增加而迅速下降,土壤硝态氮含量随土层深度的增加变化规律不明显,且易淋移至下层土壤并累积。PWH(猪场废水高氮)处理土壤铵态氮、硝态氮含量在追肥期出现峰值后下降的幅度较慢,而CKH(清水高氮)处理下降的幅度较快。猪场废水高氮处理PWH作物吸氮量及氮矿化量比等氮清水处理CKH分别高6.91%和21.29%,表明该处理有利于土壤有机氮的矿化,但同时硝态氮深层淋溶量也较大,比CKH高出11.82%。 相似文献
11.
为了研究不同水肥条件下玉米对氮肥的吸收利用情况,试验采用~(15)N示踪技术,通过设置3个灌溉水平(200、400、600 m~3/hm~2)以及5个施氮水平(0、150、200、250、300 kg/hm~2)研究了玉米成熟期各器官对肥料氮和土壤氮的吸收情况,不同水肥处理肥料氮对土壤氮的激发规律以及各处理的氮肥有效率。结果表明:不同水肥条件下玉米吸收肥料中氮素占总氮量的33.32%~43.54%,吸收土壤中氮素占总氮量的56.46%~66.68%。各器官对肥料氮的竞争能力不同,由大到小表现为:籽粒、叶、茎。增加施氮量可以适当提升玉米对土壤中氮素的吸收能力,但过量施氮时必须通过增加灌水量才能使玉米从土壤吸收更多的氮素。当灌水量为400 m~3/hm~2,施氮量为250 kg/hm~2时产量达到1 406 3.04 kg/hm~2,土壤氮库达到平衡状态,既实现了高产又满足环境友好需求。 相似文献
12.
13.
河套灌区控制排水对氮素流失与利用的影响 总被引:2,自引:0,他引:2
为探求控制排水对油葵农田土壤氮素流失、氮肥利用效率以及产量的影响,设置生育期控制排水深度分别为40cm(K1)、70cm(K2)、100cm(K3)3个处理,选择明沟排水作为对照处理(CK),开展了田间试验。结果表明:K1处理土壤NH+4N含量(质量比)最高,平均值为20.17mg/kg,显著高于其他各处理(P<0.05),较K2、K3、CK处理高31.36%、46.16%、15.22%。不同处理间土壤NO-3N含量差异性大于NH+4N。生育期灌溉后0~40cm土壤NO-3N含量由大到小依次为K1、CK、K2、K3。不同处理NO-3N流失量均大于NH+4N,K1、K2、K3、CK处理NO-3N流失量较NH+4N分别高60%、52.63%、30.77%、58.82%。暗管排水处理,出口埋深越小,排水量越小,氮素流失量越小,控制排水稳定了地下水埋深变化。控制排水处理(K1、K2)提高氮肥偏生产力3.04%~11.15%,提高了养分吸收量。K1处理氮肥偏生产力最大,分别较K2、K3、CK处理增加4.54%、7.72%、11.15%(P<0.05)。K1处理能显著提高玉米产量(P<0.05),较K2、K3、CK处理分别增加4.52%、7.69%、11.14%。油葵收获后,各处理0~100cm土壤NH+4N含量为0.98~8.13mg/kg,随着土层深度的增加土壤NH+4N含量减少,0~40cm土层CK处理土壤NH+4N含量最大,较K1、K2、K3处理分别大11.65%、14.55%、18.19%(P<0.05)。相同处理相同土层NO-3N含量明显高于NH+4N含量;生育期灌溉后,0~10cm土壤中NO-3N均随水向深层土壤运移,而K1处理将大多NO-3N聚集在20~40cm土层中。在生长中后期,20~40cm土层为油葵根系旺盛层,K1处理对土壤中氮素利用相对较高。综合油葵产量、土壤氮素变化规律、氮肥利用效率及氮素流失情况,适宜的排水方式为生育期控制排水深度40cm(K1)。 相似文献
14.
运用DNDC模型模拟分析不同节灌、施肥、控排条件下稻田氮素平衡状况及氮肥利用效率。结果表明,节水灌溉控制排水条件下,施氮量不大于180kg/hm2时,稻田土壤氮库均呈现亏损,亏损量为54.7~127.6kg/hm2,亏损量随着施氮量的增加而逐渐减小;除浅灌深蓄中氮和浅灌深蓄高氮处理外,控制排水处理土壤氮素亏损量均大于常规排水;浅灌深蓄、施中氮和控制排水的组合是最佳的水肥处理模式。 相似文献