首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colonial bentgrass (Agrostis capillaris L.) is a cool-season grass, native to temperate Asia and Europe. It has good tolerance to low temperatures and partial shade and is well suited to golf course fairways and tees. Little information is available regarding levels and patterns of genetic variation among populations of colonial bentgrass, which would be useful for breeding programs. To study the genetic relationships among 27 colonial bentgrass accessions obtained from the US National Plant Germplasm System (NPGS), randomly amplified polymorphic DNA (RAPD) markers were scored and analyzed. Out of 80 primers screened, 16 were selected for further analysis, which yielded a total of 120 polymorphic bands used to differentiate the accessions. Dice's similarity coefficients for pair-wise comparisons ranged from 0.23 to 0.84 based on the RAPD data. Since there was no similarity coefficient value close to 1 between any two accessions, there was no apparent duplication among the sampled accessions. A dendrogram constructed on the basis of the Unweighted Pair Group Method with Arithmetic average (UPGMA) clustering algorithm clearly separated 26 of the accessions into three clusters with one accession distinct from the rest. The least similar pair of accessions was PI 204397 from Turkey and PI 628720 from Bulgaria, and the most similar pair was PI 509437 from Romania and PI 491264 from Finland. Clustering patterns based on principal components analysis (PCA) corresponded well with the dendrogram. A high cophenetic correlation (r = 0.82) was found between the RAPD data matrix and cophenetic matrix. The accession PI 628720, from Bulgaria, did not cluster with any other accessions.  相似文献   

2.
The present investigation was carried out on fifteen germplasm lines of Pisum sativum L. were used for characterization using Randomly Amplified Polymorphic DNA (RAPD) markers. While 12 random primers were taken, out of them 11 primers gave amplification. These primers gave a total of 133 bands out of which 106 were polymorphic. Genetic similarities of the RAPD profiles were estimated by using Jaccard’s coefficient with NTSYSpc 2.0 software. The similarity index values ranged from 0.263 to 0.793 indicating the presence of enormous genetic diversity at molecular level. A dendrogram generated by cluster analysis divided fifteen fieldpea genotypes into two Groups A and B. Major Group A have five genotypes and major Group B have nine genotypes.  相似文献   

3.
The genetic relationships among 33 coconut germplasm accessions were analyzed using RAPD markers. The germplasm accessions were collected from various coconut growing regions viz. South Asia (SA), South East Asia (SEA), South Pacific (SP), Atantic and America, and Africa. Forty-five random primers produced a total of 399 polymorphic markers. The Polymorphism Information Content (PIC) ranged from 0.031 to 0.392 and the Marker Index (MI) ranged from 6.28 to 0.031 among the primers. Based on the MI a set of 5, 10 and 15 informative and reproducible primers were identified. The mantel matrix correlation was calculated to compare the similarity matrices of a set of reproducible informative primers and global primers. There was significant correlation among the similarity matrices (r ≥ 0.50). The similarity matrix based on 399 polymorphic markers was used to construct the dendrogram to show the genetic relationship among the accessions. Similarity values ranged between 0.573 and 0.846. There was less genetic similarity (based on Jaccard's coefficient) among South Pacific and South East Asian accessions. The clustering pattern obtained in the present study was in agreement with the earlier reports based on RFLP, SSRs and AFLPs.  相似文献   

4.
Random-amplified polymorphic DNA (RAPD) markers were used to evaluate genetic variability among populations of an Italian strawberry ecotype, and to determinate genetic relationships between genotypes and their putative ancestor. A total of 65 selections and one cultivar ‘Madame Moutot’ (MM), were analysed to evaluate genetic variability present in Etna mountain area and to confirm as MM was one of the cultivars that originated the ecotype. A total of 222 RAPD markers was obtained using 16 decamer primers and 6 longer primers, 90.8% of the markers obtained by selected primers resulted polymorphic at least within analysed genotypes. RAPDs were used to calculate genetic similarity coefficients and to generate dendrograms representing genetic relationships among genotypes analysed. Cluster analysis displays as RAPD polymorphisms were able to characterize the genotype variability among closely related groups. The data show as MM could be considered the ancestral genotypes introduced in that area. The results obtained confirm that RAPD markers could be used as reliable markers to perform phylogenetic studies in Fragaria×ananassa Duch. ex Rozier. Giuseppe Bertino and Piero Spada - Coauthor involved in genotype selection and field management  相似文献   

5.
One hundred decamer arbitrary primers were tested for PCR based amplification of seven genotypes (IG2208-S-1, IG2177, IG2180, IG2178, IG2165-S-1-1, IG2165-1 and Local-1) of an apomictic grass, Dichanthium annulatum, with the aim of screening polymorphic primers and genotype-specific markers. Out of 100 decamer primers tested, 42 produced no amplification or smeared non scorable bands, 12 amplified only single band and 46 yielded more than one polymorphic bands. Thirty-two primers out of 46 selected showed high level of polymorphism, producing 3–15 reproducible bands each for the seven Dichanthium genotypes examined. Among the total of 307 amplified fragments 222 were polymorphic, 53 bands were unique to the genotypes and 32 were monomorphic. Thus, with selected primers sufficient polymorphism could be detected to allow identification of individual genotypes. Genetic similarities of RAPD profiles generated were estimated via a coefficient of DICE and then the data were processed by cluster analysis (UPGMA). The maximum similarities between two genotypes (IG2180 and IG2178) was 58% and these two made a cluster with genotype IG2177 having similarity of only 54%. It clearly corroborated existence of high levels of polymorphism in this grass though being apomictic in nature. Primers like OPE-16, OPG-02, OPG-18, OPH-05, OPH-09, OPH-16, OPI-07 and OPF-06 found most informative as they produced specific bands pertaining to five out of seven genotypes. Polymerase chain reaction (PCR) offers a substantially simple, rapid and reliable method for identification of large number of Dichanthium genotypes once enough number of reproducible and suitable primers is screened.  相似文献   

6.
Total 65 lotus accessions in genus Nelumbo mainly collected from China, were subjected to random amplified polymorphic DNA (RAPD) markers to estimate the genetic diversity and to test the genetic basis of the relationships between morphotypes and molecular markers. Seventeen primers generated a total of 195 highly reproducible and discernible loci, among which 173 were polymorphic. Percent polymorphism varied from 66.7 to 100 with an average of 88.72, and five primers out of them, OPC05, OPG10, OPN20, OPP09 and OPS17, showed 100% polymorphism. A relatively high genetic diversity was detected among all the samples with the similarity coefficient values ranging from 0.45 to 0.85, and Nei’s gene diversity (h) 0.30, and Shannon index (I) 0.46. The UPGMA dendrogram clustered 65 accessions in four clusters and the clustering pattern showed two groups, N. nucifera ssp. nucifera and those accessions related to the American lotus, and some special cultivars, landraces, hybrids and the American lotus. Principal Coordinate Analysis (PCA) further indicated that the genetic diversity of Nelumbo accessions was not evenly distributed, instead, was presented by a clustered distribution pattern. Similar to the results revealed by the dendrogram, two main groups representing the two subspecies of N. nucifera, as well as some special landraces, cultivars of Chinese lotus, the Japanese lotus and hybrids out of the two groups were obtained. Neither the UPGMA dendrogram nor the PCA analysis exhibited strict relationship with geographic distribution and morphotypes among the accessions.  相似文献   

7.
Genetic diversity of seven Rhus L. species was assessed using random amplified polymorphic DNA (RAPDs) markers. Initially, 90 primers were screened, of which 25 produced reproducible amplification products. These primers generated a total of 296 bands, with an average of 11.8 bands per primer. Out of 296 bands scored, 236 (80%) were polymorphic and 62 (20%) were monomorphic. Primers OPC-05 and OPD-05 generated 100% polymorphic bands. The resolving power of primers ranged from 9.4 to 26.8. Similarity matrix values ranged from 0.45 to 0.63. The dendrogram generated using Unweighted Pair Group Method using Arithmetic Averages (UPGMA) grouped all the species of Rhus in one major group with two sister groups, whilst R. pyroides Burch. and R. dentata Thunb. were outliers. R. gerrardii (Harv. ex Engl.) Diels, R. glauca Thunb. and R. pentheri Zahlbr. constituted one sister group, while R. natalensis Bernh. ex C. Krauss and R. gueinzii Sond. were included in the other. The degree of genetic diversity observed between seven species of Rhus with RAPD markers suggest that this approach could be used for studying the phylogeny of the genus.  相似文献   

8.
The genetic relatedness among 51 accessions, 14 species of the genus Zingiber and genetic variability of a clonally propagated species, Zingiber montanum (Koenig) Link ex Dietr., from Thailand were studied using random amplified polymorphic DNA (RAPD) profiles. Twenty-nine random primers gave reproducible amplification banding patterns of 607 polymorphic bands out of 611 scored bands accounting for 99.40% polymorphism across the genotypes. Jaccard’s coefficient of similarity varied from 0.119 to 0.970, indicative of distant genetic relatedness among the genotype studied. UPGMA clustering indicated eight distinct clusters of Zingiber, with a high cophenetic correlation (r = 1.00) value. Genetic variability in Z. montanum was exhibited by the collections from six regions of Thailand. High molecular variance (87%) within collection regions of Z. montanum accessions was displayed by AMOVA and also explained the significant divergence among the sample from six collection regions. Our results indicate that RAPD technique is useful for detecting the genetic relatedness within and among species of Zingiber and that high diversity exists in the clonally propagated species, Z. montanum.  相似文献   

9.
Randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR) and a semi-random PCR system were used to analyze the genetic diversity of 16 Italian common bean landraces and their relationship to four commercial cultivars. Of the primers tested, 8 ISSR, 6 RAPD and 7 semi-random primers produced polymorphic and reproducible DNA fragments. A higher proportion of polymorphic bands were observed using ISSR (85%) and semi-random (90%) primers than RAPD (69%) method. The combination of any two semi-random markers allowed the identification of all 20 bean genotypes. In contrast ISSR (except for primer (CAC)3GC) and RAPD markers appeared to be less informative as more than two markers were necessary to achieve the same diagnostic level. Moreover, 7 ISSR, 2 RAPD and 8 semi-random exclusive bands were identified as putative population-specific markers. Semi-random and ISSR derived dendrograms showed similar tendencies in terms of genetic relatedness, whereas clustering of genotypes within groups was not similar when compared with the RAPD technique. Despite the different ability to resolve genetic variation among the investigated landraces, two major clusters with less than 60% (ISSR) and 40% (RAPD and semi-random) genetic similarity were formed with all three marker systems. The two groups were correlated with the phaseolin patterns and seed size of the landraces. The analysis showed that the cultivar ȁ8Lingua di Fuocoȁ9 and most of the landraces (13 out of 16) collected in Italy belong to the Andean gene pool, whereas only the three populations from Pratomagno belong to the Middle American gene pool.  相似文献   

10.
RAPD analysis was conducted in 22 cultivars of P. nigrum(black pepper) from South India and one accession each of P. longum and P. colubrinum. Twenty-four primers generated 372 RAPD markers of which 367 were polymorphic. Jaccard's similarity between pairs of accessions ranged between 0.11 and 0.66 with a mean of 0.38. Among P. nigrum cultivars, the similarity ranged between 0.20 and 0.66 and the mean was 0.42. The existence of wide genetic diversity as revealed in the present study is supported by earlier reports of extensive inter- and intrapopulation morphological variability in pepper cultivars from South India. UPGMA dendrogram and PCO plot revealed P. colubrinum to be most distant of the three species. Genetic proximity among P. nigrum cultivars could be related to their phenotypic similarities or geographical distribution. Greater divergence was observed among landraces than among advanced cultivars. Landraces grown in southern parts of coastal India and those grown in more northern parts were grouped in separate clusters of the dendrogram.  相似文献   

11.
Musa acuminata Colla (AA genomes) and Musa balbisiana Colla (BB genomes) are the wild progenitors of the cultivated banana, they are highly variable in Thailand. The genetic system is relatively unknown and complicated due to interspecific hybridization, heterozygosity and polyploidy, which are common in most clones. These factors make identification of closely related banana cultivars difficult, especially when sterile. The high annealing temperature-random amplified polymorphic DNA (RAPD) technique was used to estimate the genetic relationship between 22 selected banana cultivars, utilizing 14 random primers. Phylogenetic relationship was determined by unweighted pair group method with arithmetical averages cluster analysis. The dendrogram constructed from the similarity data showed that all the 22 cultivars analysed were closely related with a narrow genetic base. There were sufficient RAPD polymorphisms that were collectively useful in distinguishing the cultivars. The dendrogram grouped all the AA, BB, AAA, AAB and ABB genomes into a major cluster. Several subgroups are recognized within the major clade. As expected, Ensete glauca Roxb. (Musaceae) and Strelitzia reginae Banks (Strelitziaceae) were clearly differentiated from the analysed edible bananas. Our study showed that RAPD markers are sufficiently abundant to classify and readily dissect genetic differences between the closely related Musa germplasm and provide a basis for the selection of parents for improvement of this germplasm.  相似文献   

12.
As an oilseed crop, the cultivation of Ethiopian mustard (Brassica carinata) is restricted only to Ethiopia. Even though geographic diversity is a potent source of allelic diversity, the extent of genetic diversity among germplasm material of Ethiopian mustard from different countries has not been assessed. Forty-three accessions, comprising 29 accessions from eight different geographic regions of Ethiopia and 14 exotic accessions from Australia, Pakistan, Spain, and Zambia were analysed for their genetic diversity using random amplified polymorphic DNA (RAPD) technique. A set of 50 primers yielded a total of 275 polymorphic bands allowing an unequivocal separation of every Ethiopian mustard accession. The usefulness of the 50 RAPD primers in measuring heterozygousity and distinguishing accessions was variable such that polymorphic information content (PIC) varied from 0.05 to 0.40, band informativeness (BI) from 0.05 to 0.65 and primer resolving power (RP) from 0.15 to 6.83. Jaccard's similarity coefficients ranged from 0.44 to 0.87 indicating the presence of a high level of genetic diversity. On the average, Australian and Ethiopian accessions were the most similar while, Spanish and Zambian accessions were the most distant ones. Cluster analysis grouped the 43 accessions into four groups, which has quite a high fit (r = 0.80) to the original similarity matrix. With no prior molecular information, the RAPD technique detected large genetic diversity among the 43 accessions from five different countries and their grouping by dendrogram and principal coordinate analysis (PCoA) was inclined towards geographic differentiation of RAPD markers. Conversely, RAPD differentiation along geographic origin was not apparent within the Ethiopian accessions.  相似文献   

13.
Genetic diversity of the Turkish watermelon genetic resources was evaluated using different Citrullus species, wild relatives, foreign landraces, open pollinated (OP) and commercial hybrid cultivars by RAPD markers. The germplasm was consisted of 303 accessions collected from various geographical regions. Twenty-two of 35 RAPD primers generated a total of 241 reproducible bands, 146 (60.6%) of which were polymorphic. Based on the RAPD data the genetic similarity coefficients were calculated and the dendrogram was constructed using UPGMA (Unweighted pair-group method with arithmetic average). Cluster analysis of the 303 accessions employing RAPD data resulted in a multi-branched dendrogram indicating that most of the Turkish accessions belonging to var. lanatus of Citrullus lanatus (Thunb.) Matsum et Nakai were grouped together. Accessions of different Citrullus species and Praecitrullus fistulosus (Stocks) Pangalo formed distant clusters from C. lanatus var. lanatus. Among 303 accessions, a subset of 56 accessions was selected representing different groups and a second dendrogram was constructed. The genetic similarity coefficients (GS) within the Turkish accessions were ranged from 0.76 to 1.00 with 0.94 average indicating that they are closely related. Taken together, our results indicated that low genetic variability exist among the watermelon genetic resources collected from Turkey contrary to their remarkable phenotypic diversity.  相似文献   

14.
Detection of genetic relationships between 19 chickpea cultivars and five accessions of its wild progenitor Cicer reticulatum Ladizinsky were investigated by using RAPD and ISSR markers. On an average, six bands per primer were observed in RAPD analysis and 11 bands per primer in ISSR analysis. In RAPD, the wild accessions shared 77.8% polymorphic bands with chickpea cultivars, whereas they shared 79.6% polymorphic bands in ISSR analysis. In RAPD analysis 51.7% and 50.5% polymorphic bands were observed among wild accessions and chickpea cultivars, respectively. Similarly, 65.63% and 56.25% polymorphic bands were found in ISSR analysis. The dendrogram developed by pooling the data of RAPD and ISSR analysis revealed that the wild accessions and the ICCV lines showed similar pattern with the dendrogram of RAPD analysis. The ISSR analysis clearly indicated that even with six polymorphic primers, reliable estimation of genetic diversity could be obtained, while nearly 30 primers are required for RAPD. Moreover, RAPD can cause genotyping errors due to competition in the amplification of all RAPD fragments. The markers generated by ISSR and RAPD assays can provide practical information for the management of genetic resources. For the selection of good parental material in breeding programs the genetic data produced through ISSR can be used to correlate with the relationship measures based on pedigree data and morphological traits to minimize the individual inaccuracies in chickpea.  相似文献   

15.
16.
Sesuvium portulacastrum L. (seapurslane) is a halophyte used as pioneer species in sand dune fixation and stabilization of saline soil. Studies on the morphological and molecular diversity were carried out for the 14 clones of Sesuvium collected from the different coastal regions of India. Significant differences were observed for morphological traits viz., length, width, diameter and area of leaf, internodal distance and stem diameter for different clones when compared with the clone from Gujarat state (GJ1). A UPGMA dendrogram for morphological traits based on the Pearson’s similarity coefficient clustered the clones into three groups considering 80% polymorphism as criteria. Molecular diversity among the clones was studied using Randomly Amplified Polymorphic DNA (RAPD), Internal Transcribed Spacer (ITS) and markers specific to Ac homologous region. Of the total 749 RAPD loci amplified with 70 random primers, 294 were polymorphic with 39.25% diversity. A phylogenetic tree constructed with UPGMA and SHAN, grouped the clones into three major clades based on RAPD data. The molecular diversity studied with ITS and markers specific to Ac homologous region revealed 37.50% and 66.66% polymorphism and clustered the clones into three and four clades, respectively. The genetic diversity analysis revealed wide variations among the S. portulacastrum clones, reflecting a high level of diversity within the species which might be due to anthropogenic impact and geographic environmental conditions. Further, the various clones from the different eco-geographic coastal localities might have originated from native places of wild abundance. To the best of our knowledge, this is the first attempt to evaluate both morphological and genetic diversity among the Sesuvium clones collected from the distant habitats of the coastal regions of the India.  相似文献   

17.
The genetic relationships among 56 melon (Cucumis melo L.) genotypes collected from various parts of Turkey were determined by comparing their phenotypic and molecular traits with those of 23 local and foreign melon genotypes to investigate the taxonomic relationships and genetic variation of Turkish melon germplasm. Sixty-one phenotypic characters and 109 polymorphic RAPD markers obtained from 33 primers were used to define the genetic similarity among the melon genotypes by dendrograms or two and three dimensional scaling. There were high correlations (r ≥ 0.97) among the four resulting matrices used in molecular characterization. The correlations between phenotypic (Euclidean) and molecular Euclidean, Jaccard, Simple matching, and Nei analyses were r = 0.41, r = −0.40, r = −0.43 and r = −0.40, respectively. Related genotypes or genotypes collected from similar regions were partitioned to similar clusters. Both analyses (phenotypic and molecular) indicated that non-sweet melon types were dissimilar from sweet types and diversity of Turkish melon genotypes was higher than that of sweet foreign cultivars examined, but similar to that of the reference accessions employed. It was also observed that sweet Turkish melon genotypes belonging to groups inodorus and group cantalupensis were highly variable and could have intermated or have crossed with other non-sweet types.  相似文献   

18.
The genus Paspalum L. consists of more than 400 species. Around twenty-five informal groups of species are recognized in Paspalum and the Dilatata group is of special interest because its members are excellent potential forage grasses. Seventy-five germplasm accessions, representing 15 taxa, were analyzed using randomly amplified polymorphic DNA (RAPD). Polymorphisms were observed with twenty-two primers in the Dilatata group and 16 of those were analyzed. Four hundred and four different RAPD fragments were generated, resulting in an average of 25.2 bands per primer. Among the 404 markers analyzed, 48 (11.88%) were exclusive for the P. dilatatum Poir. biotypes, 31 (7.67%) were exclusive to taxa belonging to other groups included in this study, 28 markers (6.93%) were diagnosed for other species of the Dilatata group and 16 (3.96%), for natural hybrids. Extensive RAPD variation was found among the species studied. Inter- and intra-taxonomic polymorphisms were detected. A dendrogram based on the RAPD data shows some clusters corresponding to the same taxa. However, the biotypes of P. dilatatum do not form a cluster. The present work confirms that the RAPD technique can be used to determine genetic relationships between the taxa belonging to the Dilatata group.  相似文献   

19.
Genetic diversity is an area of concern for sustaining crop yield. Information on genetic relatedness/diversity among Gossypium arboreum L. cultivars/genotypes is scanty. We have used random amplified polymorphic DNA (RAPD) analysis to assess the genetic divergence/relationship among 30 genotypes/cultivars of G. arboreum. Of 45 primers surveyed, 63% were polymorphic. Out of the total number of loci amplified, 36% were polymorphic. The calculated genetic similarity between the cultivars/genotypes was in the range of 47.05–98.73%. Two genotypes, HK-244 and Entry-17, were the most distantly related. The average genetic relatedness among all the genotypes was 80.46%. However, most of the cultivated varieties showed a close genetic relationship, indicating a narrow genetic base in comparison to the non-cultivated germplasm. The calculated coefficients were used to construct a dendrogram using the unweighted pair group of arithmetic means (UPGMA) algorithm, which grouped the genotypes/cultivars into two major and three smaller clusters. The study is the first comprehensive analysis of the genetic diversity of G. arboreum germplasm and identifies cultivars that will be useful in extending the genetic diversity of cultivated varieties and future genome mapping projects.  相似文献   

20.
Southeast Asia hosts a great diversity of different rattan genotypes. There are 5 genera and 60 different species of rattan in India and the Northeastern region is a natural sanctuary for 4 different genera and 16 different species. The natural reserves of this species have come under the threat of genetic erosion due to overexploitation. This investigation was directed at characterizing 15 rattan genotypes of the genera Calamus, Plectocomia and Daemonorops which yield rattans of commercial importance, based on RAPD fingerprints. From 20 different random decamer primers, 12 primers gave reproducible amplification profiles and 104 polymorphic bands. A considerable degree of polymorphism (98.1%) was detected among the genotypes. Jaccard’s coefficient of similarity ranged from 0.146 to 0.632 with a mean of 0.320±0.082, signifying extensive genetic divergence among the genotypes studied. UPGMA cluster analysis clearly distinguished P. assamica Griff. and C. erectus Roxb. The other 13 genotypes were grouped into two distinct clusters, one cluster involving two C. tenuis genotypes along with C. inermis T.Anders. and C. acanthospathus Griff. and the other cluster involving the rest of the Calamus genotypes along with D. jenkinsianus (Griff.) Mart. Unique fingerprints for 7 Calamus and 1 Daemonorops genotypes were detected. The results presented in this paper demonstrated the utility of RAPD markers in elucidating patterns of genetic variation among genotypes of the three main rattan genera of Northeast India and in identifying individual genotypes, which may serve as potential sources of unique genetic material for genetic improvement and conservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号