首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forest soils are important components of the global carbon cycle because they both store and release carbon. Carbon dioxide is released from soil to the atmosphere as a result of plant root and microbial respiration. Additionally, soils in dry forests are often sinks of methane from the atmosphere. Both carbon dioxide and methane are greenhouse gases whose increasing concentration in the atmosphere contributes to climate warming. Thinning treatments are being implemented in ponderosa pine forests across the southwestern United States to restore historic forest structure and reduce the risk of severe wildfire. This study addresses how thinning alters fluxes of carbon dioxide and methane in ponderosa pine forest soils within one year of management and examines mechanisms of change. Carbon dioxide and methane fluxes, soil temperature, soil water content, forest floor mass, root mass, understory plant biomass, and soil microbial biomass carbon were measured before and after the implementation of a thinning and in an unthinned forest. Carbon dioxide efflux from soil decreased as a result of thinning in two of three summer months. Average summer carbon dioxide efflux declined by an average of 34 mg C m−2 hr−1 in the first year after thinning. Methane oxidation did not change in response to thinning. Thinning had no significant short-term effect on total forest floor mass, total root biomass, or microbial biomass carbon in the mineral soil. Understory plant biomass increased after thinning. Thinning increased carbon available for decomposition by killing tree roots, but our results suggest that thinning reduced carbon dioxide emissions from the soil because the reduction in belowground autotrophic respiration was larger than the stimulation of heterotrophic respiration. Methane oxidation was probably not affected by thinning because thinning did not alter the forest floor mass enough to affect methane diffusion from the atmosphere into the soil.  相似文献   

2.
Low-elevation ponderosa pine (Pinus ponderosa Dougl. ex. Laws.) forests of the northern Rocky Mountains historically experienced frequent low-intensity fires that maintained open uneven-aged stands. A century of fire exclusion has contributed to denser ponderosa pine forests with greater competition for resources, higher tree stress and greater risk of insect attack and stand-destroying fire. Active management intended to restore a semblance of the more sustainable historic stand structure and composition includes selective thinning and prescribed fire. However, little is known about the relative effects of these management practices on the physiological performance of ponderosa pine. We measured soil water and nitrogen availability, physiological performance and wood radial increment of second growth ponderosa pine trees at the Lick Creek Experimental Site in the Bitterroot National Forest, Montana, 8 and 9 years after the application of four treatments: thinning only; thinning followed by prescribed fire in the spring; thinning followed by prescribed fire in the fall; and untreated controls. Volumetric soil water content and resin capsule ammonium did not differ among treatments. Resin capsule nitrate in the control treatment was similar to that in all other treatments, although burned treatments had lower nitrate relative to the thinned-only treatment. Trees of similar size and canopy condition in the three thinned treatments (with and without fire) displayed higher leaf-area-based photosynthetic rate, stomatal conductance and mid-morning leaf water potential in June and July, and higher wood radial increment relative to trees in control units. Specific leaf area, mass-based leaf nitrogen content and carbon isotope discrimination did not vary among treatments. Our results suggest that, despite minimal differences in soil resource availability, trees in managed units where basal area was reduced had improved gas exchange and growth compared with trees in unmanaged units. Prescribed fire (either in the spring or in the fall) in addition to thinning, had no measurable effect on the mid-term physiological performance and wood growth of second growth ponderosa pine.  相似文献   

3.
Søe AR  Buchmann N 《Tree physiology》2005,25(11):1427-1436
Soil CO2 efflux (soil respiration) plays a crucial role in the global carbon cycle and efflux rates may be strongly altered by climate change. We investigated the spatial patterns of soil respiration rates in 144 measurement locations in a 0.5-ha plot and the temporal patterns along a 300-m transect in the 0.5-ha plot. Measurements were made in an unmanaged, highly heterogeneous beech forest during 2000 and 2001. We investigated the effects of soil, roots and forest stand structure on soil respiration, and we also assessed the stability of these spatial patterns over time. Soil temperature alone explained between 68 and 95% of the temporal variation in soil respiration; however, pronounced spatial scatter of respiration rates was not explained by soil temperature. The observed spatial patterns stayed remarkably stable throughout the growing season and over 2 years. The most important structural parameter of the stand was the mean diameter at breast height of trees within a distance of 4 m of the measurement locations (m-dbh4), which explained 10-19% of the variation in soil respiration throughout the growing season. Among the soil chemical parameters, carbon content (bulk as well as dissolved) and magnesium content explained 62% of the spatial variation in soil respiration. The final best model combining soil, root and stand structural parameters (fine root biomass, soil carbon content, m-dbh4 and soil water content) explained 79% of the variation in soil respiration, illustrating the importance of both biotic and abiotic factors.  相似文献   

4.
We investigated the impact of seasonal soil water deficit on the processes driving net ecosystem exchange of carbon (NEE) in old-growth and recently regenerating ponderosa pine (Pinus ponderosa Doug. ex Laws.) stands in Oregon. We measured seasonal patterns of transpiration, canopy conductance and NEE, as well as soil water, soil temperature and soil respiration. The old-growth stand (O) included two primary age classes (50 and 250 years), had a leaf area index (LAI) of 2.1 and had never been logged. The recently regenerating stand (Y) consisted predominantly of 14-year-old ponderosa pine with an LAI of 1.0. Both stands experienced similar meteorological conditions with moderately cold wet winters and hot dry summers. By August, soil volumetric water content within the upper 30 cm had declined to a seasonal minimum of 0.07 at both sites. Between April and June, both stands showed similar rates of transpiration peaking at 0.96 mm day(-1); thereafter, trees at the Y site showed increasing drought stress with canopy stomatal resistance increasing 6-fold by mid-August relative to values for trees at the O site. Over the same period, predawn water potential (psi(pd)) of trees at the Y site declined from -0.54 to -1.24 MPa, whereas psi(pd) of trees at the O site remained greater than -0.8 MPa throughout the season. Soil respiration at the O site showed a strong seasonal correlation with soil temperature with no discernible constraints imposed by declining soil water. In contrast, soil respiration at the Y site peaked before seasonal maximal soil temperatures and declined thereafter with declining soil water. No pronounced seasonal pattern in daytime NEE was observed at either site between April and September. At the Y site this behavior was driven by concurrent soil water limitations on soil respiration and assimilation, whereas there was no evidence of seasonal soil water limitations on either process at the O site.  相似文献   

5.
Soil respiration (rs), soil temperature (Ts) and volumetric soil water content were measured in a balsam fir (Abies balsamea (L.) Mill.) ecosystem from 1998 to 2001. Seasonal variation in root and microbial respiration, and covariation in abiotic factors confounded interpretation of the effects of Ts and soil water potential (Psis) on rs. To minimize the confounding effect of temperature, we analyzed the effect of Psis on rs during the summers of 1998-2000 when changes in Ts were slight. Soil respiration declined 25-50% in response to modest water stress (minimum Psis of -0.6 to -0.2 MPa), and between years, there was substantial variation in the relationship between rs and Psis. In the summer of 2000, 2-m2 plots were subjected to drought for 1 month and other plots were irrigated. The relationship between summertime rs and Psis in the experimental plots was similar to that estimated from the survey data obtained during the same summer. In late spring and early autumn of 2001, 2-m2 trenched and untrenched plots were subjected to drought or exposed to rainfall. It was dry in the early autumn and there was severe soil drying (Psis of -10 MPa in untrenched plots and -2 MPa in trenched plots). In spring, rs in untrenched plots responded more to modest water stress than rs in trenched plots, indicating that root respiration is more sensitive than microbial respiration to water stress at this time of year. The response to abiotic factors differed significantly between spring and autumn in untrenched plots but not in trenched plots, indicating that root activity was greater in early autumn than in late spring, and that roots acclimated to the sustained, severe water stress experienced before and during the autumn.  相似文献   

6.
Wieser G 《Tree physiology》2004,24(4):475-480
Soil respiration (R) of a 95-year-old Pinus cembra L. forest at the alpine timberline was measured continuously from October 2001 to January 2003 with an automated multiplexing gas exchange system. There was significant spatial variability in soil respiration, and R at a soil temperature of 10 degrees C (R10) decreased by about 20% m(-1) with increasing distance from the trunk. Needle litter and fine root density also decreased. The spatially averaged annual soil CO2 efflux was 35 g C m(-2) year(-1) in 2002. About 70% of the temporal variation in soil respiration could be explained by variations in soil temperature, whereas the influence of soil water potential and thus soil water content was negligible because soil water availability was supra-optimal.  相似文献   

7.
Soil respiration (RS) is a major carbon pathway from terrestrial ecosystems to the atmosphere and is sensitive to environmental changes. Although commonly used mechanical thinning and prescribed burning can significantly alter the soil environment, the effect of these practices on RS and on the interactions between RS and belowground characteristics in managed forests is not sufficiently understood. We: (1) examined the effects of burning and thinning treatments on soil conditions, (2) identified any changes in the effects of soil chemical and physical properties on RS under burning and thinning treatments, and (3) indirectly estimated the changes in the autotrophic soil respiration (RA) and heterotrophic soil respiration (RH) contribution to RS under burning and thinning treatments. We conducted our study in the Teakettle Experimental Forest where a full factorial design was implemented with three levels of thinning, none (N), understory thinning (U), and overstory thinning (O; September to October 2000 for thin burn combination and June and July 2001 for thin only treatments) and two levels of burning, none (U) and prescribed burning (B; fall of 2001). RS, soil temperature, soil moisture, litter depth, soil total nitrogen and carbon content, soil pH, root biomass, and root nitrogen (N) concentration were measured between June 15 and July 15, 2002 at each plot. During this period, soil respiration was measured three times at each point and averaged by point. When we assumed the uniform and even contribution of RA and RH to RS in the studied ecosystem without disturbances and a linear relationship of root N content and RA, we calculated the contributions of RA to RS as 22, 45, 53, 48, and 45% in UU, UO, BN, BU, and BO, respectively. The results suggested that after thinning, RS was controlled more by RH while after burning RS was more influenced by RA. The least amount of RS variation was explained by studied factors under the most severe treatment (BO treatment). Overall, root biomass, root N concentration, and root N content were significantly (p < 0.01) correlated with soil respiration with correlation coefficients of 0.37, −0.28, and 0.29, respectively. This study contributes to our understanding of how common forestry management practices might affect soil carbon sequestration, as soil respiration is a major component of ecosystem respiration.  相似文献   

8.
Jiang L  Shi F  Li B  Luo Y  Chen J  Chen J 《Tree physiology》2005,25(9):1187-1195
The potential capacity of soil to sequester carbon in response to global warming is strongly regulated by the ratio of rhizosphere respiration to respiration by soil microbial decomposers, because of their different temperature sensitivities. To quantify relative contributions of rhizosphere respiration to total soil respiration as influenced by forest stand development, we conducted a trenching study in two larch (Larix gmelini (Rupr.) Rupr.) plantations, aged 17 and 31 years, in northeastern China. Four plots in each plantation were randomly selected and trenched in early May 2001. Soil surface CO2 effluxes both inside and outside the plots were measured from May 2001 to August 2002. Soil respiration (i.e., the CO2 effluxes outside the trenched plots) varied similarly in the two plantations from 0.8 micromol m(-2) s(-1) in winter to 6.0 micromol m(-2) s(-1) in summer. Rhizosphere respiration (i.e., CO2 efflux outside the trenched plots minus that inside the plots) varied from 0.2 to 2.0 micromol m(-2) s(-1) in the old forest and from 0.3 to 4.0 micromol m(-2) s(-1) in the young forest over the seasons. Rhizosphere respiration, on average, accounted for 25% of soil respiration in the old forest and 65% in the young forest. Rhizosphere and soil respiration were significantly correlated with soil temperature but not with soil water content. We conclude that the role forests play in regulating climate change may depend on their age.  相似文献   

9.
Understanding seasonal variations of photosynthetic parameters is critical for accurate modeling of carbon dioxide (CO2) uptake by ecosystems. Maximum carboxylation velocity (Vcmax), maximum rate of electron transport (Jmax), leaf respiration in the light (R(day)), light-saturated assimilation (Amax) and maximum quantum yield (Phi) were calculated from leaf gas exchange measurements made monthly throughout the year on leaves of three co-occuring evergreen species in a Pinus ponderosa Dougl. ex P. Laws. & C. Laws. forest with shrubs in the understory (Arctostaphylos manzanita Parry and Ceanothus cordulatus Kellogg.). The seasonality and relationships of the photosynthetic parameters with environmental and physiological variables differed among the species. The nitrogen-fixing species, C. cordulatus had the highest values of the parameters and the largest seasonal variation, whereas A. manzanita exhibited the lowest seasonality and weaker correlations with environmental variables. In general, variations in Vcmax were highly correlated with light, leaf mass per area and leaf nitrogen content on an area basis. Temporal scaling of the parameters with each other seemed possible for C. cordulatus and P. ponderosa. However, lags between these variables and Vcmax likely reflect the influences of other factors. The acclimation relationships found along vertical light gradients within canopies in other studies cannot be applied to seasonal variations. The Jmax to Vcmax ratio varied seasonally for P. ponderosa and A. manzanita, being lower at high light, high air temperature and low soil water content.  相似文献   

10.
Brooks JR  Meinzer FC  Coulombe R  Gregg J 《Tree physiology》2002,22(15-16):1107-1117
The magnitude of hydraulic redistribution of soil water by roots and its impact on soil water balance were estimated by monitoring time courses of soil water status at multiple depths and root sap flow under drought conditions in a dry ponderosa pine (Pinus ponderosa Dougl. ex Laws) ecosystem and in a moist Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) ecosystem. The fate of deuterated water applied to small plots to create a strong horizontal soil water potential gradient was also monitored to assess the potential for horizontal redistribution of water and utilization of redistributed water by co-occurring shallow-rooted plants. In a 20-year-old Douglas-fir stand, approximately 28% of the water removed daily from the upper 2 m of soil was replaced by nocturnal hydraulic redistribution during late August. In an old-growth ponderosa pine stand, approximately 35% of the total daily water utilization from the upper 2 m of soil appeared to be replaced by hydraulic redistribution during July and August. By late September, hydraulic redistribution in the ponderosa pine stand was no longer apparent, even though total water use from the upper 2 m of soil was nearly identical to that observed earlier. Based on these results, hydraulic redistribution would allow 21 and 16 additional days of stored water to remain in the upper soil horizons in the ponderosa pine and Douglas-fir stands, respectively, after a 60-day drought. At both sites, localized applications of deuterated water induced strong reversal of root sap flow and caused soil water content to cease declining or even temporarily increase at locations too distant from the site of water application to have been influenced by movement of water through the soil without facilitation by roots. Xylem water deuterium values of ponderosa pine seedlings suggested utilization of redistributed water. Therefore, hydraulic redistribution may enhance seedling survival and maintain overstory transpiration during summer drought. These first approximations of the extent of hydraulic redistribution in these ecosystems suggest that it is likely to be an important process in both wet and dry forests of the Pacific Northwest.  相似文献   

11.
Xu M  DeBiase TA  Qi Y  Goldstein A  Liu Z 《Tree physiology》2001,21(5):309-318
We estimated total ecosystem respiration from a ponderosa pine (Pinus ponderosa Dougl. ex Laws.) plantation in the Sierra Nevada Mountains near Georgetown, California, from June to October, 1998. We apportioned ecosystem respiration among heterotrophic, root, stem and foliage based on relationships for each component that considered microclimate and vegetation characteristics. We measured each respiration component at selected sampling points, and scaled the measurements up to the ecosystem based on modeled relationships. Over the study period, total mean ecosystem respiration was 5.7 +/- 1.3 mumol m-2 s-1 (based on daily mean), comprising about 67% from soil-surface CO2 efflux, 10% from stem and branch respiration and 23% from foliage respiration. Shrub leaves contributed about 24% to total foliage respiration, and current-year needles (1998 age class) accounted for 40% of total tree needle respiration. Root respiration accounted for 47% of soil-surface CO2 efflux. We conclude that ecosystem respiration can be estimated based on daily mean air and soil temperatures through exponential relationships with r2 values of 0.85 and 0.87, respectively. When based on both air and soil temperatures, about 91% of the variation in total ecosystem respiration could be explained by a linear regression.  相似文献   

12.
Vast areas of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) forest in the western United States have become unnaturally dense because of relatively recent land management practices that include fire suppression and livestock grazing. In many areas, thinning treatments can re-establish the natural ecological processes and help restore ecosystem structure and function. Precipitous global climate change has focused attention on the carbon storage in forests. An unintended consequence of fire suppression has been the increased storage of carbon in ponderosa stands. Thinning treatments reduce standing carbon stocks while releasing carbon through the combustion of fuel in logging machinery, burning slash, and the decay of logging slash and wood products. These reductions and releases of stored carbon must be compared to the risk of catastrophic fire burning through the stand and releasing large quantities of carbon to the atmosphere to more fully understand the costs and benefits – in carbon terms – of forest restoration strategies.  相似文献   

13.
Reducing the canopy cover (e.g., forest thinning) is one of the most commonly employed forest silvicultural treatments. Trees are partially removed from a forest in order to manage tree competition, thus favoring the remaining and often the most valuable trees. The properties of the soil are affected by forest thinning as a result of changes in key microclimatic conditions, microbial communities and biomass, root density, nutrient budgets and organic matter turnover. The aim of this study was to determine the soil microbial biomass C, N and respiration (basal respiration) in a black pine (Pinus nigra Arn. subsp. pallasiana) forest in the Mudurnu district of Bolu Province (Western Black Sea Region, Turkey). Whereas forest thinning was found to cause increases in the soil temperature, microbial biomass C and N and organic C, it was found to decrease the soil moisture, basal respiration and metabolic quotient (qCO2). As expected, soil organic C exhibited a strong impact on soil microbial biomass C, N and basal respiration. It was concluded that the influence of forest thinning on the microbial biomass and soil respiration was the combined result of changing microclimatic conditions and soil properties, such as forest litter, soil temperature, soil moisture, soil pH and soil organic matter.  相似文献   

14.
Our first objective was to link the seasonality of fine root dynamics with soil respiration in a ponderosa pine (Pinus ponderosa P. & C. Lawson) plantation located in the Sierra Nevada of California. The second objective was to examine how canopy photosynthesis influences fine root initiation, growth and mortality in this ecosystem. We compared CO2 flux measurements with aboveground and belowground root dynamics. Initiation of fine root growth coincided with tree stem thickening and shoot elongation, preceding new needle growth. In the spring, root, shoot and stem growth occurred simultaneously with the increase in canopy photosynthesis. Compared with the other tree components, initial growth rate of fine roots was the highest and their growing period was the shortest. Both above and belowground components completed 90% of their growth by the end of July and the growing season lasted approximately 80 days. The period for optimal growth is short at the study site because of low soil temperatures during winter and low soil water content during summer. High photosynthetic rates were observed following unusual late-summer rains, but tree growth did not resume. The autotrophic contribution to soil respiration was 49% over the whole season, with daily contributions ranging between 18 and 87%. Increases in soil and ecosystem respiration were observed during spring growth; however, the largest variation in soil respiration occurred during summer rain events when no growth was observed. Both the magnitude and persistence of the soil respiration pulses were positively correlated with the amount of rain. These pulses accounted for 16.5% of soil respiration between Days 130 and 329.  相似文献   

15.
【目的】探讨不同间伐强度下马尾松人工林根际与非根际土壤中性糖为含量、组成和来源,以更好了解间伐后林地土壤有机碳库及其稳定性变化,为马尾松人工林可持续经营提供科学指导。【方法】以30年生马尾松人工林为研究对象,采用随机区组法,设置4种处理,各处理重复3次,共12块20m×20m固定样地,包括对照(0%)、轻度间伐(25%)、中度间伐(45%)和强度间伐(65%),测定土壤基本理化性质及枯落物和土壤中性糖的含量及组成。【结果】根际土壤中性糖含量(4.55~7.89mg·g^-1)显著高于非根际土壤(2.67~4.18mg·g^-1);间伐可显著降低根际土壤中性糖含量,且各处理间差异显著(P<0.05),分别低于对照15.34%、27.25%和42.33%;非根际土壤中性糖含量仅在强度间伐下显著降低(P<0.05);非根际土壤中8种中性单糖含量在不同间伐强度间差异不显著,均以葡萄糖含量最高,占中性糖总量的33.21%~41.39%,其次为甘露糖(占中性糖总量的18.34%~25.09%)、半乳糖(占中性糖总量的13.87%~16.99%)、阿拉伯糖(占中性糖总量的8.45%~11.34%)、木糖(占中性糖总量的6.22%~7.91%)、鼠李糖(占中性糖总量的4.37%~6.06%)、岩藻糖(占中性糖总量的2.71%~3.26%)和核糖(含量最少,占中性糖总量的比例不到1%);根际土壤中8种中性单糖分布规律与非根际土壤一致,且随间伐强度增加各中性单糖含量呈下降趋势,但各处理间差异除葡萄糖外均未达到显著水平;间伐可增加根际与非根际土壤中六碳糖(半乳糖+甘露糖)和五碳糖(木糖+阿拉伯糖)含量的比值,且间伐后该比值均大于2;根际与非根际土壤中性糖在总有机碳中的比例分别为16.65%~17.36%和16.75%~23.21%,且该比值均随间伐强度增加呈先降后升的趋势,在中度间伐时达到最低值。【结论】间伐可降低根际与非根际土壤中性糖总量,但对土壤中8种中性单糖含量影响不显著;间伐后土壤微生物活性增强,从而可增加土壤中性糖的微生物来源;中度间伐下根际与非根际土壤中性糖和总有机碳的比值最低,表明中度间伐有利于土壤碳库的稳定,对马尾松近熟林实施45%的间伐强度较为适宜。  相似文献   

16.
刘颖  韩士杰  林鹿 《林业研究》2009,20(4):367-371
2004年5月至9月,研究了长白山白桦林土壤呼吸以及根系呼吸对土壤呼吸的贡献随土壤温度和土壤湿度的季节变化,研究结果表明:土壤总呼吸、断根土壤呼吸和根系呼吸在生长季内有相似的季节变化趋势,夏季潮湿而且温度较高,呼吸速率也较高,春季和秋季温度较低,呼吸速率也较低。2004年5月至9月,土壤总呼吸、断根土壤呼吸和根系呼吸的平均值分别为4.44,2.30和2.14μmol&#183;m^-2s^-1,三者与土壤温度均呈指数相关,与土壤湿度呈线性相关,三者的Q10值分别为2.82,2.59和3.16,这与其他学者的结果相似。根系呼吸是土壤呼吸的一个重要组成部分,2004年5月至9月,根系呼吸对土壤总呼吸的贡献在29.3~58.7%之间。根据Q10模型估算的土壤总呼吸、断根土壤呼吸和根系呼吸的全年平均值分别为1.96、1.08和0.87μmol&#183;m^-2s^-1,即741.73、408.71和329.24gC&#183;m^-2&#183;a^-1,全年根系对土壤总呼吸的贡献为44.4%。土壤呼吸和土壤温度之间的关系模型是了解和预测长白山白桦林生态系统潜在的随森林管理和气候变化而变化的有用工具。  相似文献   

17.
We used concurrent measurements of soil water content and soil water potential (Psi(soil)) to assess the effects of Psi(soil) on uptake and hydraulic redistribution (HR) of soil water by roots during seasonal drought cycles at six sites characterized by differences in the types and amounts of woody vegetation and in climate. The six sites included a semi-arid old-growth ponderosa pine (Pinus ponderosa Dougl. ex P. Laws & C. Laws) forest, a moist old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forest, a 24-year-old Douglas-fir forest and three Brazilian savanna sites differing in tree density. At all of the sites, HR was confined largely to the upper 60 cm of soil. There was a common threshold relationship between the relative magnitude of HR and Psi(soil) among the six study sites. Below a threshold Psi(soil) of about -0.4 MPa, overnight recharge of soil water storage increased sharply, and reached a maximum value of 80-90% over a range of Psi(soil) from ~ -1.2 to -1.5 MPa. Although amounts of water hydraulically redistributed to the upper 60 cm of soil were relatively small (0 to 0.4 mm day(-1)), they greatly reduced the rates of seasonal decline in Psi(soil). The effectiveness of HR in delaying soil drying diminished with increasing sapwood area per ground area. The relationship between soil water utilization and Psi(soil) in the 20-60-cm layer was nearly identical for all six sites. Soil water utilization varied with a surrogate measure of rhizosphere conductance in a similar manner at all six sites. The similarities in relationships between Psi(soil) and HR, soil water utilization and relative rhizosphere conductance among the six sites, suggests that, despite probable differences in maximum rooting depth and density, there was a convergence in biophysical controls on soil water utilization and redistribution in the upper soil layers where the density of finer roots is greatest.  相似文献   

18.
We tested, compared and modified three models of stomatal conductance at the leaf level in a forest ecosystem where drought stress is a major factor controlling forest productivity. The models were tested against 2 years (1999 and 2000) of leaf-level measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing in the Mediterranean climate of California, USA. The Ball, Woodrow and Berry (1987) (BWB) model was modified to account for soil water stress. Among the models, results of the modified BWB model were in the closest agreement with observations (r2 = 0.71). The Jarvis (1976) model showed systematic simulation errors related to vapor pressure deficit (r2 = 0.65). Results of the Williams, Rastetter, Fernandes et al. (1996) (SPA) model showed the poorest correlation with empirical data, but this model has only one calibration parameter (r2 = 0.60). Sensitivity analyses showed that, in all three models, predictions of stomatal conductance were most responsive to photosynthetically active radiation and soil water content. Stomatal conductance showed little sensitivity to vapor pressure deficit in the Jarvis model, whereas in both the BWB and SPA models, vapor pressure deficit (or relative humidity) was the third most important variable. Parameterization of the SPA model was in accordance with the parameterization of the modified BWB model, although the two models differ greatly. Measured and modeled results indicate that stomatal behavior is not water conservative during spring; however, during summer, when soil water content is low and vapor pressure deficit is high, stomatal conductance decreases and, according to the models, intrinsic water- use efficiency increases.  相似文献   

19.
To quantify the effects of crown thinning on the water balance and growth of the stand and to analyze the ecophysiological modifications induced by canopy opening on individual tree water relations, we conducted a thinning experiment in a 43-year-old Quercus petraea stand by removing trees from the upper canopy level. Soil water content, rainfall interception, sap flow, leaf water potential and stomatal conductance were monitored for two seasons following thinning. Seasonal time courses of leaf area index (LAI) and girth increment were also measured. Predawn leaf water potential was significantly higher in trees in the thinned stand than in the closed stand, as a consequence of higher relative extractable water in the soil. The improvement in water availability in the thinned stand resulted from decreases in both interception and transpiration. From Year 1 to Year 2, an increase in transpiration was observed in the thinned stand without any modification in LAI, whereas changes in transpiration in the closed stand were accompanied by variations in LAI. The different behaviors of the closed and open canopies were interpreted in terms of coupling to the atmosphere. Thinning increased inter-tree variability in sap flow density, which was closely related to a leaf area competition index. Stomatal conductance varied little inside the crown and differences in stomatal conductance between the treatments appeared only during a water shortage and affected mainly the closed stand. Thinning enhanced tree growth as a result of a longer growing period due to the absence of summer drought and higher rates of growth. Suppressed and dominant trees benefited more from thinning than trees in the codominant classes.  相似文献   

20.

The effects of a thinning treatment on soil respiration (Rs) were analysed in two dryland forest types with a Mediterranean climate in east Spain: a dry subhumid holm oak forest (Quercus ilex subsp. ballota) in La Hunde; a semiarid postfire regenerated Aleppo pine (Pinus halepensis) forest in Sierra Calderona. Two twin plots were established at each site: one was thinned and the other was the control. Rs, soil humidity and temperature were measured regularly in the field at nine points per plot distributed into three blocks along the slope for 3 years at HU and for 2 years at CA after forest treatment. Soil heterotrophic activity was measured in laboratory on soil samples obtained bimonthly from December 2012 to June 2013 at the HU site. Seasonal Rs distribution gave low values in winter, began to increase in spring before lowering as soil dried in summer. This scenario indicates that with a semiarid climate, soil respiration is controlled by both soil humidity and soil temperature. Throughout the study period, the mean Rs value in the HU C plot was 13% higher than at HU T, and was 26% higher at CA C than the corresponding CA T plot value, being the differences significantly higher in control plots during active growing periods. Soil microclimatic variables explain the biggest proportion of variability for Rs: soil temperature explained 24.1% of total variability for Rs in the dry subhumid forest; soil humidity accounted for 24.6% of total variability for Rs in the semiarid forest. As Mediterranean climates are characterised by wide interannual variability, Rs showed considerable variability over the years, which can mask the effect caused by thinning treatment.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号