首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
Snow feedback is expected to amplify global warming caused by increasing concentrations of atmospheric greenhouse gases. The conventional explanation is that a warmer Earth will have less snow cover, resulting in a darker planet that absorbs more solar radiation. An intercomparison of 17 general circulation models, for which perturbations of sea surface temperature were used as a surrogate climate change, suggests that this explanation is overly simplistic. The results instead indicate that additional amplification or moderation may be caused both by cloud interactions and longwave radiation. One measure of this net effect of snow feedback was found to differ markedly among the 17 climate models, ranging from weak negative feedback in some models to strong positive feedback in others.  相似文献   

19.
Inner core differential motion confirmed by earthquake waveform doublets   总被引:1,自引:0,他引:1  
We analyzed 18 high-quality waveform doublets with time separations of up to 35 years in the South Sandwich Islands region, for which the seismic signals have traversed the inner core as PKP(DF). The doublets show a consistent temporal change of travel times at up to 58 stations in and near Alaska, and they show a dissimilarity of PKP(DF) coda. Using waveform doublets avoids artifacts of earthquake mislocations and contamination from small-scale heterogeneities. Our results confirm that Earth's inner core is rotating faster than the mantle and crust at about 0.3 degrees to 0.5 degrees per year.  相似文献   

20.
Understanding the cause of differences among general circulation model projections of carbon dioxide-induced climatic change is a necessary step toward improving the models. An intercomparison of 14 atmospheric general circulation models, for which sea surface temperature perturbations were used as a surrogate climate change, showed that there was a roughly threefold variation in global climate sensitivity. Most of this variation is attributable to differences in the models' depictions of cloud-climate feedback, a result that emphasizes the need for improvements in the treatment of clouds in these models if they are ultimately to be used as climatic predictors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号