首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
为了提高番茄叶片病害识别的效果,提出改进卷积神经网络算法。首先Sobel算子获得水平方向、垂直方向、45°、135°对角方向的4个通道图像,四通道卷积神经网络采用不同大小的卷积核提取图像特征;接着双重注意力机制包括空间注意力、通道注意力,空间注意力包括局部注意力机制、全局注意力机制,局部注意力机制注意图像的局部特征,全局注意力机制注意图像的整体特征,空间注意力使用局部-全局交替注意力;通道注意力主要进行加强番茄叶片图像的有用特征抑制无用特征;然后通过K-means聚类方法划分出病害聚类区;最后给出了算法流程。试验仿真结果显示本研究算法对番茄叶片病害黄叶卷曲病、花叶病、蜘蛛螨病、七星斑病、叶霉菌病、早疫病识别准确率平均值分别为98.51%、97.92%、96.71%、94.12%、94.63%、94.22%,高于其他算法,同时消耗时间少于其他算法。  相似文献   

2.
【目的】农作物生长过程中,作物产量会受到各种病害影响,实现自动精准地识别农作物病害以及病害程度的测定是农作物病害防治的关键。【方法】文章设计了一种基于卷积神经网络的农作物病害的识别方法并建立了农作物病害识别模型,模型利用10种作物中常见的59种病害类型的叶片图像数据集进行训练,并对模型的训练过程和训练结果进行评估。【结果】(1)农作物病害识别模型对59种病害类型的总识别精度达到0.83,部分类别的识别率高于0.9;(2)当训练的迭代次数增加到50轮以上时,农作物病害识别模型的性能不再提升,此时数据集图像的数量对模型性能的影响较大。【结论】实验证明,利用卷积神经网络进行农作物病害识别具有较高的可行性和准确性,为农作物病害的防治打下基础。  相似文献   

3.
为了解决现有的农作物病害检测方法对不同番茄叶片病害检测的精度低、效果差的问题,提出一种基于YOLOv5网络模型改进的番茄叶片病害检测模型YOLOv5s-TLD。首先在原YOLOv5s模型的Backbone中构建DCAM注意力机制模块,通过制定双通道注意力和空间注意力机制加强模型对番茄叶片病理特征的提取能力,并减弱模型受复杂背景特征的影响,以提高模型对不同种类病害的检测精度和分类精度;然后应用融合Swin Transformer的C3STR模块替换原网络第6层的C3模块,强化模型在多尺度上建模的能力,实现模型对小尺寸的番茄叶片病害残差特征的高精度学习;再运用BiFPN加权双向特征金字塔网络替换原YOLOv5模型Head的PANet路径聚合网络,该网络采用跨尺度特征融合和可学习权重的方式融合模型不同层次的特征,在增强网络的特征融合能力的同时使网络获得更多的特征信息,以提高模型的感受野和特征表达能力;最后进行不同模型的检测对比试验,并在实际复杂场景下进行番茄叶片病害检测试验。试验结果表明:YOLOv5s-TLD模型平均精度均值和召回率分别为97.7%和96.3%,较原YOLOv5s模型平均精...  相似文献   

4.
传统的农作物病害诊断主要依靠人工识别,需要从业者具有一定经验且主观性较强,存在误判现象。针对这一现象,提出了一种基于卷积神经网络的农作物病害识别方法。选取玉米和马铃薯的5种常见病害进行试验,构建了1个13层的卷积神经网络结构,并分析了不同池化方式及优化算法对该模型准确性的影响。同时采用十折交叉验证对模型鲁棒性进行评估,结果表明该模型具备良好的分类性能,对5种病害的平均识别率为93.95%,为玉米及马铃薯常见病害识别提供了一种新途径。  相似文献   

5.
基于迁移学习的番茄叶片病害图像分类   总被引:4,自引:1,他引:4  
针对卷积神经网络对番茄病害识别需训练参数较多,训练非常耗时的问题,将迁移学习应用于AlexNet卷积神经网络,对病害叶片和健康叶片共10种类别的番茄叶片进行分类研究。使用14 529张番茄叶片病害图像,随机选择70%作为训练集,30%作为验证集,对AlexNet卷积神经网络模型结构进行迁移,利用在Imagenet图像数据集上训练成熟的AlexNet模型和其参数对番茄叶片病害识别。在训练过程中,固定低层网络参数不变,微调高层网络参数,将番茄病害图像输入到网络中训练网络高层参数,用训练好的模型对10种类别的番茄叶片分类,并进行了20组试验。结果表明:该算法在训练迭代474次时使网络模型很好的收敛,网络对验证集的测试平均准确率达到95.62%,与从零开始训练的AlexNet卷积神经网络相比,本研究算法缩短了训练时间,平均准确率提高了5.6%。采用迁移学习所建立的病害分类模型能够对10种类别的番茄叶片病害快速准确地分类。  相似文献   

6.
【目的】利用卷积神经网络构建作物病害识别模型,提高识别性能,解决作物病害识别性能低、泛化效果差等问题。【方法】通过数据增广技术增加样本多样性,引入聚焦损失改进模型学习目标,解决样本非均衡问题,分析比较不同卷积神经网络结构的识别性能,并用类激活图生成技术度量模型的可靠性。在番茄叶部病害数据集上验证方法的有效性。【结果】应用数据增广技术后,模型在简单背景样本上的识别准确率提高了1.0%,在复杂背景样本上提高了12.5%;聚焦损失使模型的准确率提高了0.1%;该模型的识别准确率为99.8%,对各类病害的召回率在97.3%以上;应用类激活图技术生成的显著性图可有效标识模型在识别过程中的重点关注区域。【结论】该方法能够有效解决病害图像样本非均衡问题,提高了病害识别模型的泛化性能,同时类激活图可以用于分析模型的可靠性,从而为番茄叶部病害防治提供参考。  相似文献   

7.
基于改进VGG卷积神经网络的棉花病害识别模型   总被引:3,自引:2,他引:3  
为实现自然条件下棉花病害图像准确分类,提出基于改进VGG-16卷积神经网络的病害识别模型。该模型在VGG-16网络模型基础上,优化全连接层层数,并用6标签SoftMax分类器替换原有VGG-16网络中的SoftMax分类器,优化了模型结构和参数,通过微型迁移学习共享预训练模型中卷积层与池化层的权值参数。从构建的棉花病害图像库中随机抽取病害图像样本作为训练集和测试集,用以测试该方法的性能。试验结果表明:该模型能有效提取出棉花病害叶片图像的多层特征图像,并通过Relu激活函数的处理更能凸显棉花病害的边缘信息与纹理信息,分辨率为512像素×512像素图像在样本训练与验证试验效果最好。在平均识别准确率方面,本研究模型较BP神经网络、支持向量机、AlexNET、GoogleNET、VGG-16NET效果最好,达到89.51%,实现对棉花的褐斑病、炭疽病、黄萎病、枯萎病、轮纹病、正常叶片的准确区分。该模型在棉花病害识别领域具备良好的分类性能,可实现自然条件下棉花病害的准确识别。  相似文献   

8.
为提高植物叶片识别的准确率及减少计算代价,在Pytorch框架下提出一种融合了深度卷积生成式对抗网络(DCGAN)和迁移学习(TL)的新型卷积神经网络叶片识别方法。首先,对植物叶片图像进行预处理,通过DCGAN对样本数据库扩充;其次,利用迁移学习将Inception v3模型应用于图像数据处理上,以提高植物叶片识别的准确率;最后,通过对比实验对该方法的有效性进行验证。结果表明:该方法可以获得96.57%的植物叶片识别精度,同时参数训练的迭代次数由4000次缩短到560次。  相似文献   

9.
基于卷积神经网络和小样本的茶树病害图像识别   总被引:2,自引:0,他引:2  
以常见且特征相似的茶轮斑病、炭疽病和云纹叶枯病为对象,研究在小样本情况下利用卷积神经网络进行病害图像识别问题。运用7种模式的预处理方法对茶树叶部病害图像样本进行处理,并采用Alex Net经典网络模型进行学习实验,比较、分析其训练及识别效果。结果显示,模式7训练模型精度为93. 3%,平均测试准确率为90%,且对茶轮斑病、炭疽病和云纹叶枯病的正确区分率分别为85%、90%和85%,在预测值和真实值一致性方面优于其他预处理方法。在小样本情况下,该预处理方法可有效区分、识别3种易混病害,且识别精度高,性能好。  相似文献   

10.
11.
目的 引入区域卷积神经网络Faster R-CNN算法并对其改进,以实现在田间真实环境下背景复杂且具有相似病斑特征的玉米病害的智能诊断。方法 在玉米田间和公开数据集网站获取具有复杂背景的9种常见病害图像1 150幅,人工标注后对原始图像进行离线数据增强扩充;对Faster R-CNN算法进行适应性改进,在卷积层加入批标准化处理层,引入中心代价函数构建混合代价函数,提高相似病斑的识别精度;采用随机梯度下降算法优化训练模型,分别选取4种预训练的卷积结构作为Faster R-CNN的特征提取网络进行训练,并测试得到最优特征提取网络,利用训练好的模型选取不同天气条件下的测试集进行对比,并将改进Faster R-CNN与未改进的Faster R-CNN和SSD算法进行对比试验。结果 在改进Faster R-CNN病害识别框架中,以VGG16卷积层结构作为特征提取网络具有更出色的性能,利用测试集图像检验模型,识别结果的平均精度为 0.971 8,平均召回率为0.971 9,F1为0.971 8,总体平均准确率可达97.23%;晴天的图像识别效果优于阴天的。改进Faster R-CNN算法与未改进的Faster R-CNN算法相比,平均精度高0.088 6,单张图像检测耗时减少0.139 s;与SSD算法相比,平均精度高0.0425,单张图像检测耗时减少0.018 s,表明在大田环境中具有复杂背景的玉米病害智能检测领域,改进Faster R-CNN算法综合性能优于未改进的Faster R-CNN算法和SSD算法。结论 将改进后的Faster R-CNN算法引入田间复杂条件下的玉米病害智能诊断是可行的,具有较高的准确率和较快的检测速度,能够避免传统人工识别的主观性,该方法为田间玉米病害的及时精准防控提供了依据。  相似文献   

12.
以常见的大豆病害图片为样本,研究分析了大豆的叶斑病、花叶病、霜霉病和灰斑病,并利用卷积神经网络技术设计了针对大豆的病害检测系统。通过对病害图片的二值化和轮廓分割等预处理来获得神经网络模型的训练集,并在此基础上对模型进行了多方面的优化,利用Caffe框架对优化后的网络模型进行了识别率等方面的实验验证。此外,为提高模型使用的便捷性,本实验使用了Qt软件为该系统设计了人机交互界面,从而进一步实现了数据可视化。  相似文献   

13.
微藻在生态系统的结构和功能中具有极为重要的作用,而传统光学人工镜检方法对微藻种类鉴别具有较大的难度。本研究将微藻的光学图像进行了采样,并结合国内外专家对微藻鉴定的经验知识,制作了微藻图像数据集,并进行了数据增强处理。借助深度学习的原理和方法,构建了基于卷积神经网络结构的深度学习模型(AlexNet),对模型进行了训练,并利用5折交叉验证方法确保模型的稳定性。结果表明,模型的训练精度可达到98.78±0.98%,测试精度达85.46±0.23%,达到了预期效果。利用AlexNet模型训练得到的参数,对预留的280个样本图像进行实际测试,7个藻种的平均精确度、平均召回率和平均F1 Score分别为0.832,0.844和0.833。表明深度学习方法是鉴定微藻的一种有效方法。  相似文献   

14.
李超  李锋  黄炜嘉 《浙江农业学报》2022,34(11):2533-2541
为了解决传统的水果图像识别算法在特征提取上的缺陷,以及传统卷积神经网络识别率低的问题,设计了一种基于并联卷积神经网络来提取水果特征的识别方法,利用ELU激活函数替代ReLU激活函数,利用最大类间距损失函数结合传统SoftmaxWithLoss损失函数来提高对相似品种的识别准确率。选取Fruit-360数据集中的8个品种,利用边界均衡生成对抗网络(BEGAN)结合传统的数据增强方法生成大量高质量的数据集,并用其进行训练。结果表明,该模型对8个品种的平均识别准确率达98.85%,具有良好的识别效果。  相似文献   

15.
【目的】探究深度学习在柑橘Citrus spp.黄龙病症状识别上的可行性,并评估识别器的识别准确率。【方法】以黄龙病/非黄龙病引起的发病叶片图像及健康叶片图像为训练素材,基于卷积神经网络及迁移学习技术构建二类识别器(I-2-C和M-2-C)和八类识别器(I-8-C和M-8-C)。【结果】M-8-C模型的整体识别表现最优,对所有图像的识别准确率为93.7%,表明构建的神经网络识别器能有效辨别柑橘黄龙病症状;I-8-C和M-8-C对所有类型图像的平均F1分值分别为77.9%和88.4%,高于I-2-C(56.3%)和M-2-C(52.5%),表明症状细分有利于提高模型的识别能力。同时M-8-C比I-8-C略高的平均F1分值表明基于MobileNetV1结构的八类识别器识别表现略优于基于InceptionV3的八类识别器。基于M-8-C改进的识别器M-8f-C能够转移到智能手机上,在田间测试中取得较好的识别表现。【结论】基于深度学习和迁移学习开发的识别器对黄龙病单叶症状具有较好的识别效果。  相似文献   

16.
基于深度卷积神经网络的水稻田杂草识别研究   总被引:1,自引:1,他引:1  
目的 利用深度卷积神经网络对水稻田杂草进行准确、高效、无损识别,得出最优的网络模型,为水稻田种植管理以及无人机变量喷施提供理论依据。方法 以水稻田杂草为主要研究对象,利用CCD感光相机采集杂草图像样本,构建水稻田杂草数据集(PFMW)。利用多种结构的深度卷积神经网络对PFMW数据集进行特征的自动提取,并进行建模与试验。结果 在各深度模型对比试验中,VGG16模型取得了最高精度,其在鬼针草、鹅肠草、莲子草、千金子、鳢肠和澎蜞菊6种杂草中的F值分别为0.957、0.931、0.955、0.955、0.923和0.992,其平均F值为0.954。在所设置的深度模型优化器试验中,VGG16-SGD模型取得了最高精度,其在上述6种杂草中的F值分别为0.987、0.974、0.965、0.967、0.989和0.982,其平均F值为0.977。在PFMW数据集的样本类别数量均衡试验中,无失衡杂草数据集训练出来的VGG16深度模型的准确率为0.900,而16.7%、33.3%和66.6%类别失衡的数据集训练的模型准确率分别为0.888、0.866和0.845。结论 利用机器视觉能够准确识别水稻田杂草,这对于促进水稻田精细化耕作以及无人机变量喷施等方面具有重要意义,可以有效地协助农业种植过程中的杂草防治工作。  相似文献   

17.
一种基于改进时间卷积网络的生猪价格预测方法   总被引:1,自引:0,他引:1  
针对传统的生猪价格预测方法存在预测精度不够高,容易陷入局部最小值等问题,为更加精准地预测生猪价格,采用随机森林回归(RFR)、极限梯度回升(XGBoost)、轻型梯度提升机(LightGBM)3种机器学习模型和改进网络结构的时间卷积网络(TCN)模型方法,以经过Z-Score标准化预处理的西南地区某省2011—2020年每周生猪价格数据为样本,对生猪价格预测进行研究。结果表明:TCN模型预测结果的均方误差(MSE)为0.340 606,平均绝对误差(MAE)为0.288 424,决定系数(R2)为0.995 683,均优于其他3种机器学习模型;与3种机器学习模型中效果最好的极限梯度回升(XGBoost)预测结果比较,3个指标分别提升了26%、8%和0.15%。改进网络结构的时间卷积网络模型可以更加精准地预测生猪价格。  相似文献   

18.
基于自注意力卷积网络的遥感图像分类   总被引:1,自引:0,他引:1  
  目的  遥感图像分类技术在森林资源调查、生态工程规划以及森林病虫害防控等林业监测业务中,扮演着至关重要的角色。通过引入自注意力模块增强卷积网络对遥感图像的特征刻画能力,以期提高遥感图像的分类效果。  方法  该文提出了一种融合自注意力机制和残差卷积网络的遥感图像分类方法,首先利用卷积神经网络提取丰富的深度纹理语义特征,然后在卷积网络的最后3个瓶颈层嵌入多头自注意力模块,挖掘遥感图像复杂的全局结构信息。嵌入自注意力模块的卷积分类网络,能够有效提升遥感图像的分类精确度。该研究使用RSSCN7、EuroSAT与PatternNet 3个公开的遥感图像数据集,基于Pytorch深度学习库训练与测试该方法,并增加与已有分类框架算法精度和性能的对比试验。同时,使用不同批次、不同数量大小的数据训练改进研究提出的方法,并测试分类效果。  结果  试验得出,该研究提出的方法在3个遥感分类数据集上的平均识别率分别达到了91.30%、97.88%和97.37%,其中在前两个数据集上较现有的基于深度卷积网络的算法分别提升了2.26%和3.73%。同时,该算法的总参数量为2.08 × 107,较现有参数量最低的方法减少了5.2 × 106。  结论  相比已有的遥感图像分类框架,该研究提出的方法能够在图形处理器(GPU)加速的环境中,取得更为准确的分类效果。同时有效减少了模型的参数量,提高了算法执行的效率,便于后续的实际应用部署。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号