首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The culture of the mulloway (Argyrosomus japonicus), like many other Sciaenidae fishes, is rapidly growing. However there is no information on their metabolic physiology. In this study, the effects of various hypoxia levels on the swimming performance and metabolic scope of juvenile mulloway (0.34 ± 0.01 kg, mean ± SE, n = 30) was investigated (water temperature = 22 °C). In normoxic conditions (dissolved oxygen = 6.85 mg l− 1), mulloway oxygen consumption rate (M·o2) increased exponentially with swimming speed to a maximum velocity (Ucrit) of 1.7 ± < 0.1 body lengths s− 1 (BL s− 1) (n = 6). Mulloway standard metabolic rate (SMR) was typical for non-tuna fishes (73 ± 8 mg kg− 1 h− 1) and they had a moderate scope for aerobic metabolism (5 times the SMR). Mulloway minimum gross cost of transport (GCOTmin, 0.14 ± 0.01 mg kg− 1 m− 1) and optimum swimming velocity (Uopt, 1.3 ± 0.2 BL s− 1) were comparable to many other body and caudal fin swimming fish species. Energy expenditure was minimum when swimming between 0.3 and 0.5 BL s− 1. The critical dissolved oxygen level was 1.80 mg l− 1 for mulloway swimming at 0.9 BL s− 1. This reveals that mulloway are well adapted to hypoxia, which is probably adaptive from their natural early life history within estuaries. In all levels of hypoxia (75% saturation = 5.23, 50% = 3.64, and 25% = 1 .86 mg l− 1), M·o2 increased linearly with swimming speed and active metabolic rate (AMR) was reduced (218 ± 17, 202 ± 14 and 175 ± 10 mg kg− 1 h− 1 for 75%, 50% and 25% saturation respectively). However, Ucrit was only reduced at 50% and 25% saturation (1.4 ± < 0.1 and 1.4 ± < 0.1 BL s− 1 respectively). This demonstrates that although the metabolic capacity of mulloway is reduced in mild hypoxia (75% saturation) they are able to compensate to maintain swimming performance. GCOTmin (0.09 ± 0.01 mg kg− 1 m− 1) and Uopt (0.8 ± 0.1 BL s− 1) were significantly reduced at 25% dissolved oxygen saturation. As mulloway metabolic scope was significantly reduced at all hypoxia levels, it suggests that even mild hypoxia may reduce growth productivity.  相似文献   

2.
Pingguo He   《Fisheries Research》2003,60(2-3):507-514
Swimming behaviour of winter flounder (Pleuronectes americanus) was recorded near baited hooks on natural fishing grounds using an underwater video camera. Winter flounder were observed to stay on or very close to the seabed, never rising to more than 0.6 m off bottom during 1 month of observation. Winter flounder were recorded to take bait actively at temperatures as low as −1.2 °C. Movement of winter flounder was characterised by a period of swimming off seabed followed by a period of resting on the seabed. The proportion of time swimming off seabed as opposed to resting on the seabed was positively related to water temperature. Flounder spent an average of 32% of time in swimming when at −1.2 °C compared with 67% when at 4.4 °C. Voluntary swimming speed of the flounder during the period of swimming was lower at lower temperatures. An average swimming speed of 0.52 body lengths per second (L s−1) at −1.2 °C was recorded compared with 0.95 L s−1 at 4.4 °C. Overall rate of movement was reduced by three-fold when water temperature fell from 4.4 to −1.2 °C. The reduced rate of movement at lower temperatures is discussed in relation to potential fishing area of fixed fishing gears such as gillnets.  相似文献   

3.
Several studies have shown that food ration can affect the growth of cultured fish. Determining the optimal food ration would help to achieve better growth and also provide direct economic benefits due to reduced food wastage, which would lead to commercial success. Therefore, we studied the effects of ration levels on growth performance of 0+ juvenile yellowtail flounder to determine the optimal food ration. Two experiments were conducted; the first experiment as a preliminary using ration levels of 1%, 2%, 4%, 6% body weight per day (% bw day−1) held at 7.0 °C with a stocking density of 0.95 kg m−2 (45% bottom coverage). Results of this preliminary experiment indicated that fish fed with 1% bw day−1 had significantly lower growth (weight, length, body depth and specific growth rates (SGR)) than those fed with 2%, 4% and 6% ration. However, fish fed with rations of 1% and 2% showed significantly lower gross food conversion ratios (GFCR) than fish fed with 4% and 6% rations. Survival was not significantly affected by different ration levels. Based on these preliminary results, we used ration levels of 1%, 1.5%, 2% and 3% for the main experiment. Fish were held at 10 °C with a stocking density of 1.45 kg m−2 (34% bottom coverage). Results indicated that fish fed with 1%, 1.5% and 2% bw day−1 had significantly lower growth than fish fed with 3% bw day−1. GFCR was significantly different for all four rations. It was lower for 1% than 1.5%, 2% and 3% rations. Survival was not significantly different between any treatments. We discuss our results with emphasis on growth and economics (i.e., feed wastage) and stress the need to balance both components in a commercial operation.  相似文献   

4.
A hydraulically integrated serial turbidostat algal reactor (HISTAR) for the mass production of microalgae was designed, constructed and preliminarily evaluated. The 9266-l experimental system consists of two enclosed turbidostats hydraulically linked to a series of six open continuous-flow, stirred-tank reactors (CFSTRs). The system was monitored and controlled using GENESIS process control software. A production study was preformed using Isochrysis sp. (C-iso) to assess system stability and production potential under commercial-like conditions. The study was performed at the following target system parameters: system dilution rate of 0.49 per day, pH 7.6, NITROGEN=10 mg l−1, PHOSPHORUS=2 mg l−1, and artificial illumination (photosynthetic photon flux density) from 1000 W metal halide LAMPS=800 μmol s−1 m−2. At steady state conditions, daily harvested algal paste was 1454 g (wet), mean areal system PRODUCTIVITY=47.8±3.04 g m−2 per day (17.1±1.09 g C m−2 per day) and mean CFSTR6 DENSITY=105.5±6.71 mg l−1.  相似文献   

5.
The technical features of a laboratory scale water recycling unit for experimental small scale tilapia breeding are described. Two units (1 and 2) were operated during a 6 month period, carrying a similar fish load (7·5 kg) and feeding rate (2% fish body weight/day). Unit 1 received natural illumination, while unit 2 was artificially illuminated (14/10 - light/dark cycle). Both units were equipped with a biological filter bed (substrate surface area, 3500 cm2). In unit 1, total ammonium and nitrite concentrations ranged from 0·05 to 0·5 mg liter−1, while nitrate varied between 10–40 mg liter−1. In unit 2 corresponding values were 0·15-3 mg liter−1, 0·05–0·8 mg liter−1 and 10–40 mg liter−1. Temperatures ranged between 20–29°C and pH values between 7·5–6·9 in both units. Dissolved oxygen concentrations decreased gradually from 5·6 to 3·4 mg liter−1 in unit 1 and from 5·6 to 2·6 mg liter−1 in unit 2. Twenty-six spawnings occurred in unit 1 in March and April, while only eight spawnings occurred in unit 2, possibly because of the absence of sunlight. The significance of these results are discussed.  相似文献   

6.
Rainbow trout (Oncorhynchus mykiss) maintained in crowded (100 kg m− 3) and uncrowded (20 kg m− 3) conditions were fed 42 days with five experimental diets having different levels of vitamin E (25.6 and 275.6 mg kg diet− 1), C (0 and 1000 mg kg diet− 1) and HUFA (highly unsaturated fatty acids, 12.5 and 320.5 g kg diet− 1): −E−HUFA, −E+HUFA, +E−HUFA, +E+HUFA, −C+E+HUFA. Cortisol, plasma metabolites, tissue glycogen, fish composition, and tissue fatty-acid profile were evaluated at the end of the experimental period. In general, no changes in cortisol levels were associated with crowding, although +E+HUFA and −C+E+HUFA fish showed higher levels (mean ± SE, 55.5 ± 11.1 and 78.0 ± 11.3 ng ml− 1) as a consequence of a possible interaction between chronic crowding and diet composition. Protein and glucose con-centration in plasma displayed no effect of crowding, but liver glycogen showed a general tendency to decrease in −E−HUFA, −E+HUFA, +E−HUFA, +E+HUFA, −C+E+HUFA crowded groups (70.2 ± 2.1, 52.1 ± 2.5, 73.4 ± 7.4, 91.7 ± 3.3, 74.2 ± 8.4 mg g− 1 tissue, respectively) compared to uncrowded groups (108.9 ± 14.2, 82.7 ± 8.8, 92.4 ± 10.7, 99.1 ± 10.0, 103.5 ± 15.6 mg g− 1 tissue, respectively), thus proving significant in −E+HUFA fish. Variations in total lipids, triglycerides, total cholesterol and HDL as well as LDL cholesterol in plasma were manifested under crowding conditions, displaying a certain influence of vitamin E and HUFA dietary content. Final body composition, in general, showed no change attributable to fish density, but some differences associated with diet composition were found in lipid and moisture percentages of crowded fish. Liver and muscle fatty-acid profile revealed a clear effect of the dietary lipid source that was more evident in muscle than in liver at normal fish density, and in some cases this effect was modulated by dietary vitamin E and C content and fish-culture conditions.  相似文献   

7.
Fish sperm collected by stripping males is frequently contaminated by urine. In this study, carp milt mixed with urine (0.5–7.5% of volume) was studied in order to evaluate the changes of some motility parameters (percentage of motile spermatozoa, velocity and beat frequency) and the ATP content of spermatozoa. In the absence of urine contamination, spermatozoa had an ATP content in the range of 8–9 nmol/108 spermatozoa, an initial velocity of 100–160 μm s−1 and a flagellar beat frequency around 30–50 Hz, 10 s after a 1/2000 dilution in an activating medium (45 mM NaCl, 5 mM KCl, 30 mM Tris–HCl, pH 8.0, osmolality <160 mosM kg−1). In contrast, when milt was contaminated with 7.5% of urine for 1 h, the ATP content was 4–5 nmol/108 spermatozoa and most spermatozoa had low initial velocity (30–100 μm s−1) and flagellar beat frequency (10–30 Hz). It appears that the low osmolality of urine was responsible for the degradation in the quality of carp spermatozoa by an early activation in the collecting tube which induced an early reduction of the intracellular ATP store. From a practical point of view, milt contamination by urine during stripping can be avoided by first pressing the abdomen before sampling and then collecting the remaining urine by means of a catheter introduced into the urinary bladder.  相似文献   

8.
An experiment was conducted to measure swimming activity of rainbow trout (254.0±33.7 g) held in outdoor tanks under three culture conditions with stocking density used to generate differences: 27 (Culture Density 1, CD1), 80 (CD2) and 136 kg m−3 (CD3). Fish were fed dry pellets at 1% of tank biomass from 9h00 to 13h00 with automatic feeders. Using acoustic telemetry, fish positions were monitored every 5 s during 48 h for nine fish (three in each treatment). Swimming behaviour was analysed in terms of trajectories: they varied between (i) holding position (high turning angles), (ii) chaotic trajectories (equal use of all turning angles) and (iii) circular swimming (average turning angle of 60°). Space utilisation differed for each culture condition: CD3 conditions induced a prolonged residence time in the central zone of the tank. Rainbow trout swimming activity patterns and levels differed depending on both day–night alternation and culture conditions. All fish reared at CD1 and one reared at CD2 were day-active. All the other fish showed high activity pattern variability and a higher swimming level was observed under CD3. These results illustrate that monitoring fish swimming activity is feasible even under high densities and provide relevant insights on fish activity which can lead to behavioural welfare indices in relation to constraints imposed by culture conditions.  相似文献   

9.
Comparison of nutrients release among some maricultured animals   总被引:6,自引:0,他引:6  
Integrated mariculture is a feasible method to maintain sustainable and high productivity of aquaculture. The choice of cultured animals and biofilters in the integrated system has to be made on the basis of their nutrient release rates and the clearance rate of each component of the system. We are examining the nutrient release rates among fish (mangrove snapper, Lutjanus russeli, and sea perch, Abudefduf septemfasciatus), abalone (Haliotis diversicolor), scallops (Chlamys noblis), and green mussels (Perna viridis) in the laboratory. Fish feed is the major sources of inorganic nutrient input in fish farms. The orthophosphate and ammonia release rates of minced trash fish (1593 μg P g−1 day−1 and 150 μg N g−1 day−1) were respectively 6–12 times and 4–88 times higher than those of cultivated fish. Mangrove snapper had the overall highest nutrient release rate, followed by sea perch, abalone, scallops, and mussels for nitrite and nitrate; and followed by abalone, sea perch, mussels, and scallops for orthophosphate and ammonium. Among mollusks, abalone had the highest orthophosphate (162 μg P g−1 day−1), nitrate (1.4 μg N g−1 day−1), nitrite (1.6 μg N g−1 day−1) and ammonium (25.0 μg N g−1 day−1) release rates per gram wet weight per day. Abalone released large amounts of orthophosphate, nitrite and nitrate in the experiment. Scallops and green mussels had low nutrient release rates.  相似文献   

10.
Settling velocity characterization of aquacultural solids   总被引:5,自引:0,他引:5  
A top-loading settling column is described and used to characterize the settling properties of the solids in the discharge water from a commercial rainbow trout production facility. Mass-based and phosphorus-based settling curves are presented. The median settling velocity on a mass-basis for the settleable solids was 1.7 cm s−1. The median settling velocity for the settleable phosphorus was 1.15 cm s−1. Manually stripping fecal material from rainbow trout resulted in settleable solids with a median settling velocity of 0.7 cm s−1. Examination of the settling velocity curves show that halving the overflow rate (OFR) from 2 to 1 cm s−1 changes the removal efficiency from 0.61 to 0.73, an increase of about 20%. Halving the OFR again to 0.5 cm s−1 increases the removal efficiency to 0.81, an improvement of about 11%. Settling characteristics of aquacultural solids will vary from facility to facility. The methods described in this paper can be used to perform a similar type of analysis at other aquacultural sites, which may be growing other species under different management regimes.  相似文献   

11.
The growth and survival of three size classes of wild caught western rock lobster, Panulirus cygnus (post-pueruli: mean 2.14 ± 0.07 g, 13.2 ± 0.1 mm CL; year 1: post-settlement juveniles, 57.1 ± 1.1 g, 38.7 ± 0.28 mm CL; and year 2 post-settlement juveniles, mean 138.2 ± 2.26 g, 51.9 ± 0.25 mm CL) were examined at combinations of two stocking densities (post-pueruli: 50 and 100 m− 2; year 1: 11 and 23 m− 2; year 2: 10 and 19 m− 2) and two shelter types (a novel rigid plastic mesh shelter or bricks) over a period of 6 months. Survival of lobsters held at the lower densities (90–95%) was significantly greater than for lobsters held at higher densities (post-pueruli = 78%, year 1 = 86%, year 2 = 88%). Post-pueruli survival was significantly higher in tanks with mesh shelters (91.7%) than brick shelters (75.8%) with a similar trend exhibited by year 1 and year 2 lobsters. Densities tested did not significantly affect lobster growth for any size class. Growth of post-pueruli was considerably higher in tanks with mesh shelters (641.7% weight gain; specific growth rate 1.07 BW day− 1) (p < 0.05) but there was no difference in the growth of year 1 and year 2 lobsters between mesh and brick shelters. Feed intake (g pellet dry matter lobster− 1 day− 1) was not significantly different between densities. This study has shown that P. cygnus is well suited for aquaculture based on the collection and ongrowing of wild caught pueruli, as this species exhibits good survival at high densities (up to 100 m− 2) without adverse effects on growth, and shows no captivity-related health problems. We recommend mesh shelters, with stocking densities of 50 m− 2 for post-pueruli and between 20 and 25 m− 2 for year 1 and year 2 juveniles, to maximise survival and production.  相似文献   

12.
The effects of stocking density, light and shelter on the growth and survival of Clarias gariepinus fingerings was evaluated. In this experiment African catfish with initial individual mean weight 0.79±0.1 g were reared at two different stocking densities—5 fish l−1 and 10 fish l−1 in either sheltered or unsheltered tanks with reduced and normal light condition. In all conditions growth rate was significantly affected by stocking density. The growth rate was significantly higher at low densities and in reduced light conditions where shelter was provided. Survival rate was in excess of 79% in all treatments and was not affected by treatment.  相似文献   

13.
A model for oxygen consumption of Atlantic salmon (Salmo salar) including body-weight (BW, kg), temperature (T, °C) and swimming speed (U, bodylengths s−1) was developed. A multiregression analysis of 157 measurement periods on six different fish gave the model: (mg kg−1 h−1)=61.6(±6.6) BW−0.33(±0.11) 1.03(±0.10)T1.79(±0.10)U. The model is compared with earlier work on oxygen consumption of salmonids.  相似文献   

14.
Temperature is recognized to be the most important environmental factor affecting growth in fish. Barramundi are cultured over a wide range of temperatures some of which approach the upper thermal tolerance for this species. A growth trial was conducted on juvenile barramundi to examine the effects of high temperatures ranging from the minimum optimal temperature (27 °C) for growth efficiency to the extreme upper thermal limits (39 °C) for feed intake, growth and growth efficiency. Juveniles (4.87 ± 0.32 g) were held at four different temperatures 27, 33, 36 and 39 °C and fed twice daily to satiation (503.5 g kg− 1 crude protein, 182.5 g kg− 1 lipid, 150.1 g kg− 1 ash, 20.52 GE MJ kg− 1). Feed intake (g·day− 1) and SGR (%·day− 1) increased with increasing temperature up to 36 °C. At 39 °C feed intake, growth, feed efficiency ratio, protein efficiency ratio and productive energy value were significantly lower than at the other temperatures. This demonstrates that growth was optimized at temperatures from 27 to 36 °C and that barramundi have a much wider range for maximum growth efficiency than previously thought.  相似文献   

15.
Different enrichment procedures of the free amino acid (FAA) methionine were tested for Artemia nauplii. A direct enrichment protocol (methionine dissolved in the culture water) was compared with liposome enrichment protocols that varied in their membrane composition. During 16 h of direct enrichment in 5.3 mM methionine, the nauplii increased their content of free methionine between 20 and 30 times compared to the unenriched control (43.1±1.2 and 68.4±3.8 pmol·nauplius−1 in two separate experiments vs. 2.4±1.0 pmol·nauplius−1 in control). However, by encapsulating the identical amount of methionine into liposomes made from pure egg yolk phosphatidylcholine (PC) (>99% PC) and cholesterol, the nauplii content of free methionine reached 148.8±27.6 pmol·nauplius−1, which is approximately 60 times more than in the unenriched control. Another liposome composition tested, made from crude egg yolk PC (>60% PC) and cholesterol, resulted in 90.5±4.1 pmol·nauplius−1. The enriched nauplii still retained 80% of the free methionine after 8 h of incubation at conditions simulating feeding for Atlantic halibut larvae (13°C, 33.5 g·l−1).

In conclusion: (1) Artemia nauplii can successfully be enriched with free methionine, (2) the high retention of free methionine in the Artemia nauplii following transfer to fish tanks shows that it is possible to offer fish larvae a feed with a high level of FAA, based on enrichment of Artemia nauplii.  相似文献   


16.
The aim of this trial was to study the utilization of dietary protein by seabass juveniles with 5.5 g mean body weight, at two water temperatures: 18°C and 25°C. For that purpose, the fish were fed for 12 weeks, four isoenergetic diets with different protein levels (36, 42, 48, and 56%). At the end of the trial, growth rate and feed utilization were significantly better at the higher water temperature. Within each temperature, specific growth rate and feed efficiency were significantly higher with the 48 and 56% protein diets than with the other diets. At 25°C, feed efficiency was also significantly better with the 56% than with the 48% protein diet. N retention (g kg average body weight−1 day−1) was higher at 25°C than at 18°C but, as a % N intake the inverse was true. Although at 25°C N retention (% N intake) was not different among groups, retention in g kg ABW−1 day−1 was significantly higher with the 56% protein diet than with 36 and 42% protein diets. On the contrary, at 18°C N retention (g kg ABW−1 day−1) was similar among groups while as a percentage of N intake it was inversely related to the dietary protein level. Regarding energy utilization, at each temperature, there were no differences among dietary treatments on energy retention (g kg ABW−1 day−1). As a % of energy intake, energy retention significantly increased with the increase of dietary protein level at 25°C, while at 18°C, there were no significant differences among groups. Within each temperature, at the end of the trial, there were no differences among groups in proximate composition of whole fish. Apparent digestibility coefficients of dry matter, protein and energy significantly improved with the increase of water temperature but, within each temperature, there were no significant differences among groups. The results of this study indicate that, regardless of water temperature, the dietary protein requirement for growth seems to be satisfied with a diet containing 48% protein. Growth and feed efficiency were significantly higher at the higher temperature, however, protein utilization was more efficient at the lower temperature.  相似文献   

17.
Florida red tilapia (Oreochromis sp.) were reared in 23 m3 seawater (37 ppt) pools. Monosex males (1.3 g mean weight) were stocked at a density of 25 fish/m3 and reared to fingerling size (>10 g) in pools receiving either chicken manure applied at a rate of 105 kg/ha day−1 or pelletized feed (30% protein) administered ad libitum. Following the nursery period, fingerlings in fed pools were reared through adult, marketable sizes.

After 20 days of nursery rearing, mean fish weights (5.7–9.6 g) and survival (77.5–98.6%) in manured pools ranged from less than to greater than values in fed pools (7.9–9.4 g and 95.5–98.2%). By day 33, while mean weights (11.3±0.4 g) and survival (84.5±5.2%) in manured pools were significantly less than those in fed pools (18.0±0.6 g and 95.9±1.4%), fingerling-size fish were obtained from manured pools at an overall productivity of 55 kg/ha day−1.

After 170 days in fed pools, mean fish weight was 467±9 g, survival was 89.7±0.9%, and food conversion was 1.6±0.2. Daily weight gain achieved a maximum of 4.4 g day before a rapid decline in water temperature from 28–29°C to 24–25°C caused a loss of fish appetite and evidence of disease.

The results suggest that while nursery rearing of Florida red tilapia in seawater pools fertilized with chicken manure is feasible, considerable variability in fish performance among pools can be expected, despite identical management methods. In pools receiving prepared feed, high growth rates and survival through adult, marketable sizes suggests a potential for commercial production of Florida red tilapia in seawater.  相似文献   


18.
The effects of feed intake level on energy and nitrogen partitioning were studied in juvenile Atlantic cod (250 g) fed two fish meal based diets differing in protein and lipid content (54:31 and 65:16) at 10 °C. Replicate groups of cod were feed deprived for 32 days or fed one of the two diets at 25, 50, 75 or 100% of group satiation for 60 days. Feed intake and oxygen consumption were measured daily and weights and chemical composition of carcass, liver, viscera and whole body were measured at start and end. Diet digestibilities were assessed in a separate experiment.

The whole body and carcass growth rates at a given feed intake did not differ between dietary groups, but the liver grew faster in the fish fed the low protein diet, resulting in higher hepatosomatic indices at the end of the experiment in the groups fed this diet.

The efficiency of utilisation of digestible nitrogen for growth (kDNg) was higher for the low protein diet (0.73 ± 0.02) than for the high protein diet (0.53 ± 0.05), resulting in higher nitrogen retention at a given nitrogen intake. No difference in percentage nitrogen retention was seen in full-fed fish however (31.2 ± 2.5 and 28.4 ± 1.6% for the low protein and high protein diets, respectively). This can be explained by higher nitrogen intake in the fish fed the high protein diet, resulting in a smaller proportion of the intake being used for maintenance.

There was no difference in energy utilisation between dietary groups. The digestible energy requirement for maintenance (DEmaint) was 53.8 ± 0.9 kJ kg− 1 d− 1 (42.3 ± 0.7 kJ kg− 0.8 d− 1) and the utilisation efficiency for growth (kDEg) was 0.80 ± 0.02. The energy retention in full-fed fish was 31.3 ± 3.5 and 31.7 ± 1.0% for the low protein and high protein diets, respectively. The deposited energy was distributed in approximately equal proportions in the liver and carcass, whereas viscera accounted for a minor proportion. At a given energy intake, the fish fed the high protein diet deposited more energy in the carcass and less in the liver than did those fed the low protein diet.  相似文献   


19.
This paper provides a detailed observation of pond hydrodynamics. Bathymetry and aerator deployment largely control the hydrodynamic regime. Aerators drive pond circulation, which is resisted by bottom and bank friction. Hydrodynamic friction is characterized by sediment grain size. One particular pond is offered as a proxy representative of Australian mariculture ponds in general: Pond X. The pond had been stocked with P. monodon at densities in the range 25–35 m−2 about ten times during the period from 1989 to 1995. Observations were made in the year 1996. The site was on the east coast of Australia at 18° south latitude. The location was sheltered by a mountainous offshore island, such that winds effecting the pond averaged 2.3 m s−1. Water exchange occurred at a rate of about 8.3% of pond capacity per day. Pond X was found to be rectangular, 120 m long and 87 m wide. The banks were found to slope between 1:1.5 and 1:7.6, with an average slope near 1:3. The pond was shallowest in one corner, where depth was 834 mm, and drained diagonally with 1872-mm maximum water depth. Aeration was provided by a total of six 1.5-kW machines, comprised of two of the paddlewheel type and four of the propeller-aspirator type. Each machine was found to deliver 200 N of horizontal thrust into the pond water column. The combined effect of the aerators created a circulation current averaging about 11 cm s−1 around the pond periphery. The central region of the pond was found to have a fluctuating velocity of less than 1 cm s−1. The mass-average size of pond soil and sediment was found to vary from 25 μm in the central region to 250 μm at the banks and where the bottom was swept by paddlewheels.  相似文献   

20.
In order to develop a simple and accurate index of the salinity resistance of tilapia, batches of 10 juveniles (5 to 20 g) of two different species Oreochromis niloticus and Sarotherodon melanotheron reared in freshwater were subjected to gradual increases in salinity until 100% mortality. Seven daily increments of salinity were tested with 4 replicates: 2, 4, 6, 8, 10, 12 and 14 g l−1 day−1, while control batches were kept in fresh water. The temperature was maintained at 27 °C. The concentration of oxygen, ammonia and the pH were not limiting factors. The mortality, monitored on a daily basis, appeared after 2–51 days and was spread out over 1–20 days, depending on the increment of salinity. The higher the daily rate in salinity increase, then the shorter the time lapse before total mortality occurred. The cumulative mortality as a function of salinity fit well with simple linear regressions. The criterion of the resistance to salinity was the index MLS (median lethal salinity) defined at each daily rate as the salinity at which 50% of fish died. For S. melanotheron, the mean MLS was 123.7±3.5 g l−1 whatever the daily rate in salinity. For O. niloticus, the MLS was 46.3±3.4 g l−1 for daily increases in salinity ranging from 2 to 8 g l−1 day−1 and decreased significantly (P<0.05) above this level. The MLS-8 g l−1 day−1 ,which takes into account the full capacity of the fish to adapt to the increasing salinity, appeared to be a simple, optimized and efficient criterion for assessing the resistance to salinity for O. niloticus and S. melanotheron. This criterion can be a useful tool for ranking the different parental strains and hybrids of different genus and species of tilapia used in programmes of genetic selection for growth and salinity tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号