首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The increasing commercial interest and advancing exploitation of new remote territories of the boreal forest require deeper knowledge of the productivity of these ecosystems. Canadian boreal forests are commonly assumed to be evenly aged, but recent studies show that frequent small-scale disturbances can lead to uneven-aged class distributions. However, how age distribution affects tree growth and stand productivity at high latitudes remains an unanswered question. Dynamics of tree growth in even- and uneven-aged stands at the limit of the closed black spruce (Picea mariana) forest in Quebec (Canada) were assessed on 18 plots with ages ranging from 77 to 340 years. Height, diameter and age of all trees were measured. Stem analysis was performed on the 10 dominant trees of each plot by measuring tree-ring widths on discs collected each meter from the stem, and the growth dynamics in height, diameter and volume were estimated according to tree age. Although growth followed a sigmoid pattern with similar shapes and asymptotes in even- and uneven-aged stands, trees in the latter showed curves more flattened and with increases delayed in time. Growth rates in even-aged plots were at least twice those of uneven-aged plots. The vigorous growth rates occurred earlier in trees of even-aged plots with a culmination of the mean annual increment in height, diameter and volume estimated at 40–80 years, 90–110 years earlier than in uneven-aged plots. Stand volume ranged between 30 and 238 m3 ha−1 with 75% of stands showing values lower than 120 m3 ha−1 and higher volumes occurring at greater dominant heights and stand densities. Results demonstrated the different growth dynamics of black spruce in single- and multi-cohort stands and suggested the need for information on the stand structure when estimating the effective or potential growth performance for forest management of this species.  相似文献   

2.
The relationship between competition and tree growth was studied in four stands of Pinus sylvestris L. occurring in a continental Mediterranean mountain area (in the Guadarrama range, Spain), i.e., an uneven-aged stand, a stand with oak (Quercus pyrenaica Willd.) understorey, a plantation, and a mature even-aged stand. Competition was measured by a simple size-ratio distance-independent index and was negatively associated with tree diameter. This negative association was stronger in the uneven-aged, plantation and mature even-aged stands than in the stand with oak understorey. Competition was also negatively associated with current diameter increment. This relationship was moderately strong in the mature even-aged stand and weak in the uneven-aged stand and the plantation. In the uneven-aged and the mature even-aged stands, a weakly significant relationship was found between diameter growth and tree size, whereas these parameters were not associated in the stand with oak understorey. The competition index provided a better prediction of growth rate than the alternative use of diameter. Both diameter and basal area growth were greater in the uneven-aged than in the even-aged stands.  相似文献   

3.
在森林资源调查中,对异龄林用平均年龄和龄组进行归类,会缩小不同林分之间的结构差异,并造成林分年龄的偏低估计。利用海南省热带天然林样地资料。在对异龄林结构进行分析的基础上,提出用占总株数20%的大径级林木来计算异龄林的平均直径、平均树高等林分特征因子,并根据平均直径大小按“径组”(或粗度级)将异龄林分为5级,基本与同龄林的5个龄组相对应。便于对森林资源的统计和汇总分析。提出的径组划分标准可为异龄林的调查和统计提供参考,也为开展这方面的进一步研究提供借鉴。  相似文献   

4.
Characterizations of physical structural complexity are an important surrogate for the potential of forested stands to provide desired ecosystem services such as biodiversity. Distinguishing between stands with different structural conditions is not only a necessary feature of useful structural metrics and indices, but how such measures vary among stands can reveal clues to the ecological processes driving structure. We used stand inventory metrics and indices of structural complexity to differentiate between even-aged and uneven-aged structure types using 10 stem-mapped coniferous stands of each type distributed across Switzerland. Within each structure type, we further explored relationships among stand inventory metrics and structural indices over a roughly 10-year period of management intervention. The even-aged and uneven-aged structure types were clearly differentiated using both stand inventory metrics and spatially explicit structural complexity indices. Overall, structural complexity within even-aged stands was strongly related to, and best predicted by, metrics including the distribution of basal area among canopy layers, while complexity in the uneven-aged stands was most strongly related to, and best predicted by, metrics including measures of abundance. Although predictive models could be developed for canopy position mixture, diameter differentiation, and small-scale structural complexity (but not spatial aggregation) using only stand inventory metrics, the prediction success after only a single management intervention was lower than expected. These results indicate that research to explore small-scale structural complexity requires detailed spatially explicit inventory data and that management to enhance structural complexity may require the manipulation of different attributes in stands of even-aged (diameter distribution) and uneven-aged (total abundance) structure types.  相似文献   

5.
The forests of Austrocedrus chilensis (D. Don) Pic. Sern. et Bizarri in Argentina suffer decline and mortality throughout their natural distribution known as ‘mal del ciprés’. While several aspects of this, to date, temporally unpredictable process of overstory tree mortality have been the focus of detailed studies, there has been little research on tree growth and stand dynamics in symptomatic forests nor stand development patterns and prediction of future stand structure. We studied 12 stands in northern Patagonia (Province of Río Negro) using stand reconstruction studies to examine the changes in stand structure over time as a consequence of overstory mortality and the implications of these structural changes on the establishment and growth of the residual overstory. Dendrochronological analyses were used to reconstruct stand establishment and structure over time, and to study past diameter growth patterns. Mortality in A. chilensis forests was variable in time among stands. As expected, overstory mortality led to the successful establishment of trees in the understory in all stands; however, the response of residual overstory trees was variable. Understory establishment was low in some stands and high in others depending on the density of the overstory. While overstory trees in almost all stands released after the onset of the mortality, the pattern was not distinctive, varying in time, number and magnitude. In some stands, growth releases occurred after single or multiple tree deaths suggesting a relationship between processes, while in others this was not the case. Even when the patterns of recruitment in the understory and the overstory response varied greatly among stands, when examined together, some general patterns emerged. This study is the first to intensively explore the dynamics of A. chilensis forests affected by ‘mal del ciprés’. Additionally, this study showed that arbitrarily categorizing disturbances as discrete or chronic masks the true process of release of growing space and the resulting stand dynamics.  相似文献   

6.
Many boreal tree stands are neither clearly even-aged nor clearly uneven-aged. The stands may undergo a series of stages, during which an even-aged stand is transformed into two-storied mixed stand, and finally to multistoried or uneven-aged stand structure. The species composition often changes during the succession of stand stages. This study developed models for stand dynamics that can be used in different stand structures and species compositions. The model set consists of species-specific individual-tree diameter increment and survival models, and models for ingrowth. Separate models were developed for Scots pine, Norway spruce, and hardwood species. The models were used in a growth simulator, to give illustrative examples on species influences and stand dynamics. Methods to simulate residual variation around diameter increment and ingrowth models are also presented. The results suggest that mixed stands are more productive than one-species stands. Spruce in particular benefits from an admixture of other species. Mixed species improve diameter increment, decrease mortality, and increase ingrowth. Pine is a more beneficial admixture than birch. Simulations showed that uneven-aged management of spruce forests is sustainable and productive, and even-aged conifer stands growing on medium sites can be converted into uneven-aged mixed stands by a series of strong high thinnings.  相似文献   

7.
Nutrient dynamics of an Aleppo pine (Pinus halepensis, Mill.) ecosystem located in the Kassandra peninsula, Central Macedonia, Northern Greece, were studied using a chronosequence approach. The nutrient composition of the Aleppo pine trees, the understory evergreen broadleaves and forest floor in adjacent stands of 23, 48, 70 and over 100 years old was determined to estimate postfire nutrient losses. The concentration of nutrients in the Aleppo pine trees, except of Ca, was reduced with increasing stand age. Ca was the most abundant nutrient in the aboveground vegetation and in forest litter, followed by N, K, Mg and P. The accumulation of nutrients in the aboveground biomass was positively related to stand age. For younger stands nutrient accumulation was considerably larger in the understory vegetation as compared to the pines, due to substantial enhancement of the understory biomass and the number of understory species present. In middle-aged stands, however, nutrient accumulation in the understory and overstory vegetation reached a balance. In addition, considerable quantities of nutrients have been accumulated in the forest floor particularly in stands of 48 years old. Therefore, any destruction during the period of maximum nutrient accumulation in the forest floor will cause degradation of the ecosystem. It is postulated that the competition for nutrients between overstory and understory vegetation may be as important as competition in soil. Forest management practices leading to the direct conversion of the understory biomass into littermass would be of great significance for the sustainability of the Aleppo pine ecosystem.  相似文献   

8.
We investigated how richness and composition of vascular plant species in the understory of a mixed hardwood forest stand varied with respect to the abundance and composition of the overstory. The stand is in central Spain and represents the southernmost range of distribution of several tree and herbaceous species in Europe. Understory species were identified in 46 quadrats (0.25 m2) where variables litter depth and light availability were measured. In addition, we estimated tree density, basal area, and percent basal area by tree species within 6-m-radius areas around each plot. Species richness and composition were studied using path analysis and scale-dependent geostatistical methods, respectively. We found that the relative abundance of certain trees species in the overstory was more important than total overstory abundance in explaining understory species richness. Richness decreased as soil litter depth increased, and soil litter increased as the relative proportion of Fagus sylvatica in the overstory increased, which accounted for a negative, indirect effect of Fagus sylvatica on richness. Regarding understory species composition, we found that some species distributed preferentially below certain tree species. For example, Melica uniflora was most frequent below Fagus sylvatica and Quercus petraea while the increasing proportion of Q. pyrenaica in the overstory favored the presence of Cruciata glabra, Arenaria montana, Prunus avium, Conopodium bourgaei, Holcus mollis, Stellaria media and Galium aparine in the understory. Overall, these results emphasize the importance of individual tree species in controlling the assemblage and richness of understory species in mixed stands. We conclude that soil litter accumulation is one way through which overstory composition shapes the understory community.  相似文献   

9.
We evaluate the economic efficiency of even- and uneven-aged management systems under risk of wildfire. The management problems are formulated for a mixed-conifer stand and approximations of the optimal solutions are obtained using simulation optimization. The Northern Idaho variant of the Forest Vegetation Simulator and its Fire and Fuels Extension is used to predict stand growth and fire effects. Interest rate and fire risk are found to be critical determinants of the superior stand management system and timber supply. Uneven-aged management is superior with higher interest rates with or without fire risk. Alterations in the interest rate affect optimal stocking levels of uneven-aged stands, but have only minor effects on the long-run timber supply. Higher interest rates reduce rotation length and regeneration investments of even-aged stands, which lead to markedly reduced timber supply. Increasing fire risk increases the relative efficiency of even-aged management because a single age cohort is less susceptible to fire damage over the course of the rotation than multiple cohorts in uneven-aged stands. Higher fire risk reduces optimal diameter limit under uneven-aged management and decreases optimal rotation length and planting density under even-aged management.  相似文献   

10.
Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers increasingly practice uneven-aged management. We established 84 clusters of four plots, one where bark beetle-caused mortality was present and three uninfested plots. For all plot trees we recorded species, tree diameter, and crown position and for ponderosa pine whether they were killed or infested by mountain pine beetle. Elevation, slope, and aspect were also recorded. We used classification trees to model the likelihood of bark beetle attack based on plot and site variables. The probability of individual tree attack within the infested plots was estimated using logistic regression. Basal area of ponderosa pine in trees ≥25.4 cm in diameter at breast height (dbh) and ponderosa pine stand density index were correlated with mountain pine beetle attack. Regression trees and linear regression indicated that the amount of observed tree mortality was associated with initial ponderosa pine basal area and ponderosa pine stand density index. Infested stands had higher total and ponderosa pine basal area, total and ponderosa pine stand density index, and ponderosa pine basal area in trees ≥25.4 cm dbh. The probability of individual tree attack within infested plots was positively correlated with tree diameter with ponderosa pine stand density index modifying the relationship. A tree of a given size was more likely to be attacked in a denser stand. We conclude that stands with higher ponderosa pine basal area in trees >25.4 cm and ponderosa pine stand density index are correlated with an increased likelihood of mountain pine beetle bark beetle attack. Information form this study will help forest managers in the identification of uneven-aged stands with a higher likelihood of bark beetle attack and expected levels of tree mortality.  相似文献   

11.
  • ? Simulation tools, based on individual tree growth and mortality models can produce the most detailed predictions of forest stand development under different management schedules. These models allow the manager to predict the development of any type of stand (even- and uneven-aged, and pure and mixed stands).
  • ? Different model approaches and predictors are required for pure even-aged or mixed uneven-aged forest stands. This study developed and compared two sets of models which enable tree-level simulation of the development of pure and mixed stands of Pinus brutia in north-east Greece. The first set of models for even-aged forestry consists of site index models, diameter growth models, tree height models, and mortality models. The second set, which is for uneven-aged forestry, uses a past growth index instead of a site index.
  • ? The simulations and overall fitting statistics suggest that the two types of models provide realistic and accurate predictions of forest stand development and allow one to simulate the development of complex Pinus brutia stand structures in Dadia National Park forests.
  • ? The advantages of the two approaches are discussed and it is suggested that the growth index is an effective predictor of site quality and the set of models which used such variable as predictor performed in a similar way as the models using site index, which require more information and a given stand structure (even-aged).
  •   相似文献   

    12.
    Hyrcania is a productive region near the southern coast of Caspian Sea. Her forests are mostly uneven-aged beach-dominated hardwood mixtures. There is increasing willingness to treat these forests without clear-felling, following the ideas of continuous cover management. However, lack of growth and yield models have delayed this endeavor, and no instructions for uneven-aged management have been issued so far. This study developed a set of models that enable the simulation of stand development in alternative management schedules. The models were used to optimize stand structure and the way in which various initial stands should be converted to the optimal uneven-aged structure. The model set consists of individual-tree diameter increment model, individual-tree height model, survival model, and a model for ingrowth. The models indicate that the sustainable yield of the forests ranges from 2.2 to 7 mha?1 a?1 in uneven-aged management, depending on species composition. Better ingrowth would substantially enhance productivity. The optimal stand structure for maximum sustained yield has a wide descending diameter distribution, the largest trees of the post-cutting stand being 80–100 cm in dbh. If cuttings are conducted at 30- or 40-year intervals, they should remove 20–40 largest trees per hectare. Despite moderate growth rate, uneven-aged management produces high incomes, 850–1,000 UDS ha?1a?1, because the timber assortments that are obtained from the removed large trees have very high selling prices. Optimal conversion to uneven-aged structure showed that the steady-state stand structure depends on initial stand condition and discount rate when the length of the conversion period is fixed. Discount rates higher than 1 % lead to reduced wood production, heavy cuttings, and low basal areas of the steady-state forest.  相似文献   

    13.
    Thinning treatments in second-growth forest may be a practical means of accelerating the development of certain old-growth structural features in regions where old stands are presently uncommon. We used CANOPY, an individual-tree model calibrated with data from thinned and unthinned stands, to simulate effects of thinning on growth rates and development of old-growth structural features in second-growth northern hardwoods. Three simulated, moderately heavy thinnings over a period of 45 years nearly doubled the predicted mean radial increment of canopy trees, percent of stand basal area in large trees, and area of canopy gaps. Compared to untreated stands, thinned stands had fewer dead trees per ha, but the dead trees were larger in size and the overall volume of snags and logs was little affected. In a 77-year old even-aged stand, moderately heavy thinning was predicted to reduce the time needed to attain the minimum structural features of an old-growth forest from 79 to 36 years. Simulated treatments in an older, uneven-aged stand gave mixed results; the moderately heavy treatment stimulated individual tree growth, but the removal of some medium-sized canopy trees in conjunction with natural mortality delayed the development of old-growth structure. Total volume of dead wood may still be deficient under the thinning regimes investigated in this study, but predicted live-tree structure 45 years after moderately heavy thinning was typical of stands in the advanced transition and steady-state stages of old-growth development. Results suggest that thinning can substantially accelerate the development of old-growth structure in pole and mature northern hardwoods, but response in older, uneven-aged stands is more modest, and treatments in these stands may need to be more conservative to achieve restoration goals.  相似文献   

    14.
    A forest carbon (C) sequestration project was conducted to evaluate the economic incentives that would be required by landowners to engage in C trading under different management regimes. Costs associated with joint management for C sequestration and timber would be valuable for establishing sound forest C trading systems. In this study, we calculated the C yield and amortized value of three Wyoming, ponderosa pine stands. The management practices examined were, unmanaged, even-aged (regeneration after clear-cut) and uneven-aged (selectively harvested). Costs and revenues associated with three stands were converted into 2006 real dollars using the all commodity producer price index to facilitate a comparison among the net revenues of three stands. Net revenues were annualized using a conservative annual interest rate of 4.5%. Our even-aged stand had the highest annual average C yield of 2.48 Mg·ha−1·a1, whereas, the uneven-aged stand had the lowest C accumulation (1.98 Mg·ha−1·a−1). Alternatively, the even-aged stand had the highest amortized net return of $276·ha−1·a−1 and the unmanaged stand had the lowest net return of $276·ha−1·a−1 and the unmanaged stand had the lowest net return of 64 ·ha−1·a−1. On the plots examined, an annual payment of $22 for each additional Mg of C sequestered would encourage a change from uneven aged management to an unmanaged stand that sequesters additional C, in the absence of transactions costs.  相似文献   

    15.
    The effects of partial cutting on tree size structure and stand growth were evaluated in 52 plots in 13 stands in southeast Alaska that were partially harvested 53–96 years ago and compared with 50-year-old even-aged stands that developed after clearcutting. The net basal-area growth was greater in the partially cut plots than in the uncut plots, and basal-area growth generally increased with increasing cutting intensity. However, the basal-area growth of all of the partially harvested stands was significantly less than the growth of 50-year-old even-aged stands, and net basal area growth over the 50 year period since partial harvesting was about 33–43% of the growth of the even-aged stands. Partial cutting maintained stand structures similar to uncut old-growth stands, and the cutting had no significant effect on tree species composition. The tree size distribution of the partially harvested stands was far more complex and well distributed in comparison with the 50-year-old even-aged stands, and included the presence of several trees with diameters of more than 100 cm. These trees included both large-diameter spruce and hemlock trees and were a distinctive structural feature that was noticeably lacking in the even-aged stands.  相似文献   

    16.
    Abstract

    Structural changes over time in forests of shade-tolerant species are difficult to study because these stands are often broadly uneven-aged and not suitable for traditional chronosequence analysis. Yet because of past disturbances of variable intensity and frequency, there is often substantial structural variation among stands of a given site quality class. In this study, diameter distributions from 70 primary northern hardwood stands were analyzed to determine if certain structural indices might allow placement of stands in a developmental sequence.

    Modal stand diameter and the fraction of total overstory crown area in large trees (> 46 cm dbh) were among the most useful measures for distinguishing stages of development. Modal diameter ranged from 10 cm to 62 cm for stands on good sites. Correlations between diameter and age were highly significant (P < 0.0001) for the three principal species on all three site quality classes, suggesting that stands with a greater proportion of large trees are generally in a later stage of development. Stands with < 45% of the crown area in large trees have predominantly unimodal size distributions. As modal stand diameter increases, the shape of the size distribution changes from positively skewed to nearly symmetric. As the proportion of crown area in large trees exceeds 45% and the ratio of crown area in large to mature (26-45 cm dbh) trees exceeds 1.5, the form of the size distribution changes to multimodal, irregular, or descending monotonic.  相似文献   

    17.
    Rockfall is a major threat to settlements and transportation routes in many places. Consequently, the protective function of mountain forests has recently gained particular interest. However, much is still unknown about the ideal properties of protective forest stands. Therefore the present paper discusses a method for the inventory and analysis of tree injuries in a rockfall-damaged forest stand. With this method, the interrelation between stand geometry and rockfall injuries in a subalpine Polygalo chamaebuxi-Piceetum was examined. The study site of 0.3 Ha is located in the transit zone of frequently passing, small rockfall fragments (~10 cm in diameter) causing healable tree injuries. Tree and injury parameters were recorded and analysed as to injury number, height and size. The spatial distribution of the 157 trees (diameter at breast height dbh>5 cm) in the stand as well as of the 1,704 identified rockfall injuries showed a very uneven pattern. As expected, number, height and size of the injuries generally declined with increasing distance from the cliff as well as due to higher stem densities. In contrast, results indicated that the dbh of trees has no significant influence on the number of injuries per tree. However, this study showed a clear interrelation between tree and injury distribution: in general, large trees close to the cliff and smaller trees with a high density further down the slope seem to be favourable for good protection. At least an uneven-aged, multilayered stand should be sustained. Overall, the combined analysis of stand geometry and injury parameters provides information on the spatial distribution of rockfall and on the influence of tree arrangements.  相似文献   

    18.
    Twenty-two stands of advance lodgepole pine released with overstory removal were sampled to determine height growth response. Tree and site characteristics correlated with release response were identified, and a mathematical model was developed to predict height growth in years 6 through 10 after release as a function of residual overstory basal area, height at release, percent rock cover, five-year cumulative growth prior to release, logging damage, stand elevation, and habitat type. Lodgepole pine responded to release with increased height growth in 97% of the trees sampled. Growth was similar to that of unsuppressed trees. Height growth is best when the entire overstory is removed and logging damage is avoided. Taller trees generally do not respond as well as shorter trees. However, trees growing fast before harvest continue to grow fast regardless of their height at release. Recommendations for selecting stands of advance lodgepole pine to release are provided.  相似文献   

    19.
    The success of current initiatives to maintain and enhance thearea of and the special habitats provided by the remnant semi-naturalpinewoods of northern Scotland will depend upon foresters' abilityto foster more natural structures in even-aged plantations throughstand manipulation. However, there is little information onthe structures and spatial patterns that can be found in Scottishpinewoods; such knowledge could be used to design appropriatesilvicultural regimes. A study was carried out to compare spatialstructure in three 0.8–1.0 ha plots in the CairngormsNational Park; one plot was a 78-year-old plantation stand,the other two were semi-natural stands with trees up to 300years old. Basic mensurational data showed that the semi-naturalstands were characterized by a wider range of tree sizes andmore large (>50 cm d.b.h.) trees. Spatial structure was evaluatedwith a range of different indices: the aggregation index ofClark–Evans (CE), the uniform angle and diameter differentiationindices, Ripley's L function of tree spatial distribution, pairand mark correlation functions and experimental variograms oftree diameter. The CE revealed a regular distribution in theplantation with the semi-natural stands having a random pattern.Further analysis of the latter stands indicated that, in eachcase, the older trees in the stand were regularly distributedwhile the younger ones were clustered. There was little differencein uniform angle values between the stands while the diameterdifferentiation distributions suggested greater variety in diameterwithin the semi-natural stands than in the plantation. The Ripley'sL function showed that trees in the plantation were regularlydistributed at close distances but clustered over wider distances.There were differences in pattern between the semi-natural stands;in one, trees were clustered because the positions of the youngertrees were influenced by past regeneration trials, whereas inthe other stand a random pattern was observed. Similarly, thevariogram indicated widespread homogeneity in diameter withinthe plantation, while the semi-natural stands showed high variationat close spacing because of competition followed by spatialautocorrelation up to 20 m distance. Thereafter, one of thesestands had a very different pattern because of a more intensiveregeneration history. All the indices, apart from uniform angle,were able to discriminate between the plantation and the twosemi-natural stands, but only the more detailed spatial indiceswere capable of identifying differences within the latter. Theimplications of these results for management strategies in plantationsare discussed.  相似文献   

    20.
    To evaluate the relationship of overstory residual trees to the growth of unmanaged young-to-mature understory Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) and western hemlock (Tsuga heterophylla (Raf.) Sarg.), the basal area and volume of 14 paired plots with and without residual trees were examined in the Willamette National Forest, Oregon. Residual trees were large survivors of the fires that initiated the understory between 55 and 121 yr ago. Understory stands were naturally regenerated and not managed in any way. High residual tree and understory densities were negatively associated with understory volume. The relation of density of residual trees to total understory and Douglas-fir basal areas and volumes was best described by a negative logarithmic function. The rate of decrease in total understory and Douglas-fir basal areas and volumes per individual residual tree became smaller with increasing residual-tree density. Predicted total understory volume reduction was 23% with five residual trees/ha and 47% with 50 residual trees/ha, averaging 4.6% and 0.9% per residual tree, respectively. After including the estimated volume growth of residual trees since initiation of the understory, stand volume was still 19% lower with five residual trees/ha and 41% lower with 50 residual trees/ha than in stands with no residual trees, averaging a reduction of 38% and 0.8% per residual tree, respectively. In mixed stands of Douglas fir and western hemlock, predicted Douglas-fir basal area and volume declined more rapidly than did total understory basal area and volume when residual-tree densities exceeded about 15 trees/ha. This difference was probably due to the relative shade-intolerance of Douglas fir. Predicted Douglas-fir volume reduction was 13% with five residual trees/ha and 75% with 50 residual trees/ha, averaging 2.6% and 1.5% per residual tree, respectively. The southern aspects had more than 150% the total understory basal area and volume and more than 200% the Douglas-fir volume and basal area of the northern aspects. Lower density and basal area of understory trees, particularly of dominant and codominant Douglas fir, were associated with increasing residual-tree densities. Given the same diameter at breast height (DBH), heights of Douglas fir were not related to residual trees. Regardless of understory age, understory volume was greatest in stands with the lowest understory densities. These results suggest that timber production in unthinned green-tree retention units may be reduced and may depend on the density of leave-trees. Thinning of understory trees is recommended to reduce growth loss from intraspecific competition.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号