首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We characterized the changes in blood glucose concentrations in healthy cats exposed to a short stressor and determined the associations between glucose concentrations, behavioral indicators of stress, and blood variables implicated in stress hyperglycemia (plasma glucose, lactate, insulin, glucagon, cortisol, epinephrine, and norepinephrine concentrations). Twenty healthy adult cats with normal glucose tolerance had a 5-minute spray bath. Struggling and vocalization were the most frequent behavioral responses. There was a strong relationship between struggling and concentrations of glucose and lactate. Glucose and lactate concentrations increased rapidly and significantly in all cats in response to bathing, with peak concentrations occurring at the end of the bath (glucose baseline 83 mg/dL, mean peak 162 mg/dL; lactate baseline 6.3 mg/dL, mean peak 64.0 mg/dL). Glucose response resolved within 90 minutes in 12 of the 20 cats. Changes in mean glucose concentrations were strongly correlated with changes in mean lactate (r = .84; P < .001) and mean norepinephrine concentrations (r = .81; P < .001). There was no significant correlation between changes in mean glucose concentrations and changes in mean insulin, glucagon, cortisol, or epinephrine concentrations. Struggling and lactate concentrations were predictive of hyperglycemia. Gluconeogenesis stimulated by lactate release is the likely mechanism for hyperglycemia in healthy cats in this model of acute stress. Careful handling techniques that minimize struggling associated with blood collection may reduce the incidence of stress hyperglycemia in cats.  相似文献   

2.
Glucose-glucagon relationships in adult sheep.   总被引:1,自引:0,他引:1       下载免费PDF全文
Glucose-glucagon relationships were examined in adult sheep. Hyperglycemia was induced by infusing glucose at 120 mg/hr/kg body weight. Hypoglycemia was obtained by infusing insulin at 1.2 U/hr. In several experiments glucose at 40 mg/hr/kg was infused with insulin to obtain hyperinsulinemia without hypoglycemia to distinguish glucose-insulin effects. Glucagon concentrations decreased during hyperglycemia and increased during hypoglycemia. This study indicates that glucose-glucagon interactions may be important in regulation of glucagon secretion in sheep.  相似文献   

3.
The insulin and glucose responses to glucagon infusions (27 microgram/hr) were determined in sheep before and after parenteral lead treatment (6 mg/kg intravenously). Glucose production was measured by primed continuous infusion of [6-3H]glucose. Glucagon and insulin concentrations before and during glucagon infusions were not significantly different between lead treatment and control experiments. Lead administration did not affect the concentration or production of glucose in the preinfusion period. However, depressed hyperglycemia during glucagon infusion in lead treated experiments tended to be associated with decreased glucose production. The reduced glucogenic response to glucagon may be the result of reduced function of pyruvate carboxylase, a key hepatic gluconeogenic enzyme in sheep, from lead induced impairment of mitochondrial function.  相似文献   

4.
Serum glucose and plasma C-peptide response to IV glucagon administration was evaluated in 24 healthy dogs, 12 dogs with untreated diabetes mellitus, 30 dogs with insulin-treated diabetes mellitus, and 8 dogs with naturally acquired hyperadrenocorticism. Serum insulin response also was evaluated in all dogs, except 20 insulin-treated diabetic dogs. Blood samples for serum glucose, serum insulin, and plasma C-peptide determinations were collected immediately before and 5,10,20,30, and (for healthy dogs) 60 minutes after IV administration of 1 mg glucagon per dog. In healthy dogs, the patterns of glucagon-stimulated changes in plasma C-peptide and serum insulin concentrations were identical, with single peaks in plasma C-peptide and serum insulin concentrations observed approximately 15 minutes after IV glucagon administration. Mean plasma C-peptide and serum insulin concentrations in untreated diabetic dogs, and mean plasma C-peptide concentration in insulin-treated diabetic dogs did not increase significantly after IV glucagon administration. The validity of serum insulin concentration results was questionable in 10 insulin-treated diabetic dogs, possibly because of anti-insulin antibody interference with the insulin radioimmunoassay. Plasma C-peptide and serum insulin concentrations were significantly increased (P < .001) at all blood sarnplkg times after glucagon administration in dogs with hyperadrenocorticism, compared with healthy dogs, and untreated and insulin-treated diabetic dogs. Five-minute C-peptide increment, C-peptide peak response, total C-peptide secretion, and, for untreated diabetic dogs, insulin peak response and total insulin secretion were significantly lower (P < .001) in diabetic dogs, compared with healthy dogs, whereas these same parameters were significantly increased (P < .011 in dogs with hyperadrenocorticism, compared with healthy dogs, and untreated and insulin-treated diabetic dogs. Although not statistically significant, there was a trend for higher plasma C-peptide concentrations in untreated diabetic dogs compared with insulin-treated diabetic dogs during the glucagon stimulation test. Baseline C-peptide concentrations also were significantly higher (P < .05) in diabetic dogs treated with insulin for less than 6 months, compared with diabetic dogs treated for longer than 1 year. Finally, 7 of 42 diabetic dogs had baseline plasma C-peptide concentrations greater than 2 SD (ie, >0.29 pmol/mL) above the normal mean plasma C-peptide concentration; values that were significantly higher, compared with results in healthy dogs (P < .001) and with the other 35 diabetic dogs (P < .001). In summary, measurement of plasma C-peptide concentration during glucagon stimulation testing allowed differentiation among healthy dogs, dogs with impaired β-cell function (ie, diabetes mellitusl, and dogs with increased β-cell responsiveness to glucagon (ie, insulin resistance). Plasma C-peptide concentrations during glucagon stimulation testing were variable in diabetic dogs and may represent dogs with type-1 and type-2 diabetes or, more likely, differences in severity of β-cell loss in dogs with type-1 diabetes. J Vet Intern Med 1996;10:116–122. Copyright © 1996 by the American College of Veterinary Internal Medicine.  相似文献   

5.
Background: Cats with diabetes mellitus frequently achieve clinical remission, suggesting residual β‐cell function. Responsiveness of β‐cells to arginine persists the longest during diabetes progression, making the intravenous arginine stimulation test (IVAST) a useful tool to assess residual insulin and glucagon secretion. Hypothesis: Diabetic cats with and without remission will have different arginine‐induced insulin or glucagon response. Animals: Seventeen cats with diabetes, 7 healthy cats. Methods: Blood samples collected on admission and during subsequent IVAST. Glucose, insulin, and glucagon were measured. Response to IVAST was assessed by calculating the insulin and glucagon area under the curve (AUC) and the AUC glucagon‐to‐insulin ratio. Diabetic cats were treated with insulin and were followed for 18 weeks. Remission was defined as normoglycemia and disappearance of clinical signs of diabetes for ≥4 weeks, without requiring insulin. Results: Seven diabetic cats (41%) achieved remission. On admission, blood glucose concentration was significantly lower in cats with remission (median, 389 mg/dL; range, 342–536 mg/dL) than in those without remission (median, 506 mg/dL; range, 266–738 mg/dL). After IVAST, diabetic cats with remission had higher AUC glucagon‐to‐insulin ratios (median, 61; range, 34–852) than did cats without remission (median, 26; range, 20–498); glucose, insulin, and glucagon AUCs were not different. Diabetic cats had lower insulin AUC than did healthy cats but comparable glucagon AUC. Conclusions and Clinical Importance: Diabetic cats with and without remission have similar arginine‐stimulated insulin secretion on admission. Although cats with remission had lower blood glucose concentrations and higher AUC glucagon‐to‐insulin ratios, large overlap between groups prevents use of these parameters in clinical practice.  相似文献   

6.
An 18-year-old Spanish Mustang mare was referred for evaluation of progressive weight loss and persistent hyperglycemia. Clinicopathologic abnormalities included marked hyperglycemia and glycosuria. Serum cortisol concentration was appropriately decreased following administration of dexamethasone, indicating that the horse did not have pituitary pars intermedia dysfunction. Serum insulin and plasma C-peptide concentrations were low, suggesting that hyperglycemia was a result of decreased secretion of insulin by pancreatic beta cells. In addition, glucose concentration did not return to the baseline concentration until 5 hours after i.v. administration of a glucose bolus, suggesting that insulin secretion, insulin effect, or both were reduced. However, i.v. administration of insulin caused only a slight decrease in the plasma glucose concentration, giving the impression that the action of insulin was impaired. Within 5 hours after administration of a combination of glyburide and metformin, which is used to treat diabetes mellitus in humans, the glucose concentration was within reference limits. The horse was euthanized, and a postmortem examination was done. Immunohistochemical staining of sections of the pancreas revealed attenuation of the pancreatic islet beta-cell population, with beta cells that remained generally limited to the periphery of the islets. These findings indicate that, albeit rare, pancreatic beta-cell failure may contribute to the development of diabetes mellitus in horses.  相似文献   

7.
Effects of Ostertagia ostertagi infection on secretion of insulin, pancreatic glucagon, cortisol, gastrin, and pepsinogen were studied in calves inoculated with 100,000 (group 1) or 10,000 (group 2) O ostertagi infective larvae weekly for 14 weeks. Plasma insulin concentrations in both inoculated groups were lower than those in a non-infected (group 3) control group. The differences between group 1 and group 3 were significant (P < 0.05) at 2 and 12 weeks after initial inoculation. Plasma pancreatic glucagon and cortisol concentrations of groups 1 and 2 did not differ significantly from those of the control group, although plasma pancreatic glucagon concentration was consistently lower in group-1 calves from 4 weeks to end of the study. Plasma pepsinogen and serum gastrin concentrations also increased significantly (P < 0.05) in both groups that received inoculations. We concluded that decreased plasma insulin concentrations are contributory to changes in postabsorptive protein metabolism, and that serum gastrin concentrations are more representative of the pathologic changes in the abomasum than are plasma pepsinogen concentrations.  相似文献   

8.
In an initial experiment we observed postprandial changes in plasma concentrations of growth hormone (GH), insulin, glucagon, and somatostatin (SRIF) in sheep. We then examined whether increasing the rumen concentration of volatile fatty acids (VFA) by infusing a VFA mixture at three rates (53.5, 107, and 214 micromol/kg/min for 4 hr) mimicked the postprandial changes in hormone secretion. Feeding significantly (P < 0.05) suppressed the plasma GH concentration for 6 hr, whereas it significantly (P < 0.05) increased plasma concentrations of insulin, glucagon, and SRIF. Plasma glucose levels tended to decrease after feeding but then gradually increased over the prefeeding level (P < 0.05). Intraruminal infusion of the VFA mixture at 107 micromol/kg/min caused similar changes in ruminal VFA concentrations to those seen after feeding. The infusion significantly (P < 0.05) suppressed GH secretion in a dose-dependent manner, whereas it caused a significant (P < 0.05) increase in insulin and glucose concentrations without changing glucagon concentrations. From these results, we conclude that the postprandial change in ruminal VFA concentration may be a physiological signal which modifies GH and insulin secretion in sheep.  相似文献   

9.
Somatostatin inhibited glucose-induced insulin secretion in intact goats. The duration of the inhibition was short (10 minutes) which suggests that somatostatin was rapidly metabolised. The inhibitory effect of somatostatin was followed by a recovery period during which high levels of insulin were attained. These higher concentrations of insulin in the 30 to 60 minutes after somatostatin infusion, were accompanied by lowered free fatty acid and beta-hydroxybutyrate concentrations. It is suggested that the effects of somatostatin on these metabolites is brought about by modulation of insulin secretion and not by a direct effect of somatostatin on target tissues.  相似文献   

10.
Factors that affect progesterone clearance from plasma and by hepatocytes in culture were examined in a series of experiments. In Exp. 1, the objective was to determine whether an increase in hepatic portal blood acetate or propionate could alter progesterone metabolism by the liver. For ewe lambs gavaged orally with sodium propionate compared with those gavaged orally with sodium acetate, serum progesterone concentrations began to diverge as early as 0.5 h after administration and were greater (P < 0.05) at 3 and 4 h after administration. The objective of Exp. 2 was to determine the effect of a single oral gavage of either sodium acetate or sodium propionate on peripheral insulin and glucagon concentrations. Ewes gavaged orally with sodium propionate had greater (P < 0.05) insulin concentrations at 0.5 and 1 h after gavage than ewes gavaged with sodium acetate. Furthermore, glucagon concentrations were greater (P < 0.05) at 0.5, 1, and 2 h for ewe lambs gavaged orally with sodium propionate compared with those receiving sodium acetate. The third experiment investigated the rate of in vitro progesterone clearance by cultured hepatocytes in response to treatment with different concentrations of insulin and glucagon. Progesterone clearance was reduced (P < 0.05) with the addition of 0.1 nM insulin compared with the control. Furthermore, there was a greater reduction (P < 0.05) in progesterone clearance in response to 1.0 and 10 nM insulin compared with the control and 0.1 nM insulin. No change was observed in progesterone clearance in hepatocytes treated with either physiological (0.01 and 0.1 nM) or supraphysiological (1.0 nM) glucagon. Supraphysiological concentrations of glucagon (1.0 nM) negated the effects of either 0.1 or 1.0 nM insulin on progesterone clearance by hepatocytes. However, with physiological concentrations of glucagon (0.1 nM) and 1.0 nM insulin, glucagon was not able to negate the reduction in progesterone clearance caused by insulin. These data are consistent with a paradigm in which elevated hepatic portal vein propionate increases plasma insulin in ruminants, which decreases progesterone clearance, thereby increasing serum progesterone concentrations.  相似文献   

11.
The intravenous infusion of somatostatin (800 ng/kg min) reduced the concentration of growth hormone (GH) in the plasma of 4 to 5, 6 to 7 and 8 to 9 week-old ducklings, but not in adult ducks. The inhibition of GH secretion was not due to accompanying changes in pancreatic function, since the infusion of a lower dose of somatostatin (200 ng/kg min) increased glucagon release and decreased plasma free fatty acids (FFA), as observed with the higher dose, but had no effect on GH concentrations. The withdrawal of somatostatin inhibition resulted in rebound GH secretion in immature birds, the magnitude of which was directly related to the pre-treatment level. Following somatostatin infusion (800 ng/kg min) no modification in GH concentration was observed in adult ducks. These results demonstrate that basal GH release in young birds is not autonomous and is suppressible by somatostatin. The data provide further evidence for age-related changes in the control of avian GH and insulin release and for the independence of the effects of somatostatin on the pituitary and pancreas glands.  相似文献   

12.
为阐明胰岛素、胰高血糖素在奶牛脂肪代谢中的调控作用,应用RT-PCR法观察了胰岛素、胰高血糖素对体外培养脂肪细胞胰高血糖素受体(GLNR)mRNA丰度的影响。结果发现,随着培养液中胰岛素质量浓度的升高,GLNR mRNA表达逐渐增加(P<0.05);而随着培养液中胰高血糖素浓度的升高,GLNR mRNA表达逐渐降低(P<0.01)。本研究结果表明,胰岛素、胰高血糖素直接调控奶牛脂肪细胞胰高血糖素受体mRNA的表达。  相似文献   

13.
The purpose of this study was to investigate and compare the effects of medetomidine and xylazine on some neurohormonal and metabolic variables in healthy cats. Five cats were used repeatedly in each of 11 groups, which were injected intramuscularly with physiological saline solution (control), 20, 40, 80, 160, and 320 microg/kg of medetomidine, and 0.5, 1, 2, 4, and 8 mg/kg of xylazine. Blood samples were taken over 24 h from the jugular vein for determination of plasma glucose, insulin, cortisol, epinephrine, norepinephrine, glucagon, and nonesterified fatty acid concentrations. Both medetomidine and xylazine induced remarkable hyperglycemia that was dose-dependent except for the response to medetomidine from 0 to 3 h. Both agents suppressed epinephrine and norepinephrine release but not in a dose-dependent manner at the tested dosages. Both agents inhibited insulin release and lipolysis, with similar potency, and tended to suppress cortisol release. The glucagon levels did not change significantly in any of the groups. These results suggest that the effects of medetomidine and xylazine on glucose metabolism and catecholamine release may not be due only to the actions mediated by alpha2-adrenoceptors.  相似文献   

14.
Ghrelin, the natural ligand of the growth hormone secretagogue receptor (GHS-R1a), has been shown to stimulate growth hormone (GH) secretion. Regulation of ghrelin secretion in ruminants is not well studied. We investigated the effects of oxyntomodulin (OXM) and secretin on the secretions of ghrelin, insulin, glucagon, glucose, and nonesterified fatty acids (NEFA) in pre-ruminants (5 wk old) and ruminants (10 wk old) under normal physiological (feeding) conditions. Eight male Holstein calves (pre-ruminants: 52 ± 1 kg body weight [BW]; and ruminants: 85 ± 1 kg BW) were injected intravenously with 30 μg of OXM/kg BW, 50 μg of secretin/kg BW, and vehicle (0.1% bovine serum albumin [BSA] in saline as a control) in random order. Blood samples were collected, and plasma hormones and metabolites were analyzed using a double-antibody radioimmunoassay system and commercially available kits, respectively. We found that OXM increased the concentrations of insulin and glucose but did not affect the concentrations of ghrelin in both pre-ruminants and ruminants and that there was no effect of secretin on the concentrations of ghrelin, insulin, and glucose in these calves. We also investigated the dose-response effects of OXM on the secretion of insulin and glucose in 8 Holstein steers (401 ± 1 d old, 398 ± 10 kg BW). We found that OXM increased the concentrations of insulin and glucose even at physiological plasma concentrations, with a minimum effective dose of 0.4 μg/kg for the promotion of glucose secretion and 2 μg/kg for the stimulation of insulin secretion. These findings suggest that OXM takes part in glucose metabolism in ruminants.  相似文献   

15.
Xylazine was administered intravenously (0.16 mg/kg) to sheep. This was associated with a transient hyperglucagonaemia, hypoinsulinaemia and hyperglycaemia. The rate of glucose appearance as determined by isotope dilution techniques was increased three to four fold during the first 20 minutes after xylazine administration. Phentolamine prevented the xylazine-induced increase in the rate of appearance of glucose, and in concentrations of glucose and glucagon in plasma. The insulin response was not altered by phentolamine. Propranolol had no effect on the glucose and hormonal responses due to xylazine. The xylazine-induced effects on glucose metabolism and secretion by glucagon and insulin appear to be mediated by the alpha-adrenoceptors.  相似文献   

16.
Glucagon-like peptide-1 (7-36) amide (GLP-1), secreted by the small intestine, has insulinotropic and glucose-lowering action. Basal plasma GLP-1 concentrations were measured in calves around the weaning period, the effect of short-chain fatty acids (SCFA) on plasma GLP-1 concentrations was examined, and the effects of GLP-1 administration on plasma insulin, glucagon, and glucose concentrations were measured. Thirteen Holstein bull calves were fed whole milk and solid feed and weaned at 7 wk of age. Preprandial plasma samples were obtained from 5 calves once a week from week 0 to 13 to measure basal concentrations of plasma GLP-1 and insulin (experiment 1). Four calves were intravenously administered with a mixed solution of SCFA (2.4 mmol/kg body weight [BW]) in week 2 and 11 to measure plasma GLP-1 concentrations (experiment 2). Another 4 calves were intravenously injected with GLP-1 (1.0 μg/kg BW) to elucidate the response of plasma insulin, glucagon, and glucose concentrations in week 1, 2, 4, 6, 7, 9, 11, and 13 (experiment 3). In experiment 1, age and weaning did not affect preprandial basal concentrations of plasma GLP-1 throughout the experimental period. Preprandial insulin concentrations increased after weaning (P < 0.05), and GLP-1 and insulin were more strongly correlated postweaning than preweaning. In experiment 2, intravenous treatment with SCFA increased plasma GLP-1 concentrations in both week 2 and 11 (P < 0.05.) In experiment 3, intravenous GLP-1 treatment decreased plasma glucose concentrations throughout the experiment (P < 0.05), but increased plasma insulin concentrations only after weaning (P < 0.05). Treatment with GLP-1 did not affect plasma glucagon concentrations, regardless of age. These results indicate that preprandial basal concentrations of plasma GLP-1 in calves are not changed by weaning, but SCFA stimulate GLP-1 secretion. The insulinotropic action of GLP-1 is detected only after weaning, but the glucose-lowering action of GLP-1 is not affected by weaning.  相似文献   

17.
OBJECTIVE: The response to intravenous glucose loading in the buffalo using the intravenous glucose tolerance test (IGTT) was investigated to provide a reference for intravenous glucose injection in buffaloes. METHOD: Twelve healthy, fasted, male swamp buffaloes were divided into three groups. Group I: six buffaloes were given 50% glucose at a dosage of 1 g/kg body weight via the jugular vein. Group II: three buffaloes received normal saline. Group III: three buffaloes were not injected. Blood samples were taken from the opposite vein at 60 and 10 min pre-injection (pre60 and pre10), and at 1, 5, 10, 30, 60, 120, 180, 240, 300, 360 and 420 min post-glucose injection (PGI). Plasma glucose was analyzed by the oxidase method. Insulin and glucagon were soon determined with a human radioimmunoassay kit. The insulin (pmol/l)/glucose (mmol/l) ratios (IGR) were also calculated for each sampling time. RESULTS: Mean plasma glucose, insulin and glucagon concentrations of buffaloes in groups II and III were similar at all the sampling times (p > 0.05) and the curves of the IGR for group II and group III were flat throughout. Group I Buffaloes showed an immediate 20 times increase in the mean plasma glucose concentration PGI, over the pre60 and pre10. The peak plasma insulin concentration occurred at 30 min PGI. The mean plasma glucose and insulin concentrations remained above pre-administration levels until 420 min PGI (p < 0.05). However, the mean plasma glucagon concentrations were different only at 1 and 5 min PGI sampling times. The curve of the IGR for group I showed an initial decrease at 1 min PGI, and fluctuated from 10.18 to 25.55 for the remainder of the sampling period. The correlation analysis showed that the mean plasma glucose concentration was positively correlated with insulin level (r = 0.73, p < 0.005), and significantly negatively correlated with mean plasma glucagon (r = -0.58, p < 0.05). The mean plasma insulin level did not show significant correlation with the glucagon (r = 0.06, p > 0.05). CONCLUSION: The hyperglycemia, high insulin, and protracted glucose and insulin curves, the initial decrease in the insulin/glucose ratio indicates that there was an unexpected glucose tolerance to acute intravenous glucose loading in water buffalo compared with other ruminants. The possibly suggested intravenous glucose load in buffaloes is about 5.09-8.28 mmol/l.  相似文献   

18.
To investigate the effects of amino acids on ghrelin‐induced growth hormone (GH), insulin and glucagon secretion in lactating dairy cattle, six Holstein cows were randomly assigned to two infusion treatments in a cross‐over design. Mixture solution of amino acids (AMI) or saline (CON) was continuously infused into the left side jugular vein via catheter for 4 h. At 2 h after the start of infusion, synthetic bovine ghrelin was single injected into the right side jugular vein through the catheter. Ghrelin injection immediately increased plasma GH, glucose and non‐esterified fatty acids (P < 0.05) with no difference between both treatments. Additionally, plasma insulin and glucagon concentrations were increased by ghrelin injection in both treatments. The peak value of plasma insulin concentration was greater in AMI compared with CON (P < 0.05). Plasma glucagon concentration showed no difference in the peak value reached at 5 min between both treatments, and then the plasma levels in AMI compared with CON showed sustained higher values (P < 0.05). After plasma glucose concentration reached the peak, the decline was greater in AMI compared with CON (P < 0.05). These results showed that the increased plasma amino acids may enhance ghrelin action which in turn enhances insulin and glucagon secretions in lactating cows.  相似文献   

19.
The effects of cholecystokinin-8 (cck-8) and pentagastrin on insulin and glucagon secretion were studied in conscious sheep. Intravenous infusions of ccx-8 (3 to 1000 pmol kg−1 min−1 for 30 minutes) induced a dose-dependent increase in plasma insulin, but did not alter plasma glucagon concentration. The threshold dose of ccx-8 for stimulation of insulin secretion was 10 to 30 pmol kg−1 min−1. Pentagastrin was infused intravenously at doses of 10 to 3000 pmol kg−1 min−1. The maximal dose of pentagastrin slightly stimulated insulin, but not glucagon, secretion. The insulin secretory activity of pentagastrin was only 1/300 that of ccx-8 on a molar basis. The threshold dose of ccx-8 for stimulation of insulin secretion was similar to that for exocrine pancreatic secretion obtained in earlier studies. In conclusion, ccx is a potential candidate as a physiological factor regulating insulin secretion in sheep.  相似文献   

20.
OBJECTIVE: To assess the effects of prolonged feed deprivation on glucose tolerance, insulin secretion, and lipid homeostasis in llamas. ANIMALS: 9 adult female llamas. PROCEDURE: On each of 2 consecutive days, food was withheld from the llamas for 8 hours. Blood samples were collected before and 5, 15, 30, 45, 60, 120, and 240 minutes after IV injection of dextrose (0.5 g/kg) for determination of plasma insulin and serum glucose, triglyceride, and nonesterified fatty acid concentrations. Between experimental periods, the llamas received supplemental amino acids IV (185 mg/kg in solution). The llamas were then fed a limited diet (grass hay, 0.25% of body weight daily) for 23 days, after which the experimental procedures were repeated. RESULTS: Feed restriction decreased glucose tolerance and had slight effects on insulin secretion in llamas. Basal lipid fractions were higher after feed restriction, but dextrose administration resulted in similar reductions in serum lipid concentrations with and without feed restriction. Insulin secretion was decreased on the second day of each study period, which lessened reduction of serum lipid concentrations but did not affect glucose tolerance. CONCLUSIONS AND CLINICAL RELEVANCE: Despite having a comparatively competent pancreatic response, feed-restricted llamas assimilated dextrose via an IV bolus more slowly than did llamas on full rations. However, repeated administration of dextrose reduced insulin secretion and could promote hyperglycemia and fat mobilization. These findings suggested that veterinarians should use alternative methods of supplying energy to camelids with long-term reduced feed intake or consider administering agents to improve the assimilation of glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号