首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A medium-chain ester, hexyl laurate, with fruity flavor is primarily used in personal care formulations as an important emollient for cosmetic applications. To conform to the "natural" interests of consumers, the ability of immobilized lipase from Rhizomucor miehei (Lipozyme IM-77) to catalyze the direct esterification of hexanol and lauric acid by using a solvent-free system was investigated in this study. Response surface methodology (RSM) and four-factor-five-level central composite rotatable design (CCRD) were employed to evaluate the effects of synthesis parameters, such as reaction time (10-50 min), temperature (45-85 degrees C), lipase amount (10-30 mg/volume; 0.077-0.231 batch acidolysis units of Novo (BAUN), and pH memory (5-9), on percentage molar conversion of hexyl laurate by lipase-catalyzed direct esterification. Reaction time, temperature, and enzyme amount had significant effects on percent molar conversion. On the basis of ridge maximum analysis, the optimum synthesis conditions for hexyl laurate were a reaction time of 40.6 min, a temperature of 58.2 degrees C, an enzyme amount of 25.4 mg/volume (0.196 BAUN), and a pH memory of 5.9. The predicted percentage molar conversion of hexyl laurate was 69.7 +/- 1.4%.  相似文献   

2.
Response surface methodology was successfully employed to optimize lipase-catalyzed synthesis of feruloyl butyryl glycerides (FBGs). The effects of the reaction parameters, including the reaction time, reaction temperature, enzyme concentration, substrate molar ratio, and water activity, and the interaction parameters were examined. The analysis suggested that the conversion of the FBGs was significantly (p < 0.05) affected by independent factors of reaction time, reaction temperature, substrate molar ratio, and water activity as well as interactive terms of reaction temperature/reaction time, reaction temperature/enzyme concentration, substrate molar ratio/reaction temperature, water activity/reaction temperature, reaction time/enzyme concentration, and enzyme concentration/water activity. The highest conversion yield of FBGs was 81.2% at the following optimized reaction conditions: reaction temperature of 53.6 degrees C, reaction time of 5.5 days, enzyme concentration of 50.8 mg/mL, water activity of 0.14, and substrate molar ratio of 2.9. The conversion is higher as compared to that at the conditions before optimization.  相似文献   

3.
Response surface methodology (RSM) and 3-level-3-factor fractional factorial design were used to evaluate the effects of synthesis parameters, including reaction time (4 to 8 h), temperature (110 to 130 degrees C), and substrate molar ratio of fatty acid methyl esters (FAME) from soybean oil to methyl glucoside (4:1 to 6:1) on the percent molar conversion to methyl glucoside polyester (MGPE), utilizing 15 g of methyl glucoside as the reactant in a solvent-free system. All synthesis variables (reaction time, temperature, and substrate molar ratio) exhibited significant effects on percent molar conversion to MPGE in the experimental range. Optimization of the synthesis reaction was suggested by ridge max analysis to compute the estimated ridge of optimum response for increasing radii from the center of the original design. Based on the ridge max analysis, optimum conditions were: reaction time 6.3 h, synthesis temperature 123.8 degrees C, and substrate molar ratio 5.9:1. The predicted molar conversion was 55.68% (i.e., 15 g methyl glucoside yielded 56.5 g MGPE) at the optimum point.  相似文献   

4.
Response surface methodology was successfully applied to optimize lipase-catalyzed regioselective esterification of pyridoxine (PN). Effects of various reaction conditions, including reaction temperature, time, enzyme loading, substrate molar ratio, and water activity, were investigated. A central composite design was employed to search for the optimal conversion of PN. A quadratic polynomial regression model was used for analysis of the experimental data at a 95% level (p < 0.05). The analysis confirmed that the water activity was the most significant factor affecting the conversion of PN. It was also suggested that the conversion was strongly affected by independent variables of temperature, time, substrate molar ratio, and water activity as well as interaction terms of temperature and enzyme loading/substrate molar ratio/water activity, time and enzyme loading/substrate molar ratio, substrate molar ratio, and water activity. The coefficient of determination of the model was found to be 0.963. Three sets of optimum reaction conditions were established, and the verified experimental trials were performed for validating the optimum points. A scale-up experiment was also done under the first set of optimal conditions.  相似文献   

5.
Structured triacylglycerols (ST) from canola oil were produced by enzymatic acidolysis in a packed bed bioreactor. A commercially immobilized 1,3-specific lipase, Lipozyme IM, from Rhizomucormiehei, was the biocatalyst and caprylic acid the acyl donor. Parameters such as substrate flow rate, substrate molar ratio, reaction temperature, and substrate water content were examined. High-performance liquid chromatography was used to monitor the reaction and product yields. The study showed that all of the parameters had effects on the yields of the expected di-incorporated (dicaprylic) ST products. Flow rates below 1 mL/min led to reaction equilibrium, and lower flow rates did not raise the incorporation of caprylic acid and the product yield. Incorporation of caprylic acid and the targeted di-incorporated ST was increased by approximately 20% with temperature increase from 40 to 70 degrees C. Increasing the substrate molar ratio from 1:1 to 7:1 increased the incorporation of caprylic acid and the product yield slightly. Water content in the substrate also had a mild influence on the reaction. Water content at 0.08% added to the substrate gave the lowest incorporation and product yield. The use of solvent in the medium was also studied, and results demonstrated that it did not increase the reaction rate at 55 degrees C when 33% hexane (v/v) was added. The main fatty acids at the sn-2 position of the ST were C(18:1), 54. 7 mol %; C(18:2), 30.7 mol %; and C(18:3), 11.0 mol %.  相似文献   

6.
The ability of a noncommercial immobilized lipase from Staphylococcus xylosus (SXLi) to catalyze the transesterification of tyrosol and ethyl acetate was investigated. Response surface methodology was used to evaluate the effects of the temperature (40-60 degrees C), the enzyme amount (50-500 UI), and the ethyl acetate/hexane volume ratio (0.2-1) on the tyrosol acetylation conversion yield. Two independent replicates were carried out under the optimal conditions predicted by the model (reaction temperature 54 degrees C, enzyme amount 500 UI, and volume ratio ethyl acetate/hexane 0.2). The maximum conversion yield reached 95.36 +/- 3.6%, which agreed with the expected value (96.8 +/- 3.7%). The ester obtained was characterized by spectroscopic methods. Chemical acetylation of tyrosol was performed, and the products were separated using HPLC. Among the eluted products from HPLC, mono- and diacetylated derivatives were identified by positive mass spectrometry. Tyrosol and its monoacetylated derivative exert similar antiradicalar activity on 2,2-diphenyl-1-picrylhydrazyle.  相似文献   

7.
The ability of immobilized lipase B from Candida antarctica (Novozym 435) to catalyze the direct esterification of glyceryl ferulate (FG) and oleic acid for feruloylated monoacylglycerols (FMAG) preparation in a solvent-free system was investigated. Enzyme screening and the effect of glycerol on the initial reaction rate of esterification were also investigated. Response surface methodology (RSM) was used to optimize the effects of the reaction temperature (55-65 degrees C), the enzyme load (8-14%; relative to the weight of total substrates), oleic acid/(FG + glycerol) (6:1-9:1; w/w), and the reaction time (1-2 h) on the conversion of FG and yield of FMAG. Validation of the RSM model was verified by the good agreement between the experimental and the predicted values of FG conversion and FMAG yield. The optimum preparation conditions were as follows: temperature, 60 degrees C; enzyme load, 8.2%; substrate ratio, 8.65:1 (oleic acid/(FG + glycerol), w/w); and reaction time, 1.8 h. Under these conditions, the conversion of FG and yield of FMAG are 96.7 +/- 1.0% and 87.6 +/- 1.2%, respectively.  相似文献   

8.
Structured lipids (SLs) containing palmitic, oleic, stearic, and linoleic acids, resembling human milk fat (HMF), were synthesized by enzymatic acidolysis reactions between tripalmitin, hazelnut oil fatty acids, and stearic acid. Commercially immobilized sn-1,3-specific lipase, Lipozyme RM IM, obtained from Rhizomucor miehei was used as the biocatalyst for the enzymatic acidolysis reactions. The effects of substrate molar ratio, reaction temperature, and reaction time on the incorporation of stearic and oleic acids were investigated. The acidolysis reactions were performed by incubating 1:1.5:0.5, 1:3:0.75, 1:6:1, 1:9:1.25, and 1:12:1.5 substrate molar ratios of tripalmitin/hazelnut oil fatty acids/stearic acid in 3 mL of n-hexane at 55, 60, and 65 degrees C using 10% (total weight of substrates) of Lipozyme RM IM for 3, 6, 12, and 24 h. The fatty acid composition of reaction products was analyzed by gas-liquid chromatography (GLC). The fatty acids at the sn-2 position were identified after pancreatic lipase hydrolysis and GLC analysis. The results showed that the highest C18:1 incorporation (47.1%) and highest C18:1/C16:0 ratio were obtained at 65 degrees C and 24 h of incubation with the highest substrate molar ratio of 1:12:1.5. The highest incorporation of stearic acid was achieved at a 1:3:0.75 substrate molar ratio at 60 degrees C and 24 h. For both oleic and stearic acids, the incorporation level increased with reaction time. The SLs produced in this study have potential use in infant formulas.  相似文献   

9.
Structured lipids (SLs) containing palmitic and oleic acids were synthesized by transesterification of tripalmitin with either oleic acid or methyl oleate as acyl donor. This SL with palmitic acid at the sn-2 position and oleic acid at sn-1,3 positions is similar in structure to human milk fat triacylglycerol. LIP1, an isoform of Candida rugosa lipase (CRL), was used as biocatalyst. The effects of reaction temperature, substrate molar ratio, and time on incorporation of oleic acid were investigated. Reaction time and temperature were set at 6, 12, and 24 h, and 35, 45, and 55 degrees C, respectively. Substrate molar ratio was varied from 1:1 to 1:4. The highest incorporation of oleic acid (37.7%) was at 45 degrees C with methyl oleate as acyl donor. Oleic acid resulted in slightly lesser (26.3%) incorporation. Generally, higher percentage incorporation of oleic acid was observed with methyl oleate (transesterification) than with oleic acid (acidolysis). In both cases percentage incorporation increased with reaction time. Incorporation decreased with increase in temperature above 45 degrees C. Initially, oleic acid incorporation increased with increase in substrate molar ratio up to 1:3. LIP1 was also compared with Lipozyme RM IM as biocatalysts. The tested reaction parameters were selected on the basis of maximum incorporation of C18:1 obtained during optimization of LIP1 reaction conditions. Reaction temperature was maintained at 45, 55, and 65 degrees C. Lipozyme RM IM gave highest oleic acid incorporation (49.4%) at 65 degrees C with methyl oleate as acyl donor. Statistically significant (P < 0.05) differences were observed for both enzymes. SL prepared using Lipozyme RM IM may be more suitable for possible use in human milk fat substitutes.  相似文献   

10.
Structured lipids (SL) containing caprylic, stearic, and linoleic acids were synthesized by enzymatic transesterification using Lipozyme IM60. Pure trilinolein and free fatty acids were used as substrates. Incorporation of stearic acid was higher than that of caprylic acid in all parameters. Highest incorporations of both acids were achieved at 32 h, mole ratio of 1:4:4 (trilinolein/caprylic/stearic acids), water content of 1% (wt %), temperature of 55 degrees C, and 10% (wt %) enzyme load. The maximal incorporations of caprylic and stearic acids were 23.73 and 62.46 mol %, respectively. Reaction time, water content, and enzyme load had major influences on the reaction, whereas substrate mole ratio and temperature showed less influence. Lipozyme showed good stability over six reuses. Differential scanning calorimetric analysis of SL gave a melting profile with a very low melting peak of 0-3.3 degrees C and a solid fat content of 25.21% at 0 degrees C. The melting profile and solid fat content of SL were compared with those of fats extracted from commercially available solid and liquid margarine products. The data suggest that enzymatically produced SL could be used in liquid margarine products.  相似文献   

11.
The surface of a lipase from Burkholderia cepacia was coated with a nonionic surfactant, propylene glycol monostearate, and was used as a biocatalyst in the production of ascorbic acid in tert-butyl alcohol. The influence of various factors such as the type of surfactant, the pH of the buffer used for coating, the amount of surfactant in the coating, the organic solvent, and the temperature and molar ratio of the substrates used in the reaction on the conversion of ascorbyl palmitate were studied. After 24 h of reaction at 50 degrees C, a conversion of 47% was obtained using an ascorbic acid to palmitic acid molar ratio of 1:6. The native lipase showed only 6% conversion.  相似文献   

12.
Lauroylation of wheat straw hemicelluloses in the N, N-dimethylformamide/lithium chloride system under microwave irradiation was studied. The parameters optimized included lauroyl chloride concentration as the molar ratio of xylose unit in hemicelluloses/lauroyl chloride (1:1-1:4), 4-dimethylaminopyridine concentration (2-10%), reaction time (1-8 min), molar ratio of xylose unit in hemicelluloses/triethylamine (1:2), and reaction temperature (78 degrees C). The reaction efficiency was measured by the yield and degree of substitution (DS). Under an optimum reaction condition (molar ratio of xylose unit in hemicelluloses/lauroyl chloride 1:3, molar ratio of xylose unit in hemicelluloses/triethylamine 1:2, 5% 4-dimethylaminopyridine, 78 degrees C, 5 min), a DS of 1.63 was obtained. Changes in the structure of hemicelluloses were verified by FT-IR and 1H and 13C NMR spectroscopy. The results showed that the lauroylation occurred preferentially at the C-3 position of the xylose unit in hemicelluloses. The behavior of the lauroylated hemicelluloses was monitored by means of thermogravimetric (TG) and differential thermogravimetric (DTG) analysis. It was found that the product with low DS had a lower thermal stability than the native hemicelluloses, whereas the lauroylated polymers with high DS showed a higher thermal stability than the unmodified hemicelluloses.  相似文献   

13.
The ability of immobilized lipase Candida antarctica (Novozyme 435) to catalyze the direct esterification of hydroxyphenylpropionic acid and octanol in a solvent-free system was investigated in this study. Response surface methodology (RSM) and five-level-four-factor central composite rotatable design (CCRD) were employed to evaluate the effects of synthesis parameters, such as reaction time, temperature, enzyme amount, and pH memory, on percentage molar conversion of phenolic acid esters. Reaction time, temperature, and enzyme amount were the most important variables. On the basis of canonical analysis and ridge max analysis, the optimum synthesis conditions with 95.9% molar conversion were reaction time of 58.2 h, temperature of 52.9 degrees C, enzyme amount of 37.8% (w/w), and pH memory of pH 7.  相似文献   

14.
Production in a batch reactor with a solvent-free system of structured triacylglycerols containing short-chain fatty acids by Lipozyme RM IM-catalyzed acidolysis between rapeseed oil and caproic acid was optimized using response surface methodology (RSM). Reaction time (t(r)), substrate ratio (S(r)), enzyme load (E(l), based on substrate), water content (W(c), based on enzyme), and reaction temperature (T(e)), the five most important parameters for the reaction, were chosen for the optimization. The range of each parameter was selected as follows: t(r) = 5-17 h; E(l) = 6-14 wt %; T(e) = 45-65 degrees C; S(r) = 2-6 mol/mol; and W(c) = 2-12 wt %. The biocatalyst was Lipozyme RM IM, in which Rhizomucor miehei lipase is immobilized on a resin. The incorporation of caproic acid into rapeseed oil was the main monitoring response. In addition, the contents of mono-incorporated structured triacylglycerols and di-incorporated structured triacylglycerols were also evaluated. The optimal reaction conditions for the incorporation of caproic acid and the content of di-incorporated structured triacylglycerols were as follows: t(r) = 17 h; S(r) = 5; E(l) = 14 wt %; W(c) = 10 wt %; T(e) = 65 degrees C. At these conditions, products with 55 mol % incorporation of caproic acid and 55 mol % di-incorporated structured triacylglycerols were obtained.  相似文献   

15.
A kind of low-calorie structured lipid (LCSL) was obtained by interesterification of tributyrin (TB) and methyl stearate (St-ME), catalyzed by a commercially immobilized 1,3-specific lipase, Lipozyme RM IM from Rhizomucor miehei . The condition optimization of the process was conducted by using response surface methodology (RSM). The optimal conditions for highest conversion of St-ME and lowest content LLL-TAG (SSS and SSP; S, stearic acid; P, palmitic acid) were determined to be a reaction time 6.52 h, a substrate molar ratio (St-ME:TB) of 1.77:1, and an enzyme amount of 10.34% at a reaction temperature of 65 °C; under these conditions, the actually measured conversion of St-ME and content of LLL-TAG were 78.47 and 4.89% respectively, in good agreement with predicted values. The target product under optimal conditions after short-range molecular distillation showed solid fat content (SFC) values similar to those of cocoa butter substitutes (CBS), cocoa butter equivalent (CBE), and cocoa butters (CB), indicating its application for inclusion with other fats as cocoa butter substitutes.  相似文献   

16.
Human milk fat substitutes (HMFSs) were synthesized by lipozyme RM IM-catalyzed acidolysis of chemically interesterified palm stearin (mp = 58 °C) with mixed FAs from rapeseed oil, sunflower oil, palm kernel oil, stearic acid, and myristic acid in a solvent-free system. Response surface methodology (RSM) was used to model and optimize the reactions, and the factors chosen were reaction time, temperature, substrate molar ratio, and enzyme load. The optimal conditions generated from the models were as follows: reaction time, 3.4 h; temperature, 57 °C; substrate molar ratio, 14.6 mol/mol; and enzyme load, 10.7 wt % (by the weight of total substrates). Under these conditions, the contents of palmitic acid (PA) and PA at sn-2 position (sn-2 PA) were 29.7 and 62.8%, respectively, and other observed FAs were all within the range of FAs of HMF. The product was evaluated by the cited model, and a high score (85.8) was obtained, which indicated a high degree of similarity of the product to HMF.  相似文献   

17.
Diacylglycerol (DAG) and triacylglycerol (TAG) as responses on optimization of DAG production using a dual response approach of response surface methodology were investigated. This approach takes the molecular equilibrium of DAG into account and allows for the optimization of reaction conditions to achieve maximum DAG and minimum TAG yields. The esterification reaction was optimized with four factors using a central composite rotatable design. The following optimized conditions yielded 48 wt % DAG and 14 wt % TAG: reaction temperature of 66.29 degrees C, enzyme dosage of 4 wt %, fatty acid/glycerol molar ratio of 2.14, and reaction time of 4.14 h. Similar results were achieved when the process was scaled up to a 10 kg production in a pilot packed-bed enzyme reactor. Lipozyme RM IM did not show any significant activity losses or changes in fatty acid selectivity on DAG synthesis during the 10 pilot productions. However, lipozyme RM IM displayed higher selectivity toward the production of oleic acid-enriched DAG. The purity of DAG oil after purification was 92 wt %.  相似文献   

18.
Lipase-catalyzed modification of rice bran oil to incorporate capric acid   总被引:4,自引:0,他引:4  
Capric acid (C10:0) was incorporated into rice bran oil with an immobilized lipase from Rhizomucor miehei as the biocatalyst. Effects of incubation time, substrate mole ratio, enzyme load, and water addition on mole percent incorporation of C10:0 were studied. Transesterification was performed in an organic solvent, hexane, and under solvent-free condition. Pancreatic lipase-catalyzed sn-2 positional analysis and tocopherol analysis were performed before and after enzymatic modification. Products were analyzed by gas-liquid chromatography (GLC) for fatty acid composition. After 24 h of incubation in hexane, there was an average of 26.5 +/- 1.8 mol % incorporation of C10:0 into rice bran oil. The solvent-free reaction produced an average of 24.5 +/- 3.7 mol % capric acid. In general, as the enzyme load, substrate mole ratio, and incubation time increased, the mole percent of capric acid incorporation also increased. Time course reaction indicated C10:0 incorporation increased up to 27.0 mol % at 72 h, for the reaction in hexane, and up to 29.6 mol % at 12 h, for the solvent-free reaction. The highest C10:0 incorporations (53.1 and 43.2 mol %) for the mole ratio experiment occurred at a mole ratio of 1:8 for solvent and solvent-free reactions, respectively. The highest C10:0 incorporation (27.9 mol %) for the reaction in hexane occurred at 10% enzyme load, and the highest incorporation (34.4 mol %) for the solvent-free reaction occurred at 20% enzyme load. Incorporation of C10:0 into rice bran oil declined with the addition of increasing amounts of water after reaching 30.3 mol % at 2% water addition in hexane, and in the solvent-free reaction after reaching 35.9 mol %.  相似文献   

19.
为建立绿色、高效、高选择性合成虎杖苷十一碳烯酸酯双前药的生物催化体系,本研究以棉状嗜热丝孢菌(Thiermomyces lanuginosus)脂肪酶(TLL)为催化剂,以反应介质、底物摩尔比、温度及反应时间等因素为变量,探究了 TLL催化虎杖苷十一碳烯酰化反应的特性.结果表明,TLL可在丙酮中实现对虎杖苷的高效转化,...  相似文献   

20.
Serratia marcescens YS-1, a chitin-degrading microorganism, produced mainly N-acetylhexosaminidase. The purified enzyme had an optimal pH of approximately 8-9 and remained stable at 40 degrees C for 60 min at pH 6-8. The optimum temperature was around 50 degrees C, and enzyme activity was relatively stable below 50 degrees C. YS-1 N-acetylhexosaminidase hydrolyzed p-nitrophenyl beta-N-acetylgalactosamide by 28.1% relative to p-nitrophenyl beta-N-acetylglucosamide. The N-acetylchitooligosaccharides were hydrolyzed more rapidly, but the cellobiose and chitobiose of disaccharides that had the same beta-1,4 glycosidic bond as di-N-acetylchitobiose were not hydrolyzed. YS-1 N-acetylhexosaminidase efficiently transferred the N-acetylglucosamine residue from di-N-acetylchitobiose (substrate) to alcohols (acceptor). The ratio of transfer to methanol increased to 86% in a reaction with 32% methanol. N-Acetylglucosamine was transferred to the hydroxyl group at C1 of monoalcohols. A dialcohol was used as an acceptor when the carbon number was more than 4 and a hydroxyl group existed on each of the two outside carbons. Sugar alcohols with hydroxyl groups in all carbon positions were not proper acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号