首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纤维素气凝胶因具有强亲水性和低油水选择性,且目前纤维素气凝胶表面的疏水化处理过程较冗长,限制了其在油水分离领域的应用。为了解决上述问题,笔者以硫酸水解微晶纤维素制备得到的纳米纤维素(CNC)为原料,利用甲基三甲氧基硅烷(MTMS)在水相中对其进行硅烷化改性,通过冷冻干燥得到了硅烷化纤维素复合气凝胶。结果表明:所制备的纤维素复合气凝胶具有轻质、多孔特性,随着MTMS添加量的增加,密度逐渐升高(≤0.012 0 g/cm^3),孔隙率略有下降; MTMS的加入对纤维素复合气凝胶的微观形貌影响不大,其骨架结构以二维片层形貌为主,聚甲基硅氧烷均匀地包覆在纤维素片层表面; MTMS的加入使纤维素复合气凝胶的热稳定性明显提高,且未改变纤维素气凝胶的晶型结构,但导致其结晶度逐渐下降。纤维素复合气凝胶的表面接触角随着MTMS添加量的增加而升高,最高达到153.7°,表现出优异的超亲油/超疏水性能。作为吸油材料,超疏水纤维素复合气凝胶不仅可以吸附多种油类和有机溶剂(吸附容量达到52~121 g/g),而且表现出很好的循环使用性能。  相似文献   

2.
以水溶性的甲基纤维素和磁性Fe_3O_4纳米粒子为原料,经过共混、环氧氯丙烷交联及冷冻干燥等过程制备了磁性纤维素气凝胶,并进一步以十六烷基三甲氧基硅烷(HDTMS)为改性剂,通过化学气相沉积法对气凝胶进行改性,得到超疏水磁性纤维素气凝胶材料。采用扫描电镜(SEM)、红外光谱(FT-IR)和光学接触角测量仪对气凝胶的结构性能进行表征分析,结果表明所制备的气凝胶具有三维贯通的多孔网络结构,表面改性没有改变气凝胶的微观结构;经HDTMS修饰后的磁性纤维素气凝胶具有超疏水和超亲油性能(水接触角为150.4°,油接触角为0°)。气凝胶展现出良好的油/水选择性和较高的油吸附能力,对多种油品和有机溶剂的吸附量达到45~98 g/g;吸油后的气凝胶可通过磁铁快速回收。气凝胶具有可多次循环使用的性能,循环使用30次后吸附能力仍然保持在80%以上,可以通过简单的力学挤压把吸附的油挤出来,使得废油的回收利用过程变得简单,同时也有利于节约吸附材料,降低油水分离成本。  相似文献   

3.
以竹粉为原料制备纳米纤维素基体材料,以聚乙烯醇(PVA)为增强相,在酸性环境下采用冷冻干燥法制得PVA/CNFs(纳米纤维素)复合气凝胶;采用三甲基氯硅烷(TMCS)对其进行疏水改性处理,随后将其浸渍到还原氧化石墨烯(r GO)悬浮液中,最终制得疏水型r GO/PVA/CNFs复合气凝胶;通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、拉曼光谱(Raman)、接触角(CA)和吸油性能测试,对所制气凝胶的微观形貌、化学结构、疏水性能及吸油性能进行表征。结果表明:制得的复合气凝胶密度为6.78 mg/cm3,具有均匀的三维网状多孔结构,且孔洞结构表面均被石墨烯片层覆盖;经过TMCS疏水处理后,在气凝胶表面形成疏水层结构。FT-IR和Raman分析表明,TMCS疏水改性处理并未改变PVA/CNFs复合气凝胶的化学结构。经疏水处理后气凝胶与水的接触角为138°左右,吸油倍率为78 g/g左右,且吸附过程迅速,饱油后也能悬浮于溶液表面,便于回收再利用。  相似文献   

4.
采用液滴悬浮凝胶法分别制备纤维素气凝胶球(CAB)和壳聚糖/纤维素气凝胶球(CCAB),再经酸处理过程分别制得酸处理的CAB(CAB-A)和酸处理的CCAB(CCAB-A),并通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、X光电子能谱(XPS)和比表面积孔隙测定仪等检测手段对复合气凝胶球的形貌、化学态、表面元素分布以及孔隙结构进行了分析。同时,通过气态甲醛吸附试验对样品的甲醛吸附性能进行测定。结果表明:该法制备的壳聚糖/纤维素复合气凝胶具有均匀的球形形态,CAB、CAB-A、CCAB和CCAB-A的平均粒径分别为(2.67±0.01)、(2.47±0.02)、(2.79±0.05)和(3.34±0.05)mm。壳聚糖引入到纤维素基体中没有发生化学变化,并且通过酸处理使壳聚糖分子在纤维素凝胶网络中进行了重新分布和组装,形成更为密集的气凝胶网状结构,产生了更为丰富的孔隙结构,CCAB-A的比表面积和介孔体积分别为1 350.7 m2/g和4.511 cm3/g。气态甲醛吸附测试结果表明:CCAB-A复合气凝胶球吸附1 h的吸附量高达1.99 mmol/g,远远大于相同用量的椰壳活性炭材料的甲醛吸附量0.39 mmol/g,并且与甲醛分子之间形成了稳定的甲亚胺和席夫碱的化学结合。  相似文献   

5.
以纳米纤维素纤丝(NCFs)为原料,在四氯化锡的催化下与1,4-丁二醇二缩水甘油醚(BDGE)发生交联反应制备了多孔的纳米纤维素气凝胶,采用扫描电镜、傅里叶变换红外光谱仪、X射线衍射仪、热重分析仪、X射线光电子能谱和全自动比表面积及物理吸附分析仪,对制备的纳米纤维素气凝胶的微观形貌、化学结构、晶型结构、热稳定性、表面元素及比表面积进行了表征,考察了纳米纤维素气凝胶的密度、溶剂吸收、形状恢复以及重复使用性能。结果表明:NCFs与BDGE发生了交联反应,制备的纳米纤维素气凝胶具有连续的多孔网络结构,其仍保持原来的纤维素I型结构,初始分解温度在300℃以上,m(BDGE)∶m(NCFs)为2∶1时,制备的气凝胶密度为0.020 2 mg/cm3,比表面积为25.6 m2/g,吸水倍数为36.5 g/g。气凝胶在水中5 s能迅速恢复其原来形状,在DMSO中20 s能恢复形状的90%,气凝胶重复使用5次,吸水倍数仍高达30.4 g/g。  相似文献   

6.
为了探讨再生纤维素气凝胶对碘蒸气的吸附去除能力,用天然竹纤维制备再生纤维素球形气凝胶(RCSA),然后通过银氨络离子在纤维素表面的吸附和反应,得到Ag2O/再生纤维素球形复合气凝胶(Ag2O/RCSA),以127I作为放射性131I的同位素研究了复合气凝胶对碘的吸附。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和BET比表面积等检测手段对制备的Ag2O/RCSA样品的形貌、晶型、孔隙结构和碘吸附性能进行了表征。研究结果表明:纳米Ag2O粒子的引入使RCSA颜色由白色变为棕色,RCSA原始的三维网结构没有发生变化;纳米Ag2O粒子均匀分布在纤维素骨架中,并与纤维素紧密结合;Ag2O/RCSA与RCSA一样都表现为Ⅳ型吸附/脱附等温线,BET比表面积、BJH孔体积比RCSA明显减小,平均孔径大小变化不大;Ag2O/RCSA对碘蒸气的吸附是气凝胶孔隙的物理吸附和Ag2O转变为Ag I的化学吸附共同作用,总吸附量为87.8 mg/g。  相似文献   

7.
纤维素气凝胶被誉为继有机气凝胶和无机气凝胶之后的新一代气凝胶,是新生的第三代材料,在吸附材料等领域具有广阔的应用前景。笔者先以微晶纤维素(MCC)为原料经硫酸水解法制得纳米纤维素(NCC),再通过无机盐溶液物理凝胶成型法、叔丁醇置换和液氮冷冻干燥制备球形纤维素气凝胶。利用场发射扫描电子显微镜(SEM)、万能力学试验机、热重分析仪、全自动比表面积及孔隙分析仪对所制备的纳米纤维素气凝胶的力学性能、微观形貌、比表面积、孔径分布及热稳定性进行表征分析。结果表明,液氮冷冻干燥法制备的球形纳米纤维素气凝胶主要为疏松多孔的三维层状结构同时存在少量三维网络结构,其比表面积在104.07~164.97 cm~2/g之间,孔径主要分布在10~25 nm内;纳米纤维素气凝胶的力学性能、压缩强度、密度随着纳米纤维素质量分数的增加而变大;纳米纤维素气凝胶的热稳定性与微晶纤维素和纳米纤维素相似。  相似文献   

8.
针对纤维素(CE)气凝胶机械回弹性、尺寸稳定性差等问题,基于冷冻干燥工艺和化学气相沉积技术,利用聚乙烯醇(PVA)对CE进行复配,以甲基三乙氧基硅烷(MTES)对CE/PVA进行改性,制备了具有轻质性、高弹性和疏水性的多孔S-CE/PVA复合气凝胶.研究了PVA添加量对S-CE/PVA复合气凝胶力学性能的影响,随着引入...  相似文献   

9.
以玉米秸秆为原料,用溴化锂和聚乙烯醇(PVA)溶液将其溶解,制备玉米秸秆-PVA复合气凝胶。采用正交试验法对制备工艺进行优化,并通过FT-IR、吸附率等手段对气凝胶的相关性能进行表征。结果表明:复合气凝胶的优化制备工艺条件为:固液质量比(秸秆∶混合溶液)为1∶100,PVA添加量与秸秆的质量比为100∶15,PVA浓度为5%,溴化锂浓度为66%,溴化锂溶液和PVA的质量比为13.85∶1。该工艺下所制得的复合气凝胶密度低至0.026 8 g/cm3,比表面积为175.00 m2/g,对废弃机油的最大吸附倍率为35.01 g/g。制备过程中,纤维素的氢键被破坏,PVA与纤维素之间通过氢键连接。复合气凝胶的密度越小,其吸油率越大。复合气凝胶具有全范围内的孔径,且大部分孔径处于介孔范围内,因此有利于对大分子污染物的吸附。  相似文献   

10.
将纤维素溶解在氢氧化钠/尿素/水溶液中,与新戊二醇二缩水甘油醚(NGDE)发生交联反应,经过离心水洗纯化后冷冻干燥,制备了纤维素多孔材料。采用傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、热重分析(TGA)和扫描电镜(SEM),对制备的纤维素多孔吸附材料的化学结构、晶型结构、热稳定性及微观形貌进行表征。研究了NGDE的用量和水凝胶质量分数对纤维素多孔材料的密度及吸水性能的影响。结果表明,4 g纤维素溶于100 g NaOH/尿素/水(质量比为7∶12∶81)溶液中制得纤维素溶液,在NGDE的用量18 m L,水凝胶质量分数为1.5%时,制备的纤维素多孔材料的密度为15.7 mg/cm3,吸水倍数达37倍,对此条件下制备的纤维素多孔材料进行结构分析,表明纤维素多孔材料具有连续的网状孔结构,纤维素的晶型由纤维素Ⅰ型转变为非晶态结构,初始热分解温度在250℃以上,热稳定性好。  相似文献   

11.
【目的】制备基于1,2,3,4-丁烷四羧酸(BTCA)的化学交联型纳米纤维素(CNF)气凝胶,研究交联程度对CNF气凝胶化学结构、微观形貌和物理力学性能的影响规律,为下一步功能型CNF气凝胶的开发奠定基础。【方法】配制不同质量比的CNF与BTCA混合水悬浮液,采用常规冷冻干燥和后交联方法制备出具有不同交联结构的CNF气凝胶,利用傅里叶变换红外光谱仪(FTIR)、X射线光电子能谱仪(XPS)、扫描电子显微镜(SEM)和全自动比表面积孔径分析仪对气凝胶的化学结构、微观形貌、比表面积和孔径分布进行表征分析,并测试其力学性能。【结果】1)与纯CNF气凝胶相比,BTCA交联型CNF气凝胶的FTIR和XPS谱图形态均发生明显变化,FTIR谱图中羟基(—OH)吸收峰减弱而羰基(C=O)吸收峰增强,XPS谱图中C1s的C1、C2、C3能谱均有较大幅度变化,并且拟合出C4(O—C=O)能谱。2)CNF气凝胶经BTCA交联后,其孔结构由原来的缝形孔变为相对规整的柱状孔。随着BTCA含量增加,其比表面积和总孔容逐渐减小,当m(CNF)/m(BTCA)为10/1时,CNF气凝胶的比表面积和总孔容分别从原来的62.8 m~2·g~(-1)、0.21 cm~3·g~(-1)减小到35.5 m~2·g~(-1)、0.098 m~2·g~(-1),降低了将近一半;当m(CNF)/m(BTCA)达到10/4时,CNF气凝胶的整体结构变疏松、易掉渣,出现明显酯化现象。3)纯CNF气凝胶的密度仅5.76 mg·cm~(-3),在100 g载荷下的压缩率高达62.4%,压缩回弹率仅30%。随着BTCA含量增加,其密度和压缩回弹率逐渐增大,压缩率则逐渐减小,当m(CNF)/m(BTCA)为10/1时,CNF气凝胶仍表现出较低的密度(7.67 mg·cm~(-3)),压缩率略微下降(56.8%),但压缩回弹率显著增加(80.8%);当m(CNF)/m(BTCA)达到10/4时,CNF气凝胶的密度增加到9.54 mg·cm~(-3),其压缩率(下降到34%)和回弹率(增加到95%)均发生了显著变化。【结论】BTCA使CNF气凝胶形成化学键结合的交联结构,对其孔隙结构和物理力学性能产生明显影响。BTCA与CNF的质量比越大,CNF气凝胶的密度越大,孔隙结构越致密,只有当BTCA与CNF的质量比在一定范围内时,才能在明显改善CNF气凝胶抗变形性和形变恢复能力的同时使其保持良好的柔韧性,提高其应用价值。  相似文献   

12.
以碱木质素(AL)为原料制备羟丙基化碱木质素(HL),研究HL对纤维素酶的非生产性吸附性能的影响机制,并进一步探讨其对纤维素的酶水解得率的影响。Zeta电位滴定、X射线光电子能谱以及疏水性的测试结果表明:AL经过羟丙基化改性后表面特性发生改变,表面负电荷增加(Zeta电位由+35.0 mV降至-44.8 mV);表面元素分布及化学键组成发生了较大的变化,C—O和■键强度增加,疏水性减弱(疏水度由106.60 L/g减小为4.30 L/g),使得木质纤维素底物对纤维素酶的非生产性吸附减弱,进而显著提高纤维素酶水解效率。以10 U/g纤维素酶水解0.4 g/L微晶纤维素72 h,添加4 g/L的HL时游离酶蛋白质量分数为11.65%,相比4 g/L的AL提高152%;添加4 g/L的HL时酶水解得率为54.38%,相比4 g/L的AL提高32.09%。  相似文献   

13.
通过混合不同类型的纳米纤维素制备混合气凝胶,分析其性能特征。将桉木纸浆经化学预处理,结合机械研磨法制备得到纤维素纳米纤丝(cellulose nanofibril,CNF),桉木微晶纤维素(MCC)经硫酸水解法制备得到纤维素纳米晶体(cellulose nanocrystal,CNC),通过透射电镜与X射线衍射仪观测发现二者具有不同的长径比和结晶度。利用悬浮滴定、叔丁醇置换、冷冻干燥等方法制备球形CNF气凝胶和CNF/CNC混合气凝胶,采用扫描电镜、傅里叶红外光谱仪、比表面积分析仪、万能力学试验机对气凝胶的微观形貌、化学官能团、比表面积、平均孔径及压缩性能进行表征,结果表明:CNF气凝胶内部呈现三维网络结构,片状与纤丝状交织,比表面积为91.07m~2/g,平均孔径为14.81 nm,受压缩到80%应变时,压缩强度为0.125 MPa;添加不同比例的CNC制备CNF/CNC混合气凝胶,当CNC添加量为25%时,气凝胶内部纤丝结构取代片状结构,孔隙更加均匀,比表面积升至143.09m~2/g,压缩强度增至0.2 MPa,化学官能团和晶型结构未发生明显变化。当CNC添加量过大(50%)时,则会造成各项性能的减弱。  相似文献   

14.
利用(NH_4)_6Mo_7O_(24)·4H_2O溶液对椰壳活性炭掺杂改性,制得对苯蒸气具有较好吸附能力的载钼活性炭(Mo/AC),当钼盐质量分数分别为0.1%、0.3%、0.5%和0.7%时,改性活性炭分别标记为AC-1、AC-2、AC-3和AC-4。采用扫描电镜(SEM)、N_2吸附-脱附等温线、X射线衍射(XRD)和X射线光电子能谱(XPS)对Mo/AC进行表征,以常温动态吸附装置考察浸渍钼盐质量分数对Mo/AC吸附苯蒸气性能的影响,结果表明:钼在活性炭表面主要以MoO_3形式存在;改性后活性炭的比表面积和总孔容均有不同程度提高,AC-2的比表面积和总孔容最大,分别为1 372.12 m~2/g和0.74 cm~3/g,但平均孔径变化不大,维持在2.16 nm左右;表面醚键和羧基含量明显下降;随着浸渍钼盐溶液质量分数增加,活性炭样品对苯蒸气的平衡吸附量增加,但钼盐质量分数过高(0.3%)时吸附性能下降,质量分数为0.3%时,制得改性活性炭AC-2的吸附性能最好,平衡吸附量高达332.80 mg/g,较原炭(267.20 mg/g)提高24.55%,理论吸附时间为110.93 min,较原炭提高24.54%。AC-2循环吸附5次后,平衡吸附量仍达306.99 mg/g,理论吸附时间为101.27 min。  相似文献   

15.
采用CuC l2溶液对椰壳活性炭进行改性,制备高容量甲醛吸附活性炭。以扫描电镜(SEM)观测改性前后活性炭的表面形貌;用低温液氮吸附(N2/77K)来表征铜盐浓度的改变对活性炭孔隙结构的影响;用X射线光电子能谱(XPS)分析活性炭表面元素组成及存在形式;用X射线衍射(XRD)研究载铜活性炭的晶形结构;以常温动态吸附评价活性炭对甲醛的吸附性能。研究结果表明:改性活性炭中铜以Cu、CuC l及CuC l23种形式存在,改性活性炭微孔数量减少,介孔比例提高;同时,随铜盐浓度增加,活性炭的比表面积和孔容减少,平均孔径变大;改性后活性炭表面含氧官能团数量增加。当CuC l2浓度为0.5 mol/L时,制备的改性活性炭对甲醛的吸附容量(4.28 mg/g)是原料活性炭(1.38 mg/g)的3.1倍,甲醛在改性活性炭上的吸附行为符合Freundlich吸附模型。  相似文献   

16.
作为一种新型轻质多孔的功能性气凝胶,生物质纤维素基碳气凝胶具有独特的各向同性三维网络层级结构,该结构使生物质纤维素基碳气凝胶兼具气凝胶的高比表面积、高孔隙率、低密度以及碳材料的耐热性、导电性和生物质材料的可降解性、生物相容性,是近年来纳米功能性材料领域的研究热点之一。生物质纤维素基碳气凝胶原材料来源广泛,包括木材、竹材、果蔬等植物及其加工物、海洋生物和细菌等。基于原料形态不同,本研究将生物质纤维素基碳气凝胶的制备方法归结为凝胶炭化法和生物质直接炭化法,并详细介绍2种方法的制备工艺。基于生物质纤维素基碳气凝胶独特的层级孔状结构,本研究概述碳气凝胶的轻质多孔、疏水性、稳定性和导电性以及生物质纤维素基碳气凝的金属掺杂和杂原子掺杂改性,这些优异的材料特性使其在隔热、电化学、吸附等领域有着广泛应用,并有望渗透到药物缓释、抗菌材料、组织工程和电磁屏蔽等更多的前瞻性新兴材料领域。围绕生物质纤维素基碳气凝胶的功能化制备、性能表征和应用,创新性的研究理论和研究方法正在不断涌现,本研究在深入分析研究现状的基础上,展望生物质纤维素基碳气凝胶未来的研究方向和发展前景。生物质纤维素基碳气凝胶作为一种新型绿色材料,以其独特的热学、电学、光学及力学性能,可为生物质的高值化、功能化应用提供更多的研究思路,具有更加广泛的应用前景。  相似文献   

17.
以纳米纤维素为原料,采用"CaCl_2溶液促进物理凝胶法"制备水凝胶,选用叔丁醇溶液为置换溶剂并采用"多步法"完成溶剂置换,最后通过冷冻干燥法制备纳米纤维素气凝胶。通过扫描电子显微镜(SEM)、全自动比表面积与孔隙度分析仪和热重分析仪(TG)对所制备的纳米纤维素气凝胶进行微观形貌、比表面积、孔径分布及热稳定性进行表征分析。结果表明:叔丁醇冷冻干燥法制备的纳米纤维素气凝胶是具有层状的以中孔和大孔为主的多孔材料,其比表面积可达174.3 m2/g,收缩率仅为7.86%,平均孔径约为18.4 nm。随着纤维素质量分数的增加,纳米纤维素气凝胶的吸附量和比表面积增大,孔隙度增加,收缩率逐渐减小;纳米纤维素气凝胶具有与微晶纤维素和纳米纤维素相似的热稳定特性。CaCl_2溶液通过改变原始溶胶体系的电荷分布而使粒子更易相互靠近聚集形成凝胶,落入其中的纳米纤维素颗粒会保持其落入瞬间的完整状态。  相似文献   

18.
以桉木浆为原料,经TEMPO氧化制得羧基化纳米纤维素(CNC)、再经高碘酸钠氧化制得双醛基纳米纤维素(DANC),最后利用二乙烯三胺(DETA)通过席夫碱反应对其进行氨基化改性,得到端氨基纳米纤维素(ANCC)。采用多种方法对纳米纤维素的结构和性能进行了表征,结果表明:DANC含醛基为2.95 mmol/g,ANCC含氨基为1.7 mmol/g,DETA上的氨基成功地接枝到了纳米纤维素链上,使得分子链变长,ANCC的热稳定性提高。ANCC对Pb(Ⅱ)的吸附性能研究表明:室温条件下,当ANCC吸附剂用量为0.1 g,溶液初始质量浓度为400 mg/L且p H值为5.0的条件下吸附3 h,吸附量为210.15 mg/g。吸附过程符合准二级动力学吸附模型和Langmuir等温吸附模型,说明其吸附过程主要为单分子层的化学吸附。  相似文献   

19.
研究正硅酸乙酯(TEOS)以及十八烷基三氯硅烷(OTS)对棉纤维、亚麻纤维和木纤维进行疏水处理,通过接触角测量、FT-IR、XRD、TGA以及SEM等分析方法对三种纤维处理前后进行化学结构和微观形貌表征。本实验随后使用三种疏水纤维对7种不同粘度、不同密度的油进行吸附测试,实验测得疏水棉纤维吸油量是原棉纤维的4~7倍,而疏水棉纤维对大豆油的吸油量达到23.97 g/g。最后对棉纤维吸油循环性能进行测试,发现随着循环次数的增加,吸油量仍可以达到理想水平。  相似文献   

20.
分别以十六烷基三甲氧基硅烷(HDS)和1H,1H,2H,2H-全氟十七烷三甲基氧硅烷(FDS)为改性剂、乙醇/水溶液为分散介质,采用浸渍法和喷雾法对杨木纤维(PWF)表面改性,制得HDS浸渍改性杨木纤维(HPWF)、FDS浸渍改性杨木纤维(FPWF1)和FDS喷雾改性杨木纤维(FPWF2)。考察了溶剂配比、硅烷用量、硅烷水解温度和时间、反应温度及反应时间等因素对PWF表面改性效果的影响,并通过红外光谱(FT-IR)、接触角测量、X射线衍射(XRD)、X射线能谱(EDS)及扫描电镜(SEM)等方法表征了改性前后PWF的结构与表面性能,结果表明:在乙醇质量分数60%乙醇/水溶液中以HDS与PWF活性羟基物质的量比0.4∶1、HDS于60℃水解1 h,再与PWF于60℃反应1 h,所得HPWF的表面接触角达139°;在乙醇质量分数50%乙醇/水溶液中以FDS与PWF活性羟基物质的量比0.16∶1、FDS于60℃水解1 h,再与PWF于60℃反应1 h,所得FPWF1的表面接触角达141°;FDS与PWF活性羟基物质的量比0.008∶1,经喷雾搅拌使纤维表面润湿后于120℃活化反应1.5 h,所得FPWF2的表面接触角达138°。与浸渍法相比,喷雾法具有硅烷用量小、工艺简单、清洁高效等特点。此外,改性后杨木纤维的结晶度提高(由62.1%提高到67.7%~69.7%),表面变得粗糙,比表面积增加,表面极性降低,疏水性能显著提高,有利于改善与疏水性基体树脂的界面相容性与粘结作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号