首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
木质纤维素生物质细胞壁全组分在有机溶剂或离子液体中的溶解是解析木质纤维素结构特性和制备生物质基材料的有效途径。笔者将不同球磨程度的麦草茎秆和叶子溶解在8%(w/w)LiCl/DMSO溶剂体系,并于水中再生,对比分析麦草茎秆和叶子溶解-再生行为及木质素结构特性对再生原料酶水解性能的影响。结果显示,球磨4 h的麦草茎秆和叶子可完全溶解在LiCl/DMSO溶剂体系,但麦草茎秆木质素及碳水化合物的溶解-再生行为与叶子有较大差异。经LiCl/DMSO溶解和水再生的原料,部分木质素损失,酶水解效率显著提高,且再生叶子酶水解效率明显高于再生茎秆。化学降解分析表明,短时间的球磨处理(≤4 h)和溶解再生过程对木质素结构影响较小,但球磨时间延长对木质素β-O-4键特别是赤型结构破坏严重。麦草茎秆木质素比叶子木质素具有较高的硝基苯氧化、臭氧降解得率、赤型/苏型结构比例以及较多的β-O-4连接键。麦草茎秆和叶子酶水解效率及木质素结构的差异表明,木质纤维素生物质酶水解效率不仅受木质素芳环结构的影响,而且受木质素侧链β-O-4连接键的影响。  相似文献   

2.
利用8%Li Cl/DMSO木质纤维全溶体系,溶解经乙二胺溶液预处理后氧脱木质素碱法麦草浆,探讨乙二胺预处理对浆料性能的影响,及预处理后浆料在8%Li Cl/DMSO全溶体系中的溶解-再生性能。研究发现:乙二胺预处理在保留较高结晶度时可改变浆料结晶结构,氧脱木质素碱法麦草浆经乙二胺预处理后可完全溶解于8%Li Cl/DMSO溶液,随着木质素含量的增加,溶解所需时间延长;溶解后样品经水可再生,产物得率为59.19%~61.88%,溶解-再生过程中木质素、多糖、灰分和硅都得到较好保留。  相似文献   

3.
低共熔溶剂(DESs)是一种新型绿色溶剂,具有蒸汽压低、合成过程简单、价格低廉、无毒、可生物降解等优点,被认为是最有发展潜力的生物质预处理试剂之一,在木质纤维类生物质领域中的研究应用逐年增加。综述了DESs在木质素、纤维素和半纤维素的溶解、改性以及利用等相关方面的研究进展,分析了DESs氢键供体和氢键受体种类、摩尔比、浓度、处理温度等条件对三大素溶解性能的影响,以及三大素在DESs中酯化、活化和降解等的研究现状。介绍了DESs预处理稻壳、玉米芯、农作物秸秆、木材等木质纤维类原料的研究现状,利用DESs预处理木质纤维类生物质主要是提取并获得高纯木质素组分,同时提高富纤维物质的葡萄糖得率和木糖得率,对DESs预处理木质纤维类生物质的机理进行了分析。重点介绍了利用DESs预处理纸浆等木质纤维类生物质制备纳米纤维素的研究进展。最后,提出了DESs在木质纤维类生物质领域研究的发展方向,以期为DESs应用于木质纤维类生物质资源化利用提供依据和参考。  相似文献   

4.
纤维素在自然界中储量丰富,是一种很好的生物质资源,但纤维素中含大量氢键,很难溶于常见有机溶剂,开发有效的纤维素溶解体系是纤维素应用的重点和难点。相对传统纤维素溶剂而言,离子液体具有对纤维素溶解性好,低毒性、难挥发等优点,成为近几年的研究热点。本研究通过离子交换法合成了四己基醋酸铵(THAA)离子液体,并分别以二甲基亚砜(DMSO)、N,N-二甲基乙酰胺(DMAc)和N,N-二甲基甲酰胺(DMF)为助溶剂对不同纤维素原料微晶纤维素、滤纸等进行溶解。探讨助溶剂类型、THAA含量、溶解温度和纤维素聚合度对THAA/助溶剂混合体系溶解纤维素的影响。结果表明,DMSO对纤维素溶解有促进作用,DMAc和DMF效果不大。当THAA/DMSO混合体系中THAA质量分数为30%时溶解纤维素性能最佳,25℃下能溶解7.51%的微晶纤维素。此外,纤维素在此溶剂体系中的溶解速度随溶解温度的升高及纤维素聚合度的降低而提高。纤维素经THAA/DMSO混合体系溶解再生后纤维素晶型由Ⅰ型变成Ⅱ型。  相似文献   

5.
低共熔溶剂(DES)是一种新兴的绿色溶剂,具有和离子液体类似的物理化学性质,以及易制备、成本低、溶解能力强、可设计性等优点。利用DES溶解和分离木质纤维原料及其组分进而生产生物质能源与材料是一种新型环保的木质纤维原料利用方法。在介绍DES的制备、物理化学性质及溶解机理的基础上,综述了DES溶解纤维素、半纤维素和木质素,以及分离木质纤维组分的研究进展,最后对DES应用于木质纤维领域今后的工作做出了展望。  相似文献   

6.
将助水溶剂体系应用于生物质精炼领域是当今的研究热点之一,助水溶剂可以有效地将木质纤维组分分离,实现产物的高附加值利用,如用助水溶剂处理木质纤维原料生产生物质燃料、化学品、生物基复合材料等.综述了近年来利用助水溶剂体系分离纤维组分以及制备生物乙醇、纳米纤维素、纳米木质素及其他高附加值产品的应用研究.  相似文献   

7.
大豆秸秆粉末经乙二胺(EDA)润胀消晶后溶解在LiCl/DMSO中,与甲基丙烯酸甲酯(MMA)及丙烯酸丁酯(BA)在交联剂N,N-亚甲基双丙烯酰胺(MBA)和引发剂偶氮二异丁氰(AIBN)作用下反应,制得具有半互穿聚合网络木质纤维疏水吸油气凝胶,并利用FT-IR、SEM、流变仪和光学接触角等手段表征凝胶相关性能。研究发现:制得的气凝胶同时含有单体聚合交联网络和木质纤维链段,有明显的多孔三维网络结构,且具有良好的疏水吸油性能。可通过调节木质纤维与单体比例调控凝胶网络结构和疏水吸油性能。当木质纤维与单体比例为1∶4时,气凝胶结构最为疏松,孔隙增大,吸油性能最佳,其吸油量可达10.61 g/g(二甲苯)和7.41 g/g(食用油)。  相似文献   

8.
经乙二胺预处理后大豆秸秆先溶解于8%LiCl/DMSO木质纤维全溶体系,然后于乙醇中凝胶化制备多孔吸液木质纤维凝胶。研究发现:木质纤维原料脱木质素程度会影响凝胶的多孔结构、热稳定性及溶胀性能。随着脱木质素程度加强,木质纤维原料中纤维素、半纤维素和木质素之间解离程度加强,凝胶热稳定性提高,残炭量减少,可形成小孔径、高比表面积的致密多孔网络结构并影响其溶胀性能。当大豆秸秆经2 h脱木质素处理时,该秸秆原料所制备的凝胶热分解温度、残炭量、比表面积和平均孔径分别为230℃、15%、64.29 m~2/g和17.813 nm,在15℃下平衡溶胀率为2 126.79%,与未脱木质素的大豆秸秆制备的凝胶相比,热分解温度提高了30℃,残炭量降低了47.7%,比表面积增加11.02 m~2/g,平均孔径减小了2.468 nm,而平衡溶胀率降低了16.6%。  相似文献   

9.
以廉价金属硫酸盐为催化剂,在γ-戊内酯/水复合溶剂中催化半纤维素定向转化制备糠醛,糠醛得率高达50.2%,半纤维素液化转化率达95.5%。在γ-戊内酯/水复合溶剂中,以金属硫酸盐为催化剂进一步研究了直接催化木质纤维生物质原料玉米芯和竹粉定向转化制备糠醛,其中糠醛得率分别达39.5%、29.7%,木质纤维原料液化转化率分别达86.5%、80.5%。  相似文献   

10.
木质纤维素具有储量大、可再生等特点,是生物质精炼的重要原料。通过酶水解将高聚糖转化为葡萄糖、木糖等单糖,是目前木质纤维素生物质精炼的重要途径。传统观点认为,酶水解体系中的底物木质素和溶解木质素都会阻碍木质纤维原料中纤维素的酶水解,主要表现为木质素阻碍了纤维素酶对纤维素的可及性、木质素对纤维素酶的非生产性吸附和溶解的木质素或类木质素结构(木质素衍生的酚类分子)对纤维素酶的抑制作用。但是近几年的研究表明,在酶水解体系中加入适量的水溶性木质素可有效促进含木质素底物中纤维素的酶水解。笔者总结了近年来水溶性木质素对木质纤维素生物质酶水解的研究进展,从纤维素酶-木质素相互作用的角度探讨了水溶性木质素对纤维素酶水解的促进作用,提出了水溶性木质素与纤维素酶之间的作用机理,即水溶性木质素与底物木质素对纤维素酶存在竞争吸附,水溶性木质素与纤维素酶的吸附域结合形成木质素-纤维素酶复合物,可有效减少底物木质素对纤维素酶的非生产性吸附,从而提高木质纤维素生物质的酶水解转化效率。  相似文献   

11.
为定量研究麦草碱木质素的溶解性质,采用Hansen溶解度参数法(HSP)获得了其在298.15 K的溶解度参数(δ_T);利用反气相色谱法(IGC),以麦草碱木质素为固定相,以脂肪族、脂环族、芳香族、醇、酮、卤代烃和四氢呋喃等7类20种小分子化合物为探针溶剂,测定了麦草碱木质素在403.15~443.15 K的溶解度参数(δ_2)及推断出相关热力学性质,并比较了这两种方法获得的溶解度参数。结果表明:采用HSP法测得298.15 K麦草碱木质素的δT为20.68(J/cm3)0.5,IGC法外推得出298.15 K麦草碱木质素的δ_2值为20.09(J/cm3)0.5,二者结果相近;四氢呋喃、醇和酮等溶剂有较强溶解麦草碱木质素的趋势;在403.15~443.15 K范围内,麦草碱木质素的δ_2值随温度升高而增加。  相似文献   

12.
溶解浆的质量指标及生产技术述评   总被引:1,自引:0,他引:1  
溶解浆由高纯度纤维素组成,用于制造粘胶纤维、醋酸纤维、硝酸纤维、纤维素醚等材料,其重要的质量指标主要有α-纤维素含量、半纤维素含量、黏度、分子量分布等。因产品用途不同其质量指标要求存在较大差异,帘子线、醋酸纤维和粘胶长丝的α-纤维素质量分数一般为95%以上,含较少量的半纤维素及极微量的木质素。为提高产品质量,既要严格控制溶解浆中的半纤维素、木质素、灰分和金属离子含量,还需提高浆料的反应性能及纤维素分子量分布。阔叶木已成为目前溶解浆生产的主要纤维原料。溶剂法和离子液法制溶解浆技术,因可对纤维原料中纤维素、木质素和半纤维素组分进行综合利用,日益受到研究人员的重视。预水解硫酸盐法已成为主要的溶解浆生产工艺,设备系统由传统间歇蒸煮向现代DCS控制的置换蒸煮或连续蒸煮发展;氧碱脱木质素和Cl O2漂白的普及,推动了ECF、轻ECF甚至TCF等绿色漂白工艺在溶解浆生产中的应用。每种溶解浆生产技术与设备系统在中国均有应用实例。综合利用木质纤维素生物质三大组分的制浆工艺将成为下一代溶解浆生产技术的发展方向。选择不同的生产工艺和设备系统对生产线的盈利能力影响较大,新建生产线时应对原料的选择、主产品线和副产品线的定位、生产工艺和设备系统的选择进行科学论证。  相似文献   

13.
木质纤维素类生物质是地球上最丰富的可再生资源。为提高木质纤维素类生物质的转化率,提升纤维素酶的水解效率和可发酵性糖产量,降低纤维素酶的使用量和生物质转化成本,对木质纤维素类生物质进行预处理十分必要;然而,木质素、纤维素和半纤维素之间的天然屏障限制了纤维素酶对纤维素组分的酶解。木质纤维素类生物质预处理主要有物理法、化学法、物理化学法和生物法,目前更多采用质量分数小于4%的稀酸法(如盐酸、硫酸和硝酸等,120~210℃)、高温热水法、蒸汽爆破法和液相水热法等,不同预处理方法对木质素或大部分半纤维素的溶解和去除有利于提高纤维素酶的可及性。木质素对纤维素酶解具有明显抑制作用,通过预处理降低木质素含量有利于提高纤维素酶解效率。木质纤维经稀酸或高温热水等预处理后,Klason木质素相对含量反而会增加。在木质纤维素类生物质预处理过程中,木质素液滴可能以假木质素形式沉积于纤维素表面,使其比天然木质素更加抑制纤维素酶解。本研究首先概述生物质预处理过程中木质素液滴和假木质素的形成过程,提出假木质素产生的可能机制,并对其组成和性质进行综述;然后阐述木质素液滴和假木质素对木质纤维酶解的影响;最后总结假木质素形成的调控策略。假木质素的形成过程属于非均相反应过程,受传质扩散(分子水平)和流动(宏观统计水平)的影响,可从介尺度行为研究假木质素的形成机制,同时建立相关模型和理论实现其科学的定量描述和定向调控,这不仅有利于木质纤维素类生物质炼制工艺的发展,也有利于促进跨学科科学规模的形成。  相似文献   

14.
以聚L-乳酸(PLLA)和麦草(WS)为原料,以N-甲基吗啉-N-氧化物(NMMO)为溶剂,采用溶液共混法制备了PLLA/WS共混物。首先将麦草溶解在NMMO后,再添加聚L-乳酸并溶解,制备聚L-乳酸与麦草的共混溶液。共混溶液采用浇膜法制备PLLA/WS共混物,采用差示扫描量热法、X射线衍射法、傅里叶变换红外光谱、热重分析和扫描电镜等方法对所得的共混物进行表征。结果表明,聚L-乳酸与麦草可以形成均匀的共混溶液。共混物中PLLA与麦草组分之间具有较强的相互作用,相容性较好。当共混物中PLLA的质量分数为50%时,共混物可以形成结晶结构,且随着PLLA含量的增加,其结晶更加完美,熔点与热稳定性提高。共混物薄膜断面结构较为致密,这说明PLLA与麦草相容性较好,混合均匀。通过调节聚L-乳酸和麦草的配比,可以制备不同性能的生物高分子材料。  相似文献   

15.
农林生物质可再生资源的高值转化利用已成为许多国家的重要发展战略和科学研究的热点。目前农林生物质利用技术已经取得了一定的进步,但总体上其转化成本仍然较高,实现木质纤维大规模生产燃料、生物基化学品和材料仍然困难。木质纤维细胞壁的复杂结构及组分分布不均一性是农林生物质难以高值利用的根本原因,其中细胞壁主要化学组分的微观分布及其在生物质转化过程中的降解机理阐释是木质纤维高效利用研究领域亟须解决的瓶颈问题。笔者系统阐明了农林生物质细胞壁超微结构及其主要组分在细胞壁各形态区的区域化学分布特点,并综述了两者在预处理过程中的变化及预处理破除细胞壁顽抗性的机理,为农林生物质进一步高值转化为燃料、化学品等大规模工业化生产提供重要的理论依据。  相似文献   

16.
低共熔溶剂(DES)是一种新型的绿色溶剂,具有制备简单、价格低廉、无毒、可生物降解、可循环使用的特点,在木质纤维素预处理应用方面前景广阔。本文首先概述了低共熔溶剂的组成、分类、制备方法及其物理性质等,随后对DES在生物质预处理领域中的研究应用进行归纳,综述了DES预处理分离木质纤维素的机理性研究,重点介绍了DES选择性分离木质纤维素的应用进展,以期为DES在预处理木质纤维素类生物质的规模化应用提供理论参考。  相似文献   

17.
提出了非木材木质纤维生物质碱性亚硫酸盐制浆(ASP)生物炼制的理念,研究了总用碱量、亚硫酸化度、温度和时间对麦草碱性亚硫酸盐法蒸煮深度脱木质素特性和木质素磺化的影响.结果表明:麦草ASP法具有高的深度脱木质素选择性;深度脱本质素延伸与木质素磺化度提高具有一致性;总用碱量、亚硫酸化度、最高温度和保温时间对深度脱木质素选择性和木质素磺化度都有重要的影响;在总碱用量18.0%,亚硫酸化度85.0%,液比值3.5,最高温度168℃,保温150 min的条件下,可制得卡伯值8.8,得率56.8%,黏度为33.3 mPa·s的优良纸浆,此时黑液中磺化本质素磺酸基含量达2.16 mmol/g(以固形物计).从深度脱木质素选择性、木质素磺化和纸浆基本特性考虑,麦草ASP法具有制浆生物炼制的前景.  相似文献   

18.
提出了非木材木质纤维生物质碱性亚硫酸盐制浆(ASP)生物炼制的理念,研究了总用碱量、亚硫酸化度、温度和时间对麦草碱性亚硫酸盐法蒸煮深度脱木质素特性和木质素磺化的影响。结果表明:麦草ASP法具有高的深度脱木质素选择性;深度脱木质素延伸与木质素磺化度提高具有一致性;总用碱量、亚硫酸化度、最高温度和保温时间对深度脱木质素选择性和木质素磺化度都有重要的影响;在总碱用量18.0%,亚硫酸化度85.0%,液比值3.5,最高温度168℃,保温150 min的条件下,可制得卡伯值8.8,得率56.8%,黏度为33.3 mPa.s的优良纸浆,此时黑液中磺化木质素磺酸基含量达2.16 mmol/g(以固形物计)。从深度脱木质素选择性、木质素磺化和纸浆基本特性考虑,麦草ASP法具有制浆生物炼制的前景。  相似文献   

19.
纤维素纳米纤维在生物医用产品、增强材料、过滤吸附材料、柔性电极材料和储能器件等领域具有广阔的应用前景。静电纺丝法是目前能直接且连续制备微纳米纤维的主要方法之一,由于纤维素中极强的氢键网络导致的高结晶度,使得直接使用纤维素静电纺丝制备纳米纤维较难。笔者以微晶纤维素、纸浆纤维素为研究对象,通过氯化锂/二甲基乙酰胺(LiCl/DMAc)溶剂体系溶解并进行活化处理,加入不同含量聚丙烯腈(PAN)对纤维素进行静电纺丝制备纤维素纳米纤维,探究纤维素类型、N,N-二甲基甲酰胺(DMF)活化处理前后、PAN加入量对纤维素溶解性、纺丝液性参数和纺丝效果影响。结果表明:DMF活化处理可有效提升纤维素在LiCl/DMAc溶剂体系中的溶解性,在相同溶解温度下获得更加均匀透明的纤维素溶液。在该溶剂体系下,纺丝液黏度、电导率和表面张力分别高于1 300 mPa·s、2 000μs/cm和34.5 mN/m,可获得连续的电纺纤维素纳米纤维。活化微晶纤维素纳米纤维膜比活化纸浆纤维素纳米纤维膜表面更光滑且纤维直径分布更均匀。活化微晶纤维素与PAN质量比为2∶8时可获得表面光滑无珠状物,纤维均一程度高,直径分布小(185~245 nm)的纤维素纳米纤维膜。  相似文献   

20.
【目的】将微波加热与甘油利用相结合的综合炼制工艺用于木质纤维素生物质预处理,探索其在燃料乙醇制备中的可行性,为实现经济可行、经济有效的木质纤维素生物质酶解预处理技术和生物燃料生产提供基础信息。【方法】以银腺杨、日本落叶松、刚竹和柳枝稷为试验材料,采用微波液化法对其进行液化处理,将液化产物分为纤维素、半纤维素和木质素组分,并对纤维素纤维组分进行综合表征。【结果】化学分析结果表明,纤维素纤维具有较高的葡聚糖含量;红外光谱显示,木质素和半纤维素的信号逐渐减弱,说明半纤维素和木质素经液化处理后有效脱除;XRD分析结果表明,纤维素纤维结晶度高、表面积大。【结论】相比原木质纤维素生物质,银腺杨、日本落叶松、刚竹和柳枝稷4种原材料纤维素纤维的酶解糖化效率均有不同程度提升(最高酶解转化率可达70%),液化固体产物--纤维素纤维在制备燃料乙醇中具有广阔的潜力和前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号