首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Soil biology & biochemistry》2001,33(7-8):1037-1048
Net carbon and nitrogen mineralization and soil microbial biomass dynamics were determined during a 6-month period following surface application of dairy farm effluent (DFE) at the allowable annual loading rate onto three grassland topsoils from two major dairying regions in New Zealand. Turnover of the complex substrate DFE was compared to turnover of similar amounts of carbon and nitrogen amended in glucose and ammonium chloride, which is more accessible to microorganisms and served as a simple model system. Intact soil cores from the three topsoils were incubated in the laboratory at 25°C and −10 kPa. Net carbon (CO2 evolution) and nitrogen mineralization (change in inorganic N) were calculated from the difference of the treatments to a water-amended control. Soil texture had no clear effect on C mineralization, but N mineralization was faster in the coarser soils than in the finer soil. Soil structure influenced glucose mineralization in one soil (Te Kowhai) through preferential flow. Net mineralization of DFE-C was finished by day 64 (Horotiu), 112 (Te Kowhai) and 141 (Templeton) and amounted to 27.9±11.1% (Horotiu), 29.5±6.1% (Te Kowhai), and 48.9±12.4% (Templeton) of the applied C. Net mineralization of glucose-C was higher and, apart from Te Kowhai, finished earlier. It amounted to 67.4±5.7% (Horotiu, day 24), 76.3±8.5% (Templeton, day 85), and 95.7±3.9% (Te Kowhai, day 112). The Te Kowhai silty clay was still slightly in the N immobilization phase at day 183, whereas net N mineralization was observed in the two sandy loams, equivalent to 38% of the organic DFE-N in the Templeton and 44% in the more porous Horotiu soil. Microbial biomass estimates were particularly variable after glucose amendment and there were only a few significant differences between amended soils and control soils. We therefore suggest that the suitability of the CFE method soon after the application of easily available substrates be further investigated. Depending on the objective of a study, the value of using inherently more variable intact cores, which better mimic field conditions, must be compared against the more uniform results achievable by sieved and mixed soil samples.  相似文献   

2.
Abstract. Eight lysimeters, each with a surface area of 0.5 m2 and a length of 60 cm, were taken over mole drains from a Denchworth soil and divided into two groups with either a standard agricultural tilth or a finer, deeper topsoil tilth. They were variously instrumented to measure soil moisture content at three depths and losses of nitrate, a bromide tracer and radiolabelled isoproturon, all of which were followed over a year. Leaching of isoproturon was initiated by artificial irrigation either 1 or 39 days after application. The finer tilth seemed to increase the water-holding capacity of the topsoil, and this resulted in slower wetting of the subsoil, decreased flow volumes from the first events of the season and a delay of approximately four weeks in the time to the maximum concentration of the bromide tracer in leachate. The finer topsoil tilth also decreased maximum concentrations of isoproturon from 29 to 15 μg l−1 following irrigation 1 day after treatment and from 43 to 9 μg l−1 following irrigation 39 days after treatment. Total losses of isoproturon were three times larger with the standard agricultural tilth. Differences were attributed to a decrease in bypass flow through the topsoil with the finer tilth, particularly during events early in the season. There was a small decrease in total losses of nitrate in leachate from the finer tilth compared to that from the standard tilth.  相似文献   

3.
The mobility of nitrilotriacetic acid (NTA) in agricultural soil was assessed in a soil/sewage sludge admixture and following surface applications using laboratory scale soil columns. Rates of application were based on the guidelines published by the Department of the Environment (United Kingdom). Nitrilotriacetic acid concentrations were based on expected sewage sludge concentrations were NTA to be introduced as a replacement builder in detergent formulations. Admixtures were found to retain NTA more effectively in the topsoil (0 to 200 mm) than surface applications, with up to 9.5 % of the applied NTA passing through the topsoil following a surface application, when irrigated at average rainfall. Even at higher rates of irrigation a great proportion of the NTA was retained in a soil column containing topsoil and subsoil (200 to 300 mm). The adsorption capacity of the soil was determined in batch experiments and was found to be 17.5 μNTA g?1 soil.  相似文献   

4.
Solute recycling by crops and leaching in a drained arable soil   总被引:1,自引:0,他引:1  
Preferential flow, as it bypasses the soil matrix, can greatly enhance the leaching of chemicals. When a soil is drained there is the risk that such short‐circuiting results in more or less direct passage of polluting chemicals from the soil to the groundwater. If the groundwater table is shallow the chemicals could be transferred back into the surface soil by hydraulic lift through roots and subsequent release by exudation or from decaying plant residues and again become exposed to leaching by preferential flow, thus strongly enhancing the chance of export via the drains. We investigated the leaching of bromide in a tile‐drained arable field over 2 years of crop rotation. The site was a former wetland, artificially drained a century ago for agriculture. Bromide was applied over 1.6 ha at a dosage of 10 g Br per m2 in August 1995 after the harvest of wheat. During the 2 years 18% of the applied bromide was exported via the drainage system, most of it in preferential flow events and more than half of it in a single winter storm 5 months after the application. Within 7 months 56% of the applied tracer was leached out of the main root zone into the groundwater. Subsequently the tracer re‐emerged in water taken up by sugar beet in the following season. The beet accumulated 50% of the initially applied bromide in their leaves and released it again after harvest when the leaves were left as green manure on the field. Our results show that this recycling of solutes to the topsoil can have an important influence on their leaching as the solutes are thus again exposed to preferential transport into drains in the course of preferential flow events.  相似文献   

5.
Soil compaction is a big challenge in managing poorly drained clay soils. An on-farm field study was conducted over 2 years in a poorly drained, heavy clay soil, Red River Valley, Manitoba, Canada, where soil compaction, crop growth and root development were perceived as serious concerns. To address these concerns, no-tillage and sub-soiling tillage were proposed and compared with the traditional tillage system in which light-duty field cultivators were used at tillage depths ranging from 50 to 75 mm. Measurements of soil cone index indicated that a hardpan existed at approximately 175 mm soil depth in each fall as a result of wheel traffic during the growing season. It may not be necessary to break the hardpan with fall tillage operations in the studied region, as the hardpan was naturally removed over winter. Effects of tillage practices were evaluated using seeding performance and plant development. No-tillage resulted in the similar speed of emergence, plant population and crop yield, but more uniform seeding depth and more roots in the topsoil layer (0–75 mm), when compared with the conventional tillage. Sub-soiling promoted much faster crop emergence, higher plant populations and crop yield as well as deeper root penetration than the conventional tillage. However, the draft force required for sub-soiling was four times that of the conventional tillage.  相似文献   

6.
再生水短期灌溉对土壤-作物中重金属分布影响的试验研究   总被引:16,自引:2,他引:16  
再生水是农业灌溉的重要水资源。该文在田间小区开展了为期4年的再生水灌溉试验,研究了重金属在土壤-作物系统中的转化与分布规律。结果表明:短期内重金属在土壤中的累积不明显,且土壤和作物籽粒中的重金属含量都远低于国家标准规定的允许值,再生水短期灌溉对土壤环境和作物均不会造成污染影响;同时,不同再生水灌溉水量条件下,土壤中重金属含量无显著差异,再生水灌溉带入土壤中的重金属量小于作物收获所带走的重金属量,带出量和带入量对土壤中重金属平衡的影响较小。  相似文献   

7.
To assess the mobility of Pb and associated metals in a highly contaminated shooting range soil (Losone, Ticino, Switzerland), we investigated the spatial distribution of the metals and their relation to preferential water flow paths. A 2.2 m2 plot located 40 m behind the stop butt was irrigated with a solution containing bromide and Brilliant Blue, a slightly sorbing dye. A soil profile 50 cm in width was sampled down to 80 cm with a spatial resolution of 2.5 cm, resulting in 626 samples. Concentrations of elements (12 ≤ Z ≤ 92) were determined by energy‐dispersive Xray fluorescence spectrometry, and Brilliant Blue concentrations were determined with a chromameter. In the acidic (pH 3), organic matter‐rich, well drained Dystric Cambisol, maximum concentrations of 80.9 g kg‐1 Pb, 4.0 g kg‐1 Sb, and 0.55 g kg‐1 Cu were measured in the topsoil. Within 40 cm soil depth, however, Pb, Sb, and Cu approached background concentrations of 23 mg kg‐1, 0.4 mg kg‐1, and 9.4 mg kg‐1, respectively. The even horizontal distribution and the steep gradient along soil depth indicate tight metal binding in the topsoil, and a fairly homogeneous transport front. In contrast, water flow through the profile was highly heterogeneous. In the uppermost 20 cm, preferential flow was initiated by heterogeneous infiltration at the soil surface, but had no influence on metal distribution. Below 20 cm, however, preferential flow originated from larger tree roots, and metal concentrations were significantly elevated along these macropores. Spatial distributions of Pb, Sb, and Cu were similar, suggesting that all three metals are strongly retained in the topsoil and transported along preferential water flow paths in the subsoil.  相似文献   

8.
Comprehensive studies of the properties and processes of nonirrigated soils at different hierarchical levels of their organization are carried out and regularities of their changes under the effect of irrigation are revealed. It is shown that irrigated soils of weakly drained landscapes compared with drained change more rapidly as a result of humidization, leading to acceleration and intensification of the mutual influence of processes at all levels of their organization. Positive and negative phenomena are noted under irrigation, the rate and extent of which depend on soil type, degree of drainage of the landscape, changes in the water regime and moisture content of the soils, quality of the irrigation water, and level of agrotechnologies.  相似文献   

9.
It was found that the average size of water-stable aggregates in irrigated soils varies in the range 0.23–2.0 mm, and the eroding flow velocity is 0.03–0.12 m/s. A five-point scale was used for assessing erosion resistance, predicting irrigation erosion, and developing erosion control measures on irrigated soils. According to this system, gray-brown soils and light sierozems were classified as the least erosion-resistant, sierozemic and meadow-sierozemic soils as low erosion-resistant, gray-cinnamonic soils as moderately erosion-resistant, mountain gray-cinnamonic soils as highly erosion-resistant, and steppe mountain cinnamonic soils as very highly erosion-resistant ones. The determination of the erosion resistance of soils is of great importance for assessing the erosion-resistance potential of irrigated areas and developing erosion control measures.  相似文献   

10.
碳酸氢根与水肥同层对玉米幼苗生长和吸收养分的影响   总被引:4,自引:1,他引:4  
把水分(NaHCO3溶液或纯水)供应于底施了铵态或硝态N肥的土层内,以研究HCO3-及水肥供应方式对石灰性土壤上玉米生长及养分吸收的影响。结果表明,在限制灌水量的条件下,在土壤上层供应HCO3-显著抑制根系生长,但在下层供应对生长无明显影响;当施用不同形态N素时,HCO3-对N素吸收并无明显影响;此外,供应HCO3-溶液能明显提高灌水土层的土壤pH。总体来看,在供试条件下,HCO3-对玉米幼苗生长量、根系分布及养分吸收量的影响均较为有限,而后三者主要受施肥灌水层次的影响,即:在土壤上层施肥灌水,幼苗生长量显著降低;而在下层施肥灌水是一种节水节肥的水肥供应方式。但下层施肥灌水不利于植株的直立性。因为下层施肥灌水时根系主要分布在下层,在上层分布数量极少;而上层施肥灌水根系在上下两层中的分布无明显差异;下层施肥灌水的玉米植株,其N、P、K吸收量远高于上层施肥灌水的植株。  相似文献   

11.
为研究再生水灌溉下原污灌区土壤中主要盐分离子交换运移规律,采用有污水灌溉背景的两种质地土壤,根据再生水的基本性质及其盐分离子组分,配制4种浓度水平的入渗液,进行土柱模拟试验。结果表明,不同质地土壤在低Na^+配制液淋洗下的穿透曲线都出现下凹现象,但Na^+在壤土中富集的表现并不显著,而在粉质砂壤土中部分Na^+吸附累积时间较长;模拟再生水入渗溶液中不同组分的盐分离子在不同程度上影响污灌土壤中发生的离子化学反应的进行,导致各处理下Na穿透时间发生显著差异;长期再生水灌溉会对HCO3^-含量较高且粉粒比重大的土壤的入渗等性能产生更为不利的影响。  相似文献   

12.
This study was conducted to assess the nitrogen removal potential of a minerotrophic peatland in Northern Germany, where hydrological conditions were partly restored in the beginning of the 1990s. Actual denitrification and the effect of nitrate (NO3) and glucose additions on denitrification rates were determined in two flooded and one drained histosols in spring and summer 1998. In the flooded soils, denitrification was insignificant, but the drained field emitted significant rates. Additions of NO3 stimulated denitrification at all sites in spring and summer, whereas glucose additions had no effect. Low NO3 concentration in floodwater was obviously limiting denitrification in the flooded soils. In the drained soil, a coupled nitrification/denitrification might explain the low but significant denitrification rates. No spontaneous production of nitrous oxide occurred in the flooded soils, whereas at the drained site an increase in spontaneous nitrous oxide concentration was measured during incubation in the summer samples. The suggested introduction of NO3 rich water from a stream flowing through the area would apparently induce denitrification in the flooded fields.  相似文献   

13.
Abstract. This paper describes the results of laboratory-based research which investigated the losses of the herbicide, isoproturon, and a non-adsorbing solute, bromide, from topsoil aggregates under high (7 mm h−1 and low 2.7 mm h−1) intensity simulated rainfall. The structures of the micro- and macro-aggregates from a clay soil of the Denchworth Series (from Wytham, Oxfordshire, UK) were observed using a scanning electron microscope, and the slaking of the topsoil aggregates was also investigated in order to provide a context for interpreting the experimental results. The topsoil at Wytham was found to have a bimodal structure with small microaggregates of 0.71 to 1 mm diameter clustered together to form larger macroaggregates of up to several centimetres diameter. Selected aggregates were air dried and then repacked in Buchner funnels to several centimetres depth in order to remove variability in the experimental results due to the effects of surface microrelief. Under saturated surface conditions high intensity simulated rainfall was less efficient at removing both non-adsorbing and adsorbing solutes from the repacked topsoil aggregates than low intensity rainfall. The observed decrease in the concentration of isoproturon and bromide in the leachate with time could be explained by a transport non-equilibrium effect.  相似文献   

14.
Peat‐forming organic soils lose large amounts of carbon and soil volume when drained. Although surface subsidence is often taken as a proxy for the associated carbon loss, other mechanisms also cause a change in volume. To infer the reliability of subsidence for estimating carbon loss, we compared long‐term subsidence rates of an 80 ha area of temperate fen that was drained 140 yr ago against estimates of subsidence based on soil bulk densities measured at four sites. Both methods correlate significantly, yield similar subsidence rates of 0.8–1.6 cm/yr and underpin the value of using profile information for inferring volumetric loss. Peat oxidation accounts for 28–64% of the loss in volume, which is equivalent to annual carbon loss rates of 2.5–5.5 t C/ha. Whereas the profile‐based method is also suitable for estimating carbon loss, the wide range of oxidative contribution to the overall subsidence indicates that subsidence alone cannot provide an unbiased estimate of carbon emission factors from drained fens.  相似文献   

15.
We compared arbuscular mycorrhizal (AM) and dark septate endophyte (DSE) fungal associations in 2 crops and 31 weeds commonly occurring in pulp and paper mill effluent irrigated and well-water irrigated soils. Soil pH, organic C, N, P and K, were higher in pulp and paper mill effluent irrigated than in well-water irrigated soils. In contrast, the average AM fungal colonization, root length with AM fungal hyphae/hyphal coils, spore numbers and diversity were lower in pulp and paper mill effluent irrigated soils compared to well-water irrigated soils. However, no significant variation was found in DSE fungal colonization nor root length with AM fungal arbuscules/arbusculate coils and vesicles between pulp and paper mill effluent irrigated and well-water irrigated soils. A significant negative correlation existed between AM and DSE fungal colonization in both effluent and well-water irrigated soils. Twelve AM fungal spore morphotypes belonging to Acaulospora, Dentiscutata, Glomus, Racocetra and Scutellospora were isolated from the well-water irrigated soils, whereas spores of six morphotypes were isolated from effluent irrigated soils. AM fungal spore numbers were correlated significantly and positively to AM fungal colonization in effluent and well-water irrigated soils.  相似文献   

16.
Abstract. Currently there is growing interest in the restoration of drained peatlands in Britain. In order to investigate some of the effects of changes in land management practices on the biogeochemistry of peatlands, a field experiment was designed to manipulate the hydrological conditions in a naturally drained acid gully mire in Mid-Wales. We report preliminary results of the effects of experimentally rewetting the mire on the hydrochemistry of bromide in the peat-water. Results show that rewetting had a dramatic effect on the concentrations of bromide, which increased substantially. Peak values approached 1 mg/dm3 in some samples following rewetting, compared with typical values < 0.05 mg/dm3 under the drained conditions. Bromide was positively and significantly correlated with Dissolved Organic Carbon (DOC) in the peat-water, which suggests that Br- is derived from breakdown of organic matter in the reducing conditions following rewetting. The bromide mobilized by rewetting may be leached out of the system and/or re-assimilated by the wetland vegetation. Further monitoring is needed to determine whether the observed hydrochemical response of bromide to rewetting of the mire has any longer-term effects.  相似文献   

17.
Processes taking place at different levels of the soil structural arrangement in irrigated and rainfed soils of the Lower Volga region are analyzed. Interactions between these processes and the dependence of their rates on the duration of irrigation are discussed. It is shown that irrigation-induced changes are more pronounced and proceed faster in soils of poorly drained landscapes in comparison with well-drained landscapes. Interaction of the processes taking place at different hierarchical levels of soil arrangement is observed. At the ionic-molecular level, migration and transformation of the composition of soil humus and soluble salts and various exchange reactions take place; at the level of elementary soil particles, the processes of disintegration, peptization, transformation, and the destruction of minerals; at the aggregate level, changes in the water stability of soil aggregates and the degree of soil micro- and macroaggregation; at the level of particular morphological elements, horizons, and pedons, reorganization of soil material (changes in the thickness and bulk density of soil horizons, synthesis and destruction of various neoformations, etc.); finally, at the level of the soil cover pattern, irrigation leads to a higher complexity of the soil cover; the degree of contrast in the soil cover pattern increases, and the soil development at different sites proceeds with different velocities.  相似文献   

18.
Cadmium (Cd) inputs and losses from agricultural soils are of great importance because of the potential adverse effects Cd can pose to food quality, soil health and the environment in general. One important pathway for Cd losses from soil systems is by leaching. We investigated loss of Cd from a range of contrasting New Zealand pasture soils that had received Cd predominantly from repeated applications of phosphate fertilizer. Annual leaching losses of Cd ranged between 0.27 and 0.86 g ha–l, which are less than most losses recorded elsewhere. These losses equate to between 5 and 15% of the Cd added to soil through a typical annual application of single superphosphate, which in New Zealand contains on average 280 mg Cd kg?1 P. It appears that Cd added to soil from phosphate fertilizer is fairly immobile and Cd tends to accumulate in the topsoil. The pH of the leachate and the total volume of drainage to some extent control the amount of Cd leached. Additional factors, such as the soil sorption capacity, are also important in controlling Cd movement in these pasture soils. The prediction of the amount of Cd leached using the measured concentrations of Cd in the soil solution and rainfall data resulted in an overestimation of Cd losses. Cadmium concentrations in drainage water are substantially less than the current maximum acceptable value of 3 µg l?1 for drinking water in New Zealand set by the Ministry of Health.  相似文献   

19.
Microbial activity levels of two soil materials, excavated from a wetland and irrigated with municipal wastewater effluent or Missouri River water, were compared. The wastewater had twice the electrical conductivity and four times the sodium concentration as river water. We performed activity assays on the soils before leaching, immediately after leaching, and after harvesting plants. Gas chromatography was used to measure carbon dioxide (CO2) evolved in soil samples incubated for 7 d. Activity was significantly reduced in preleached wastewater–irrigated soils compared with river water–irrigated soils. Immediately after leaching, activity significantly increased and was similar to river water–irrigated soils. Activity decreased slightly after plant harvest in postleached treatments. Increased activity after leaching may be related to decreased salinity and sodicity, which probably lowered osmotic pressure in the soil. Our study demonstrated that soil salinity and sodicity induced by wastewater irrigation decreased microbial activity, which may impact nutrient cycling and glycophytic vegetation communities in wetlands.  相似文献   

20.
In developing management practices to reduce chemical leaching below the root zone, tillage and irrigation management are important considerations. Two studies were performed to evaluate the movement of bromide in tilled and non-tilled soils under sprinkler versus flood irrigation. In each study, bromide was applied either with an irrigation or presprayed to the soil surface followed by periodic soil sampling to monitor the bromide movement. Tillage was observed to reduce the mean depth of chemical penetration under both irrigation treatments and reduce the spatial variation of bromide concentration under flood irrigation. For example, after 30 days of periodic flood irrigation, 25% of the applied bromide remained in the upper 0.2 m of a tilled soil while in the companion non-tilled soil virtually no bromide remained above this depth. The most rapid bromide movement was observed in non-tilled, flood irrigated soil, particularly when the solute was added with the irrigation. We speculate that the tillage effect of reduced leaching results from the alteration of pore continuity and creation of diffusional sinks and not increased evaporative water loss in the tilled soil. The Root Zone Water Quality Model was calibrated using site-specific hydraulic property measurements and used to predict the solute movement. The model predictions were fairly accurate for the sprinkler irrigated soil but less satisfactory for the flood irrigation studies. In comparing the effect on chemical leaching of the treatments imposed, we found that tillage and the timing of the chemical application had greater impact on reducing leaching than did the method of irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号