首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 502 毫秒
1.
The effect of manure and mineral fertilization on the arbuscular mycorrhizal (AM) fungal community structure of sunflower (Helianthus annuus L.) plants was studied. Soils were collected from a field experiment treated for 12 years with equivalent nitrogen (N) doses of inorganic N, dairy manure slurry, or without N fertilization. Fresh roots of tall fescue (Festuca arundinacea Schreb.) grass collected from the field plots without N fertilization and unfumigated field soils were used as native microbial inoculum sources. Sunflower plants were sown in pots containing these soils, and three different means of manipulating the microbial community were set: unfumigated soil with fresh grass roots, fumigated soil with fresh grass roots, or fumigated soil with sterilized grass roots. Assessing the implications with respect to plant productivity and mycorrhizal community structure was investigated. Twelve AM fungal OTUs were identified from root or soil samples as different taxa of Acaulospora, Claroideoglomus, Funneliformis, Rhizophagus, and uncultured Glomus, using PCR-DGGE and sequencing of an 18S rRNA gene fragment. Sunflower plants grown in manure-fertilized soils had a distinct AMF community structure from plants either fertilized with mineral N or unfertilized, with an abundance of Rhizophagus intraradices-like (B2). The results also showed that AM inoculation increased P and N contents in inorganic N-fertilized or unfertilized plants, but not in manure-fertilized plants.  相似文献   

2.
The effect of salinity on the efficacy of two arbuscular mycorrhizal fungi, Glomus fasciculatum and G. macrocarpum, alone and in combination was investigated on growth, development and nutrition of Acacia auriculiformis. Plants were grown under different salinity levels imposed by 0.3, 0.5 and 1.0 S m-1 solutions of 1 M NaCl. Both mycorrhizal fungi protected the host plant against the detrimental effect of salinity. The extent of AM response on growth as well as root colonization varied with fungal species, and with the level of salinity. Maximum root colonization and spore production was observed with combined inoculation, which resulted in greater plant growth at all salinity levels. AM fungal inoculated plants showed significantly higher root and shoot weights. Greater nutrient acquisition, changes in root morphology, and electrical conductivity of soil in response to AM colonization was observed, and may be possible mechanisms to protect plants from salt stress.  相似文献   

3.
ABSTRACT

The need for salinity resistance in turfgrass is increasing because of the enhanced use of effluent and other low-quality water for turfgrass irrigation. Although most turfgrasses form an arbuscular mycorrhizal fungus (AMF) symbiosis, there is little information on the mycorrhization of turfgrass species. Therefore, the aim of this study was to determine the effects of three AMF species, Glomus intraradices Schenck & Smith, Glomus etunicatum Becker & Gerdemann, and Glomus deserticola Trappe & John, and a mixture thereof on the growth, productivity, and nutrient uptake of two species of cool-season turfgrasses, Challenger Kentucky bluegrass (Poa pratensis L.) and Arid tall fescue (Festuca arundinacea Schreb.), and to relate the effects to colonization of the roots by mycorrhiza to assess the dependency of the plants (mycorrhizal dependency [MD]). Following the experimental period (4 months) and measurements, the mycorrhizal inoculated plants had significantly greater biomass production compared to that of non-inoculated plants. MD and shoot mineral contents (particularly P) differed among turfgrass hosting AMF, and the highest value (13%) occurred for P. pratensis and F. arundinacea seedlings colonized with G. intraradices and G. deserticola, respectively. The P content was highest for the F. arundinacea/mixed AMF combination compared to other treatments. We confirmed that mycorrhizal inoculation (P. pratensis/G. intraradices and F. arundinacea/mixed AMF combinations) enhanced plant productivity and nutrient uptake (especially P) even under non-optimum conditions.  相似文献   

4.
The study assesses the effect of two phosphate (P) sources (soluble superphosphate (SP) and rock phosphate (RP)) on the arbuscular mycorrhizal potential (AMP), the root arbuscular mycorrhizal colonization (AMC) and the growth of tall fescue and wheatgrass of a grassland soil from Argentina. Mycorrhizal potential was assessed with soil samples collected from 2 years for tall fescue and wheatgrass swards before and after field plots were fertilized with 0 and 60 kg P ha−1 as SP or RP. Mycorrhizal potential both at unfertilized and at RP fertilized plots was high (12–14 AM propagules g−1), however fertilization with SP caused a decrease in AMP (0.70–0.95 AM propagules g−1). A range of soil P between 4 and 46 mg P kg−1 and a range of root AMC between 6% and 50% were obtained after fertilization with four rates of SP and RP (0, 15, 30, and 60 kg P ha−1) in plots where tall fescue and wheatgrass were grown during 2 years. Soil P and root mass were higher in the top 10-cm depth than in the 20-cm of the soil profile, but AMC did not change with depth. Shoot dry matter (SDM) production of both grasses did not differ after fertilization with SP or RP, particularly at second year. The AMP positively correlated with the indigenous AMC, and they were not different between tall fescue or wheatgrass. Lineal-plateau relationships between soil P, relative SDM and AMC were established. Highest relative SDM was attained at 6.5 mg P kg−1 in plots fertilized with RP, and at 15.2 mg P kg−1 with SP. Variability in colonization was well accounted by the soil P (at 0–10 cm depth) fertilized with SP (r2 = 0.48, P 0.01), but any relationship was found with RP. The AMC decreased with increasing available soil P from plots with SP until 18.3 mg kg−1 (a decrease of 2.2% per mg P kg), after that AMC was stabilized at about 6.9%. Our study clearly showed that fertilization with SP or RP produced similar available soil P content and grasses SDM production. Mycorrhiza root colonization and propagules decreased after fertilization with SP, but fertilization with RP did not decrease mycorrhizal propagules nor colonization. It can be concluded that RP fertilization instead SP could allow obtaining acceptable tall fescue and wheatgrass yield enhancing mycorrhizal potential of soils and indigenous colonization of plants and thus maximizing the use of fertilizer.  相似文献   

5.
Lindane ( γ‐hexachlorocyclohexane or γ‐HCH) is an organochlorine insecticide previously used extensively for the control of agricultural pests. We studied the effects of soil HCH contamination on vegetation and its associated arbuscular mycorrhizas (AM). The polluted and unpolluted plots had similar plant cover, with the same species richness and abundance. Plantago lanceolata plants were selected for mycorrhizal analysis because of their presence in both plots and known mycotrophy. The presence of HCH appeared to have no significant effect on the extent of colonization of Plantago roots by AM, suggesting a similar functionality of the fungal symbionts. However, infective AM propagules, the density of AM spores and viable AM hyphae in the rhizosphere were much less in the HCH‐polluted soil than in the unpolluted plot. Pre‐inoculation of four plant species with an isolate of Glomus deserticola obtained from the HCH‐contaminated soil resulted in increased growth and fungal colonization of roots compared with plants pre‐inoculated with the introduced fungus G. macrocarpum or colonized by the consortium of indigenous AM fungal species, when those plants were transplanted to an HCH‐contaminated soil. This suggests that the fungus increases the tolerance of plants to the toxic soil environment. We conclude that herbaceous and woody plants can grow in soil with little P contaminated with <100 mg HCH kg?1 with the help of tolerant AM, despite the detrimental effect of HCH on AM fungal propagules in soil. The effects of AM fungi on plant growth and soil microbial community structure in HCH‐polluted sites could be important for remediation of the pollutant through the microbial activity in the rhizosphere.  相似文献   

6.
Previous research has found that conventional agricultural systems adversely affect arbuscular mycorrhizal (AM) fungi. However, there is little information on how more ecologically sustainable agricultural practices such as tree-based intercropping (TBI) influence AM fungal communities. In this study, we investigated whether TBI promotes a more abundant and diverse AM fungal community compared to conventional monocropping (CM). Abundance was estimated by measuring spore abundance and hyphal length in soil, and AM fungal colonization of corn (Zea mays) roots. Overall, AM fungal abundance was similar in both systems as corn roots from the CM and TBI systems were heavily colonized (>50%) by AM fungi throughout the growing season. Additionally, soil samples from the CM and TBI systems contained similar spore densities and hyphal length. Molecular analysis of the AM fungal community was assessed using terminal restriction fragment length polymorphism (T-RFLP) analysis of large subunit rRNA genes amplified from roots in the two cropping systems. A total of fourteen AM fungal phylotypes that belonged to the Glomeraceae were found in the two cropping systems. The TBI system had a higher AM fungal richness and contained several taxa not found in the CM system. Molecular analysis of AM fungal communities also revealed significant temporal and compositional differences between the TBI and CM systems. Within the TBI system, tree species differentially influenced the AM fungal community composition in the alley cropping regions. Future research should focus on determining whether compositional differences among AM fungal communities in CM and TBI systems have a functional effect on crop growth and productivity.  相似文献   

7.
A field experiment was conducted to study and compare the effectiveness of two arbuscular mycorrhizal fungi (AMF), Glomus macrocarpum (GM) and Glomus fasciculatum (GF) on three accessions of Artemisia annua. The AM inoculation significantly increased the production of herbage, dry weight of shoot, nutrient status (P, Zn and Fe) of shoot, concentration of essential oil and artemisinin in leaves as compared to non-inoculated plants. The extent of growth, nutrient concentration and production of secondary plant metabolites varied with the fungus–plant accession combination. The mycorrhizal dependency of the three accessions was related to the shoot: root ratio. Comparing the two fungal inoculants in regard to increase in essential oil concentration in shoot, the effectiveness of GF was more than that of GM. While in two accessions, GM was more effective in enhancing artemisinin concentration than GF. Increase in concentration of essential oil was found to be positively correlated to P-status of the plant. Conversely, no correlation was found between shoot-P and artemisinin concentration.  相似文献   

8.
Tall fescue (Schedonorus arundinaceous (Schreb.)) is often infected with a common toxic fungal endophyte (Neotyphodium coenophialum) capable of producing alkaloids that affect grazing animal health, insect herbivory, plant production, and litter decomposition. The strength of these endophyte-associated effects is thought to depend on the abiotic and biotic conditions of a specific site. Prior work from Georgia, USA, has demonstrated that fungal endophyte infection can increase soil carbon pools of tall fescue pastures; however, for endophyte infection to contribute substantially to regional carbon sequestration, this result would have to hold true across the broad range of environmental conditions that support tall fescue growth. In this study, we evaluated whether endophyte infection consistently alters various soil parameters, including carbon storage, of tall fescue stands located throughout the southeastern United States. Soil samples were collected from nine sites with established paired high- and low- endophyte-infected tall fescue stands. These samples were analyzed for basic soil parameters, soil organic carbon (SOC), soil total nitrogen (TN), particulate and non-particulate organic matter-C and -N (POM, n-POM), C and N mineralization rates, and microbial biomass and community composition. Averaged across all sites, endophyte-infected tall fescue stands had 6% greater SOC and 5% greater TN pools in surface soil than adjacent endophyte-free stands. The lack of a significant interaction between site and endophyte infection status indicated that this result was relatively consistent across sites, despite differences in stand age, climate, and other environmental conditions. While POM C and POM N tended to be higher in endophyte-infected than endophyte-free stands, this result was not significant. However, greater pools of n-POM C and N were observed in endophyte-infected vs. endophyte-free stands when averaged across all the sites, suggesting increased retention of recalcitrant substrates occurred in response to fungal endophyte infection. Total microbial biomass, measured via phospholipid fatty acid (PLFA) analysis, was greater in endophyte-infected than endophyte-free soils when averaged across sites, reflecting the trends observed with SOC and TN. Microbial community composition shifted somewhat in response to fungal endophyte infection: significantly higher fungal to bacterial ratios were observed in endophyte-free compared to endophyte-infected stands. However, ordinations of the PLFA data demonstrated only slight separation of endophyte-infected and endophyte-free microbial communities at some sites and no clear separation at others. Enhanced SOC, TN, recalcitrant n-POM C and N pools, and altered microbial biomass and communities suggest that this aboveground fungal endophyte symbiosis has widespread effects on soil biology and biochemistry, and that high prevalence of the aboveground endophyte increases C sequestration capacity of tall fescue stands throughout the southeastern USA.  相似文献   

9.
Apple (Malus hupehensis Rehd) seedlings were grown in sterilized and non‐sterilized soil with or without phosphorus (P) added and inoculated by VA mycorrhizal (VAM) fungi (Glomus versifome Daniels et Tappe and Glomus macrocarpum Tul et Tul). In sterilized soil, the VAM infection increased the transpiration rate (Tr.) of the leaves, reduced the stomatal resistance (Sr.) and the permanent wilting percentage (PWP) and enhanced the rate of recovery of the plant from the water stress and the plant growth (e.g. leaf number, stem diameter and dry weight). It also increased absorption of most minerals, especially Zn and Cu by the roots and weakened the P‐Cu and P‐Zn interactions. Phosphorus fertilization had some positive effects on the water status, P nutrition and growth, but it reduced the Cu concentration. VAM improved the water status and enhanced drought tolerance of the trees by enhancing absorption and translocation of water by the external hyphae. The efficiency of inoculation in nonsterile soil was not obvious.  相似文献   

10.
Arbuscular mycorrhizal (AM) fungi form associations with most land plants and can control carbon, nitrogen, and phosphorus cycling between above- and belowground components of ecosystems. Current estimates of AM fungal distributions are mainly inferred from the individual distributions of plant biomes, and climatic factors. However, dispersal limitation, local environmental conditions,and interactions among AM fungal taxa may also determine local diversity and global distributions. We assessed the relative importance of these potential controls by collecting 14,961 DNA sequences from 111 published studies and testing for relationships between AM fungal community composition and geography, environment, and plant biomes. Our results indicated that the global species richness of AM fungi was up to six times higher than previously estimated, largely owing to high beta diversity among sampling sites. Geographic distance, soil temperature and moisture, and plant community type were each significantly related to AM fungal community structure, but explained only a small amount of the observed variance. AM fungal species also tended to be phylogenetically clustered within sites, further suggesting that habitat filtering or dispersal limitation is a driver of AM fungal community assembly. Therefore, predicted shifts in climate and plant species distributions under global change may alter AM fungal communities.  相似文献   

11.
丛枝菌根真菌对烤烟生长及产值的影响   总被引:1,自引:1,他引:0  
为有效评价菌根化苗在烤烟生产中的应用,对比研究了菌根化苗和常规生产烟苗不同生长期的农艺性状和主要经济性状。结果表明,菌根化烟苗根冠比均显著大于常规育苗组,株高、根长、茎围小于常规生产烟苗;移栽30 d的菌根化烟苗株高、茎围均小于常规育苗组;移栽60 d接种Gm.02和Gm.03的烟株株高大于常规生产烟苗,接种Gm.01和Gm.02的烟株茎围大于常规育苗组;移栽90 d的3种菌根化苗株高、茎围均大于常规育苗组。菌根化烟苗最大叶长在整个生育期内均小于常规生产烟苗;菌根化烟苗移栽30 d最大叶宽均小于常规育苗组,移栽60 d接种Gm.01菌根化烟株大于常规育苗组,移栽90 d,接种Gm.01和Gm.03菌根化烟株大于常规育苗组。菌根化苗均能提高烤烟产量、上等烟比例、均价及产值,但是不同的菌剂作用效果不同。  相似文献   

12.
Previous research, mostly in temperate agricultural systems, has shown that management practices such as fallow period, tillage, crop rotation, and phosphorus (P) fertilizer applications can influence the abundance of arbuscular mycorrhizal fungi (AMF), but relatively little is known about their effect in smallholder farmers’ fields in sub-Saharan Africa. In this study, we evaluated the effect of four subsistence crops that form associations with AMF, moderate P fertilization, tillage, and fallow period on the subsequent AMF abundance on three contrasting low fertility soils in south-western Zimbabwe. Arbuscular mycorrhizal fungal abundance was estimated based on early mycorrhizal colonization of maize (Zea mays L.) or lablab (Lablab purpureus L.) following the various treatments. The previously grown crop significantly affected AMF abundance (p < 0.001). It was highest after lablab followed by pigeonpea (Cajanus cajan L.), maize, and groundnut (Arachis hypogaea L.), and there were significant positive correlations between AMF abundance and aboveground biomass of pigeonpea, lablab, and maize. Contrary to much previous research, P fertilization, fallowing, and tillage did not significantly decrease AMF abundance. In smallholder farmers’ fields in the semi-arid tropics of sub-Saharan Africa, therefore, growing vigorous mycorrhizal plants prior to the dry season could be more important than minimizing P fertilizer applications, fallow periods, and tillage to maintain or increase AMF abundance.  相似文献   

13.
Oxalate crystals and elements binding to the surfaces of mycorrhizal fungal hyphae were examined using scanning electron microscopy coupled with X-ray analysis of elemental composition. Mycorrhizae from the arid zone vegetation types in southern California were examined including chaparral, riparian oak woodlands, coastal sage, grasslands, and deserts. Only mat-forming ectomycorrhizal hyphae, such as Hysterangium separabile, were found to produce oxalate crystals. None of the arbuscular mycorrhizal fungal hyphae (Glomus spp. and Acaulospora elegans) examined had crystal structures associated with them. The hyphae of Hysterangium separabile without crystals did not show the Ca peaks that were present when the crystals existed nor did the arbuscular mycorrhizal fungal hyphae have the Ca peaks. The elimination of arbuscular mycorrhizae using benomyl did not affect soil P or oxalate. These data indicate that there are some fundamental differences in chemical exudation between mycorrhizal fungi that could affect P uptake and cycling in arid ecosystems. Received: 7 December 1994  相似文献   

14.
 It has been difficult to explain the rotation effect based solely on N availability in maize-soybean cropping systems in the moist savanna zone of sub-Saharan Africa. Although arbuscular mycorrhizal fungi (AMF) can contribute to plant growth by reducing stresses resulting from other nutrient deficiencies (mainly P) and drought, their role in the maize/soybean rotation cropping systems in the Guinea savanna has not yet been determined. Pot and field experiments were conducted for 2 years using 13 farmers' fields with different cropping histories in two agroecological zones (Zaria, northern Guinea savanna and Zonkwa, southern Guinea savanna) in Nigeria. We quantified the influence of cropping systems and rhizobial inoculation on plant growth, mycorrhizal colonization and diversity of promiscuous soybean and maize grown in rotation. The relationships between these variables and selected soil characteristics in farmers' fields were also examined. Percentage mycorrhizal colonization in promiscuous soybean roots ranged from 7% to 36%, while in maize it varied between 17% and 33%, depending on fields and the previous cropping history. A large variation was also observed for mycorrhizal spores, but these were not correlated with mycorrhizal colonization and did not appear to be influenced by rotation systems. Soybean mycorrhizal colonization was higher (13% increase) in Zonkwa, but not in Zaria, if the preceding crop was maize and not soybean. These differences were related to the soil P concentration, which was positively related to mycorrhizal colonization in Zonkwa but negatively to this parameter in Zaria. The previous crop did not affect mycorrhizal colonization of maize in both locations. Soybean cultivars inoculated with rhizobia had a higher mycorrhizal colonization rate (25%) and more AMF species than maize or uninoculated soybean (19%). Maize grown in plots previously under inoculated soybean also had higher percentage mycorrhizal colonization than when grown after uninoculated soybean and maize. Four AMF genera comprising 29 species were observed at Zaria and Zonkwa. Glomus was the dominant genus (56%) followed by Gigaspora (26%) and Acaulospora (14%). The genus Sclerocystis was the least represented (4%). Received: 28 October 1998  相似文献   

15.
Arbuscular mycorrhizal (AM) fungi have a key role for plant nutrition in organic farming systems where crop protection relies on biopesticides. Although these are considered safe, their effects on non-target organisms, such as AM fungi, are not known and should be evaluated. A pot and a field experiment were employed to investigate the impact of biological pesticides (azadirachtin, spinosad, pyrethrum and terpens) on exogenous AM fungal inoculum (pots) and on indigenous AM fungi (field). The synthetic fungicide carbendazim and non-pesticide treated controls with or without mycorrhizal inoculation were also included. Plant growth and root colonization were measured 20 and 40 days post inoculation (dpi) in the pot experiment, or 40 and 90 dpi in the field study. Pesticide effects on the structure of the intraradical AM fungal community were determined via DGGE and cloning. Spinosad, pyrethrum and terpenes did not affect the colonization ability and the structure of the AM fungal community. On the contrary, pot application of azadirachtin resulted in a selective inhibition of the Glomus etunicatum strain of the inoculum. DGGE analysis showed that the field application of azadirachtin induced significant and persistent shifts in the AM fungal community. Carbendazim completely hampered mycorrhizal colonization in pots, compared to its field application which had a transitory effect on the colonization ability and the community structure of indigenous AM fungi. Our study provides first evidence for the effects of biological pesticides on the diversity of AM fungi.  相似文献   

16.
Most research on the mycorrhizal positive–negative responsiveness continuum (or “mutualism–parasitism continuum”) has focused on individual plant species growing at different levels of P availability. Here, we explore this continuum in an experimental plant community inoculated with three arbuscular mycorrhizal (AM) fungal strains (both single and mixed) growing under four resource availability scenarios. These scenarios are a factorial combination of two levels of water and N availability. Each AM fungal strain had a different origin: an arid ecosystem, a farmland, and a mine. We hypothesized that the response of the plant community to mycorrhizal inoculum would depend on the associated AM fungal strain and would be negatively related with increased nitrogen and water availability. Our results showed that mixed‐strain AM fungal inoculation had more positive effects along a wider range of water and N availability scenarios than single‐strain inoculation. In contrast, mycorrhizal growth response of plants inoculated with a single AM fungal strain shifted from positive to neutral and negative depending on resource availability. Adaptation of each strain to its local conditions might confer different properties to the mycorrhizal symbiosis. Therefore, we conclude that AM fungal origin and environmental limiting resources are crucial factors to predict plant community mycorrhizal growth response in changing ecosystems.  相似文献   

17.
Crocus sativus L. cultivation is expanding to areas with low soil fertility, where mycorrhizal fungi are supposed to be essential for plants growth and ecosystems functioning. Agricultural practices applied under these conditions should lead to good saffron productivity and quality. Our objective was to study the density and diversity of mycorrhizal fungi populations associated with saffron grown in Taliouine (Morocco) under different agricultural management practices (fertilization type, age and plantation method). Morpho-anatomical studies identified rhizospheric mycorrhizal spores and assessed root colonization by arbuscular mycorrhizal fungi (AMF). Molecular identification of AMF was realized by sequencing the Large Subunit (LSU) rDNA gene region. Among the eleven species of AMF spores identified, Funneliformis and Rhizoglomus species were the most abundant (> 35%). Modern saffron plantation showed higher roots colonization rates (mycorrhization intensity (100%) and frequency (51.6%)), while in traditional plantations lower mycorrhization frequency values were found (17.4%). LSU sequencing identified five AMF genera and three unknown genomic groups, whereas Shannon diversity index indicated that AMF community composition changed significantly according to plantation age and fertilization type. Our results contribute to a better knowledge of saffron AMF communities and open new perspectives for a rational utilization of the agricultural practices for organic saffron production.  相似文献   

18.
Background: The low fertility of sandy soils in South‐Western Australia is challenging for the establishment of temperate perennial pastures. Aims: To assess whether microbial consortium inoculant may improve plant growth by increasing nutrient supply, root biomass and nutrient uptake capacity. Methods: Five temperate perennial pasture grasses–cocksfoot (Dactylis glomerata L. cv. Howlong), phalaris (Phalaris aquatica L. cv. Atlas PG), tall fescue (Festuca arundinacea L. cv. Prosper), tall wheatgrass (Thinopyrum ponticum L. cv. Dundas), and veldt grass (Ehrharta calycina Sm. cv. Mission) were tested in a controlled environment on the growth and nutrition with the microbial consortium inoculant and rock mineral fertiliser. Results: Veldt grass produced the highest shoot and root growth, while tall fescue yielded the lowest. Rock mineral fertiliser with or without microbial consortium inoculant significantly increased root and shoot biomass production across the grass species. The benefit of microbial consortium inoculation applied in conjunction with rock mineral fertiliser was significant regarding shoot N content in tall wheatgrass, cocksfoot and tall fescue. Shoot P and K concentrations also increased in the five grass species by microbial consortium inoculation combined with rock mineral fertiliser in comparison with the control treatment. Arbuscular mycorrhizal (AM) colonisation decreased with rock mineral fertilisation with or without microbial consortium inoculant except in cocksfoot. Conclusions: The response to microbial consortium inoculation, either alone or in combination with rock mineral fertiliser, was plant species‐dependent, indicating its potential use in pasture production.  相似文献   

19.
AM真菌对烟苗生长及某些生理指标的影响   总被引:6,自引:0,他引:6  
在低浓度营养液条件下,利用漂浮育苗技术培育烟苗,于播种期、小十字期、生根期分别接种不同的AM真菌,研究了它们对烟苗生长、营养和某些生理指标的影响。结果表明,越早接种AM真菌,其侵染率越高;播种期接种,侵染率达到39.2%~59.6%。AM真菌的菌根效应因菌种(株)不同而异,接种球囊霉真菌(BEG-141)后,显著增加烟苗干重、磷含量、氮磷钾吸收量、叶绿素含量,以及根系硝酸还原酶、超氧化物歧化酶和几丁质酶活性。表明在漂浮育苗技术中,播种期接种适宜的AM真菌是培育壮苗的有效措施。  相似文献   

20.
Summary Microbial populations were estimated in four different forest stands at different regenerational stages, two each at higher and lower altitudes. The fungal and bacterial populations showed marked seasonal variations at both altitudes. Quantitatively, the bacterial population was higher than the fungal population. Although 25 fungal species were isolated at the lower altitude, only 15 were obtained at the higher altitude. Penicillium chrysogenum and Trichoderma viride were dominant at the lower and higher altitudes, respectively. In the more degraded forest stand at the lower altitude both the fungal and the bacterial population showed a significant positive correlation with organic C (r=0.658 and 0.735, respectively), whereas in the less degraded forest stand there was a significant correlation only between the fungal population and organic C (r=0.835). At the higher altitude, however, a highly significant correlation (P<0.05) was observed between the fungal population, soil moisture and organic C in both the forest stands. Disturbance to the soil and vegetation adversely affected the microbial population, and also affected endogonaceous spores. At the lower altitude, plants in the more degraded forest stand were more mycotrophic compared to those in the less degraded stand. The level of mycorrhizal infection showed a highly positive correlation with soil moisture, organic C, total N, and available P. The spore population, however, was correlated negatively with these parameters. Three different endogonaceous genera, Glomus, Gigaspora, and Acaulospora, were identified during the course of investigation. Glomus, however, was dominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号