首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This review summarises current knowledge on root interactions in agroforestry systems, discussing cases from temperate and tropical ecosystems and drawing on experiences from natural plant communities where data from agroforestry systems are lacking. There is an inherent conflict in agroforestry between expected favourable effects of tree root systems, e.g. on soil fertility and nutrient cycling, and competition between tree and crop roots. Root management attempts to optimise root functions and to stimulate facilitative and complementary interactions. It makes use of the plasticity of root systems to respond to environmental factors, including other root systems, with altered growth and physiology. Root management tools include species selection, spacing, nutrient distribution, and shoot pruning, among others. Root distribution determines potential zones of root interactions in the soil, but are also a result of such interactions. Plants tend to avoid excessive root competition both at the root system level and at the single-root level by spatial segregation. As a consequence, associated plant species develop vertically stratified root systems under certain conditions, leading to complementarity in the use of soil resources. Parameters of root competitiveness, such as root length density, mycorrhization and flexibility in response to water and nutrient patches in the soil, have to be considered for predicting the outcome of interspecific root interactions. The patterns of root activity around individual plants differ between species; knowing these may help to avoid excessive competition and unproductive nutrient losses in agroforestry systems through suitable spacing and fertiliser placement. The possibility of alleviating root competition by supplying limiting growth factors is critically assessed. A wide range of physical, chemical and biological interactions occurs not only in spatial agroforestry, but also in rotational systems. In a final part, the reviewed information is applied to different types of agroforestry systems: associations of trees with annual crops; associations of trees with grasses or perennial fodder and cover crops; associations of different tree and shrub species; and improved fallows. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Conservation practices including agroforestry and grass buffers are believed to reduce nonpoint source pollution (NPSP) from pastured watersheds. Agroforestry, a land management practice that intersperses agricultural crops with trees, has recently received increased attention in the temperate zone due to its environmental and economic benefits. However, studies are limited that have examined buffer effects on the quality of water from grazed pastures. Six treatment areas, two with agroforestry buffers, two with grass buffers, and two control treatments were used to test the hypothesis that agroforestry and grass buffers can be used to effectively reduce NPSP from pastured watersheds. Vegetation in grass buffer and pasture areas includes red clover (Trifolium pretense L.) and lespedeza (Kummerowia stipulacea Maxim.) planted into fescue (Festuca arundinacea Schreb.). Eastern cottonwood trees (Populus deltoides Bortr. ex Marsh.) were planted into fescue in agroforestry buffers. Soils at the site are mostly Menfro silt loam (fine-silty, mixed, superactive, mesic Typic Hapludalfs). Treatments were instrumented with two-foot H flumes, water samplers, and flow measuring devices in 2001. Composite water samples were analyzed for sediment and total nitrogen after each runoff event to compare treatment differences. Treatments with agroforestry and grass buffers had significantly lower runoff volumes as compared to the control. The loss of sediment and total nitrogen were smaller for the buffered treatments. The results of this study suggest that establishment of agroforestry and grass buffers help reduce NPSP pollution from pastured watersheds. It is anticipated as trees grow and roots occupy more soil volume, the reduction in N in runoff will increase on the agroforestry watershed.  相似文献   

3.
The effects of competing grasses on resource availability, growth and ecophysiological characteristics of 3-0 red pine (Pinus resinosa Ait.) seedlings were examined the first two years following outplanting in Anoka County, Minnesota, USA. Equal numbers of seedlings were planted into suppressed and undisturbed grass communities in a sandy soil. Grass suppression was maintained throughout the first growing season, but partially discontinued thereafter on the site. During the first field season interference from grass reduced pine seedling root collar diameter, needle length, number of new root tips, and lateral root length by over 40%. Mean pre-dawn needle water potential was 0.55 MPa lower in undisturbed grass plots during a brief drought in year one, but otherwise water stress was not significantly (p=0.05) influenced by grass interference. The presence of grass also reduced, up to 50%, the photosynthetically active radiation reaching the seedling canopy. At the end of year one, total biomass N, P, K, and Ca content were significantly (p=0.05) less in seedlings growing in the undisturbed grass community. Nitrogen was deficient in seedlings growing in grass. After two growing seasons, seedling shoot length (p=0.03), root collar diameter (p=0.001), and needle length (p=0.001) were significantly less (40, 54 and 20%, respectively) for seedlings growing in undisturbed grass. Seedling growth reductions induced by grass competition were associated with multiple environmental stressors in the field and not restricted to water stress as was observed in earlier studies with pine species at low and mid-latitude sites.  相似文献   

4.
By influencing belowground processes, streamside vegetation affects soil processes important to surface water quality. We conducted this study to compare root distributions and dynamics, and total soil respiration among six sites comprising an agricultural buffer system: poplar (Populus × euroamericana‘ Eugenei), switchgrass, cool-season pasture grasses, corn (Zea mays L.), and soybean (Glycine max (L.) Merr.). The dynamics of fine (0--2 mm) and small roots (2--5 mm) were assessed by sequentially collecting 35 cm deep, 5.4 cm diameter cores from April through November. Coarse roots were described by excavating 1 × 1 × 2 m pits and collecting all roots in 20 cm depth increments. Root distributions within the soil profile were determined by counting roots that intersected the walls of the excavated pits. Soil respiration was measured monthly from July to October using the soda-lime technique. Over the sampling period, live fine-root biomass in the top 35 cm of soil averaged over 6 Mg ha-1 for the cool-season grass, poplar, and switchgrass sites while root biomass in the crop fields was < 2.3 Mg ha-1 at its maximum. Roots of trees, cool-season grasses, and switchgrass extended to more than 1.5 m in depth, with switchgrass roots being more widely distributed in deeper horizons. Root density was significantly greater under switchgrass and cool-season grasses than under corn or soybean. Soil respiration rates, which ranged from 1.4--7.2 g C m-2 day-1, were up to twice as high under the poplar, switchgrass and cool-season grasses as in the cropped fields. Abundant fine roots, deep rooting depths, and high soil respiration rates in the multispecies riparian buffer zones suggest that these buffer systems added more organic matter to the soil profile, and therefore provided better conditions for nutrient sequestration within the riparian buffers. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
华北低丘山区核桃-决明子复合模式的根系分布   总被引:4,自引:0,他引:4       下载免费PDF全文
采用分层挖掘法,对株行距为3 m×8 m的核桃-决明子复合模式中的根生物量、总根长密度、吸收根的根长密度和根系直径等进行了调查。结果表明:核桃单作的总根长密度比核桃间作的高7%左右,且在各个土层中吸收根的根长密度都高于核桃间作,而二者的总根生物量和根系直径则差异较小。决明子单作的根系直径比间作决明子的大27.73%,但二者的根长密度和根生物量则差异不大。在核桃-决明子复合模式中,核桃总根生物量和吸收根长均占复合模式总根量的一半以上,其中,在水平方向上,决明子在树行南侧2.5、4.0 m位置根系分布最多,而树行南北1.5 m范围内则较少;核桃根系则主要分布在树行两侧1.5 m范围内。垂直方向上,核桃在30~80 cm土层中的根生物量和吸收根长分别占其总量的64.79%和61.17%,而59.54%的决明子根系分布在0~20 cm土壤中。  相似文献   

6.
This literature review presents information about the role of tree root systems for the functioning of agroforestry associations and rotations and attempts to identify root-related criteria for the selection of agroforestry tree species and the design of agroforestry systems. Tree roots are expected to enrich soil with organic matter, feed soil biomass, reduce nutrient leaching, recycle nutrients from the subsoil below the crop rooting zone and improve soil physical properties, among other functions. On the other hand, they can depress crop yields in tree-crop associations through root competition. After a brief review of favourable tree root effects in agroforestry, four strategies are discussed as potential solutions to the dilemma of the simultaneous occurrence of desirable and undesirable tree root functions: 1) the selection of tree species with low root competitiveness, eventually supplemented by shoot pruning; 2) the identification of trees with a root distribution complementary to that of the crops; 3) the reduction of tree root length density by trenching or tillage; and 4) the use of agroforestry rotations instead of tree-crop associations. The potential and limitations of these strategies are discussed, and deficits in current understanding of tree root ecology in agroforestry are identified. In addition to the selection of tree species and provenances according to root-related criteria, the development of management techniques that allow the manipulation of tree root systems to maximize benefit and minimize competition are proposed as important tasks for future agroforestry research.  相似文献   

7.
Richardson A 《Tree physiology》2000,20(12):825-829
Accurate estimates of root growth rates are important for root system modeling, and the spread of root systems may be an important determinant of belowground site occupancy. Estimating root system growth rates is complicated because missing, discontinuous, and false annual growth rings make root cross sections difficult to age. These irregularities can occur even in roots of dominant conifers with rare or absent stem growth ring abnormalities. Incomplete rings were noted in the root growth rings of nine co-dominant interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) trees. Coarse root (> 1.0-cm diameter) elongation rates were estimated by fitting a geometric mean regression line to ring count and lateral distance data. In all nine roots examined, the geometric mean regression slope was well within the range of the 95% confidence interval for the ordinary least squares regression of lateral distance versus age, suggesting that measurement error may have been negligible. Coarse root elongation rates (which ranged from 2.8 to 15.3 cm year(-1) and averaged 7.4 cm year(-1)) in the interior Douglas-fir trees studied were much lower than those reported by others. This discrepancy may be a result of limited soil water availability, soil heterogeneity (both soil water content and soil texture were highly variable across short distances) and fragmentation of belowground growing space.  相似文献   

8.
Biophysical interactions in tropical agroforestry systems   总被引:2,自引:0,他引:2  
The rate and extent to which biophysical resources are captured and utilized by the components of an agroforestry system are determined by the nature and intensity of interactions between the components. The net effect of these interactions is often determined by the influence of the tree component on the other component(s) and/or on the overall system, and is expressed in terms of such quantifiable responses as soil fertility changes, microclimate modification, resource (water, nutrients, and light) availability and utilization, pest and disease incidence, and allelopathy. The paper reviews such manifestations of biophysical interactions in major simultaneous (e.g., hedgerow intercropping and trees on croplands) and sequential (e.g., planted tree fallows) agroforestry systems. In hedgerow intercropping (HI), the hedge/crop interactions are dominated by soil fertility improvement and competition for growth resources. Higher crop yields in HI than in sole cropping are noted mostly in inherently fertile soils in humid and subhumid tropics, and are caused by large fertility improvement relative to the effects of competition. But, yield increases are rare in semiarid tropics and infertile acid soils because fertility improvement does not offset the large competitive effect of hedgerows with crops for water and/or nutrients. Whereas improved soil fertility and microclimate positively influence crop yields underneath the canopies of scattered trees in semiarid climates, intense shading caused by large, evergreen trees negatively affects the yields. Trees in boundary plantings compete with crops for above- and belowground resources, with belowground competition of trees often extending beyond their crown areas. The major biophysical interactions in improved planted fallows are improvement of soil nitrogen status and reduction of weeds in the fallow phase, and increased crop yields in the subsequent cropping phase. In such systems, the negative effects of competition and micro-climate modification are avoided in the absence of direct tree–crop interactions. Future research on biophysical interactions should concentrate on (1) exploiting the diversity that exists within and between species of trees, (2) determining interactions between systems at different spatial (farm and landscape) and temporal scales, (3) improving understanding of belowground interactions, (4) assessing the environmental implications of agroforestry, particularly in the humid tropics, and (5) devising management schedules for agroforestry components in order to maximize benefits. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Our knowledge of the pine reproductive process is confined to the developmental stages and time relations in a particular species. Lacking in the literature is a comparative analysis from a broader perspective such as pines from temperate versus tropical regions. Also, important information that may have beneficial implications for pine breeding and management purposes may be missed by going with a single generalized reproductive cycle model which is usually derived from well-studied northern temperate species. Detailed developmental analysis of the reproductive process is necessary, particularly for tropical pines where information is limited. Most pines undergo a reproductive cycle that spans three calendar years with two dormant periods. In temperate pines, many of the stages that are initiated by fall generally come to a halt during the winter and development resumes in spring of the following year. In tropical pines, reproductive development appears to be generally a continuous process characterized by a gradual rate of development with indistinct first dormant period. The distinct first dormant period in north temperate pines serves to synchronize pollen release and seed-cone receptivity which results in higher pollination success and seed production. Tropical pines exhibit asynchrony in pollen release and thus has extended pollination period. Relatively less pollen are available which results in lower pollination success and seed set. Interestingly, since asynchrony may enhance cross-pollination, tropical pines might benefit from this through the capture of genetic diversity. The length of the second dormant period is generally the same in temperate and tropical pines which indicates strong genetic control.  相似文献   

10.
Container-grown walnut seedlings (Juglans regia L.) were subjected to competition with rye grass (Lolium perenne L.) and to a 2-week soil drying cycle. One and 2 weeks after the beginning of the drought treatment, H2 18O (delta approximately equals +100%) was added to the bottom layer of soil in the plant containers to create a vertical H2 18O gradient. Rye grass competition reduced aboveground and belowground biomass of the walnut seedlings by 60%, whereas drought had no effect. The presence of rye grass reduced the dry weight of walnut roots in the upper soil layer and caused a 50% reduction in lateral root length. Rye grass competition combined with the drought treatment reduced walnut leaf CO2 assimilation rate (A) and leaf conductance (gw) by 20 and 39%, respectively. Transpiration rates in rye grass, both at the leaf level and at the plant or tiller level, were higher than in walnut seedlings. Leaf intrinsic water-use efficiency (A/gw) of walnut seedlings increased in response to drought and no differences were observed between the single-species and mixed-species treatments, as confirmed by leaf carbon isotope discrimination measurements. Measurement of delta18O in soil and in plant xylem sap indicated that the presence of rye grass did not affect the vertical profile of soil water uptake by walnut seedlings. Walnut seedlings and rye grass withdrew water from the top and middle soil layers in well-watered conditions, whereas during the drought treatment, walnut seedlings obtained water from all soil layers, but rye grass took up water from the bottom soil layer only.  相似文献   

11.
We examined morphological and physiological responses of beech (Fagus sylvatica L.) seedlings to grass-induced below ground competition in full-light conditions. Two-year-old beech seedlings were grown during two growing seasons in 160-l containers in bare soil or with a mixture of five grass species widely represented in semi-natural meadows of central France. At the end of the second growing season, beech seedlings in the presence of grass showed significant reductions in diameter and height growth, annual shoot elongation, and stem, root and leaf biomass, but an increase in root to shoot biomass ratio. Grasses greatly reduced soil water availability, which was positively correlated with daily seedling diameter increment. Beech seedlings seemed to respond to water deficit by anticipating stomatal closure. There was evidence of competition for nitrogen (N) by grasses, but its effect on seedling development could not be separated from that of competition for water. By labeling the plants with 15N, we showed that beech seedlings absorbed little N when grasses were present, whereas grasses took up more than 97% of the total N absorbed in the container. We conclude that, even if beech seedlings display morphological and physiological adaptation to below ground competition, their development in full-light conditions may be strongly restricted by competition from grass species.  相似文献   

12.
Standing biomass, net primary production (NPP) and soil carbon (C) pools were studied in a 67-year-old pedunculate oak (Quercus robur L.) stand and a neighboring 74-year- old Scots pine (Pinus sylvestris L.) stand in the Belgian Campine region. Despite a 14% lower tree density and a lower tree height in the oak stand, standing biomass was slightly higher than in the pine stand (177 and 169 Mg ha(-1) in oaks and pines, respectively), indicating that individual oak trees contained more biomass than pine trees of similar diameter. Moreover, NPP in the oak stand was more than double that in the pine stand (17.7 and 8.1 Mg ha(-1) year(-1), respectively). Several observations indicated that soil organic matter accumulated at higher rates under pines than under oaks. We therefore hypothesized that the pines were exhibiting an age-related decline in productivity due to nutrient limitation. The poor decomposability of pine litter resulted in the observed accumulation of organic matter. The subsequent immobilization of nutrients in the organic matter, combined with the already nutrient-poor soil conditions, resulted in a decrease in total NPP over time, as well as in a substantial shift in the allocation of NPP toward fine roots. In the oak stand, litter is less recalcitrant to decay and soil acidity is less severe; hence, organic matter does not accumulate and nutrients are recycled. This probably explains why NPP was much higher in the oaks than in the pines and why only a small proportion of NPP was allocated to oak fine roots.  相似文献   

13.
Soil water content and infiltration in agroforestry buffer strips   总被引:1,自引:1,他引:0  
Agroforestry practices are receiving increased attention in temperate zones due to their environmental and economic benefits. To test the hypothesis that agroforestry buffers reduce runoff by increased infiltration, water use, and water storage; profile water content and soil water infiltration were measured for a Putnam soil (fine, smectitic, mesic Vertic Albaqualf). The watershed was under no-till management with a corn (Zea mays L.)-soybean (Glycine max L.) rotation since 1991. Agroforestry buffer strips, 4.5 m wide and 36.5 m apart, were planted with redtop (Agrostis gigantea Roth), brome (Bromus spp.), and birdsfoot trefoil (Lotus corniculatus L.). Pin oak (Quercus palustris Muenchh.), swamp white oak (Q. bicolor Willd.) and bur oak (Q. macrocarpa Michx.) trees were planted at 3-m intervals in the center of the agroforestry buffers in 1997. Ponded water infiltration was measured in agroforestry and grass buffers and row crop areas. Water content in agroforestry and row crop areas at 5, 10, 20, and 40 cm depths were measured throughout the year. Quasi-steady infiltration rates were not different (P > 0.05) among the treatments. Agroforestry had lower soil water content than row crop areas (P < 0.05) during the growing season. Higher water content after the principal recharge event in the agroforestry treatment was attributed to better infiltration through the root system. Results show that agroforestry buffer strips reduce soil water content during critical times such as fallow periods, and increase water infiltration and water storage. Therefore, adoption of agroforestry buffer practices may reduce runoff and soil loss from watersheds in row crop management.  相似文献   

14.
Brooks JR  Meinzer FC  Coulombe R  Gregg J 《Tree physiology》2002,22(15-16):1107-1117
The magnitude of hydraulic redistribution of soil water by roots and its impact on soil water balance were estimated by monitoring time courses of soil water status at multiple depths and root sap flow under drought conditions in a dry ponderosa pine (Pinus ponderosa Dougl. ex Laws) ecosystem and in a moist Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) ecosystem. The fate of deuterated water applied to small plots to create a strong horizontal soil water potential gradient was also monitored to assess the potential for horizontal redistribution of water and utilization of redistributed water by co-occurring shallow-rooted plants. In a 20-year-old Douglas-fir stand, approximately 28% of the water removed daily from the upper 2 m of soil was replaced by nocturnal hydraulic redistribution during late August. In an old-growth ponderosa pine stand, approximately 35% of the total daily water utilization from the upper 2 m of soil appeared to be replaced by hydraulic redistribution during July and August. By late September, hydraulic redistribution in the ponderosa pine stand was no longer apparent, even though total water use from the upper 2 m of soil was nearly identical to that observed earlier. Based on these results, hydraulic redistribution would allow 21 and 16 additional days of stored water to remain in the upper soil horizons in the ponderosa pine and Douglas-fir stands, respectively, after a 60-day drought. At both sites, localized applications of deuterated water induced strong reversal of root sap flow and caused soil water content to cease declining or even temporarily increase at locations too distant from the site of water application to have been influenced by movement of water through the soil without facilitation by roots. Xylem water deuterium values of ponderosa pine seedlings suggested utilization of redistributed water. Therefore, hydraulic redistribution may enhance seedling survival and maintain overstory transpiration during summer drought. These first approximations of the extent of hydraulic redistribution in these ecosystems suggest that it is likely to be an important process in both wet and dry forests of the Pacific Northwest.  相似文献   

15.
Planting slash pine in a dense pasture sod   总被引:1,自引:1,他引:0  
Recommendations for planting pines usually include providing a competition-free site to assure establishment and good early growth. When combining pines and pasture in agroforestry systems, the possibility of planting pines directly into a pasture sod without site treatment would be economically desirable. In south Georgia, USA, slash pine (Pinus elliottii) was planted into a pasture sod and on well-disked sites; both with and without annual fertilization. Partial weed control was maintained in subsequent years on the cultivated treatments and the pasture sod was mowed periodically.Slash pine establishment and growth rate through 5 years generally was not different among treatments. Survival was 96% intially and 86% after 5 years. The pines grew rapidly with no measurable advantage from cultivation or fertilization.This alternative to providing a competition-free environment needs to be tested under differing climates, soils, tree species, and pasture species. It could be a suitable technique in various situations and of special interest to small, nonindustrial landowners.Cooperative study between the Coastal Plain Experiment Station, University of Georgia, and USDA Forest Service, Tifton, GA 31794, USA.  相似文献   

16.
高速公路坡面防护草种选择和应用技术研究   总被引:8,自引:1,他引:8  
根据试验及调查结果,分析研究了护坡草皮生长及水土保持效果的评价指标,分析评价了不同草种,选用不同的种植方法,在不同季节种植的生长状况和水土保持效果,并根据防护效果和不同的工程造价,确立适宜于我省或相近气候区域内公路坡面防护的优良草种及其种植方法。  相似文献   

17.
根据太行山低山丘陵区的特点及复合农林业结构配置的需要,进行了水保林树种、牧草植物、中药材品种的筛选实验。结果表明:(1)火炬树、刺槐、五角枫、臭椿、侧柏5个乔木树种为低山石灰岩区水保林适生树种;(2)紫花苜蓿为石灰岩地区林草复合首选草种;(3)石灰岩区适用于复合经营的中药材品种有太子参、半夏、白芨、细辛4种。  相似文献   

18.
Omi SK  Yoder B  Rose R 《Tree physiology》1991,8(3):315-325
Post-storage water relations, stomatal conductance, and root growth potential were examined in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings from high- and low-elevation seed sources that had been lifted either in October or November and freezer stored, or in March, and then grown hydroponically in a greenhouse for 31 days. Seedlings lifted in October had poor root initiation (< 17 new roots per seedling), low predawn leaf water potentials (< -1.5 MPa), and low stomatal conductance (7.10 mmol m(-2) s(-1)) compared with seedlings lifted in November or March. There was little difference in post-storage water relations and stomatal conductance between seedlings lifted in November and those lifted in March. Throughout the 31-day test, seedlings from the high-elevation seed source produced 3-9 times more new roots, had higher predawn leaf water potentials (-0.6 to -0.7 MPa versus -1.1 to -1.6 MPa), and 1.3-5 times greater stomatal conductance than seedlings from the low-elevation seed source. For all seedlings on Day 31, the number of new roots was significantly related to predawn leaf water potential (r(2) = 0.65) and stomatal conductance (r(2) = 0.82). Similarly, the dry weight of new roots per seedling on Day 31 accounted for a significant amount of the variation in predawn leaf water potential (r(2) = 0.81) and stomatal conductance (r(2) = 0.49).  相似文献   

19.
Pessimistic forecasts often suggest that widely spaced trees enjoying free growth (no competition with other trees) will fail to provide high quality timber. This challenges the temperate agroforestry practice of planting widely spaced trees to produce high quality timber. We analyse tree growth data from recent temperate agroforestry plantations aged three to eight years, featuring low tree plantation densities (50 to 400 stems ha−1), the association of trees with intercrops (silvoarable systems) or animals (silvopastoral systems), and the use of plastic shelter tubes to protect trees (1.2 to 2.5 m high) and avoid damage by cattle or sheep in pastures or facilitate maintenance in silvoarable systems. The plantations are located in climates ranging from Mediterranean, dry central temperate plains, cold and wet central uplands to mild oceanic areas. Some plantations included a forestry control (high density of plantation, no tree shelter, no intercropping nor grazing). Trees were evaluated for height and diameter growth and stem form (straightness and absence of knots). Trees in most agroforestry plots grew satisfactorily, often faster than in forestry control plots. In some experimental plots, average annual height increments as high as 1 m and diameter increments as high as 1.5 cm were observed. Few agroforestry plantations were unsuccessful, and the reasons for the failures are discussed: animal damage in silvopastoral plots, but also a wrong choice of tree species unsuitable for local soil and climate characteristics. From these early results we can formulate some guidelines for designing future agroforestry plantations in temperate climates, concerning tree density, use of tree shelters and care required for widely spaced trees. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Our first objective was to link the seasonality of fine root dynamics with soil respiration in a ponderosa pine (Pinus ponderosa P. & C. Lawson) plantation located in the Sierra Nevada of California. The second objective was to examine how canopy photosynthesis influences fine root initiation, growth and mortality in this ecosystem. We compared CO2 flux measurements with aboveground and belowground root dynamics. Initiation of fine root growth coincided with tree stem thickening and shoot elongation, preceding new needle growth. In the spring, root, shoot and stem growth occurred simultaneously with the increase in canopy photosynthesis. Compared with the other tree components, initial growth rate of fine roots was the highest and their growing period was the shortest. Both above and belowground components completed 90% of their growth by the end of July and the growing season lasted approximately 80 days. The period for optimal growth is short at the study site because of low soil temperatures during winter and low soil water content during summer. High photosynthetic rates were observed following unusual late-summer rains, but tree growth did not resume. The autotrophic contribution to soil respiration was 49% over the whole season, with daily contributions ranging between 18 and 87%. Increases in soil and ecosystem respiration were observed during spring growth; however, the largest variation in soil respiration occurred during summer rain events when no growth was observed. Both the magnitude and persistence of the soil respiration pulses were positively correlated with the amount of rain. These pulses accounted for 16.5% of soil respiration between Days 130 and 329.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号