首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tomatoes ( Lycopersicon esculentum Mill.) have been recognized as an important source of dietary flavonoids because of a high consumption worldwide. The qualitative and quantitative flavonoid compositions of assorted tomato cultivars including individual quantitative contributions of the five most significant flavonoids have been determined in this work. The dihydrochalcone phloretin 3',5'-di-C-beta-glucopyranoside and the flavonol quercetin 3-O-(2'-O-beta-apiofuranosyl-6'-O-alpha-rhamnopyranosyl-beta-glucopyranoside) were identified for the first time in Solanaceae spp. and found to be among the main flavonoids in all cultivars. Phloretin 3',5'-di-C-glc is the first C-glycoside identified in tomatoes and also the first dihydrochalcone from this species. In addition, chalconaringenin, kaempferol 3-rutinoside, and quercetin 3-rutinoside (rutin), though previously reported to occur in tomato, were fully characterized by extensive use of 2D NMR techniques and high-resolution LCMS. The total flavonoid content of different tomato types varied from 4 to 26 mg 100 (-1) g FW with chalconaringenin as the predominant compound comprising 35 to 71% of the total flavonoid content. The individual quantities of quercetin 3-O-(2'- O-beta-apiofuranosyl-6'- O-alpha-rhamnopyranosyl-beta-glucopyranoside) and phloretin 3',5'-di-C-beta-glucopyranoside was similar to that of rutin in several cultivars.  相似文献   

3.
Reversed-phase high-performance liquid chromatography (RP-HPLC) with photodiode array (PDA) and mass spectrometry (MS) detection was employed to study the accumulation of stilbenes and other naturally occurring polyphenol intermediates of flavonoid pathway in tomato fruits of plants genetically modified to synthesize resveratrol. The transgenic tomato fruits were obtained by overexpression of a grapevine gene encoding the enzyme stilbene synthase in tomato plants (Lycopersicon esculentum Mill.). Stilbenes and flavonoids, either glycosylated or free, were simultaneosly identified by electrospray interface (ESI)-MS in negative ionization mode and were quantified by PDA detection at the wavelength corresponding to their maximum absorbance. The two detectors were coupled online with an HPLC system utilizing a narrow-bore C18 reversed-phase column, which was eluted by a multistep gradient of increasing concentration of acetonitrile in water containing 0.5% (v/v) formic acid. The results of these analysis revealed that the genetic modification of the tomato plants originated different levels of accumulation of four stilbenes (i.e., trans- and cis-piceid and trans- and cis-resveratrol) in their fruit depending on the stages of ripening. Either at immature or at mature stages of ripening the stilbenes were preferentially accumulated in the fruit peel as the glycosylated form. The highest amount of trans-piceid and trans-resveratrol were found in the peel of fruits harvested at mature stage of ripening. The variations in the levels of rutin, naringenin, and chlorogenic acid found in the samples extracted from the fruits of transgenic tomato plants, in comparison to that determined in the control lines, seemed to be related to the genetic transformation, whose effect on the flavonoid biosynthetic pathway needs to be elucidated by additional studies.  相似文献   

4.
Isoflavones are legume-specific flavonoids best known for their potential cancer preventive and phytoestrogenic properties. In this study, we attempted to engineer the isoflavone pathway in the popular fruit crop tomato (Solanum lycopersicum L). Tomato plants were transformed with a soybean (Glycine max L) isoflavone synthase (GmIFS2) cDNA under the control of the cauliflower mosaic virus 35S promoter. LC-MS/MS analysis demonstrated the presence of genistin (genistein 7-O-glucoside) as the major isoflavone metabolite in the transgenic plants. Substantial amounts of genistin (up to 90 nmol/g FW) were found in leaves, while the levels were marginally detectable (less than 0.5 nmol/g FW) in fruit peels. In either case, no drastic variations in endogenous phenolic contents were observed. Fruit peels were found to accumulate high levels of naringenin chalcone, implicating the limitation of naringenin substrates for isoflavone synthesis. Our results suggested that tomato plants could be engineered to produce isoflavones without comprising the levels of endogenous flavonols, which are also health-beneficial, but it may be necessary to enhance the expression levels of chalcone isomerase simultaneously to achieve significant yields in edible tissues such as fruit peels.  相似文献   

5.
The outcome of different extraction procedures (microwave, ultrasound, Soxhlet, and maceration) on the antioxidant activity of seeds, leaves, pulp, and fruits of Hippophae rhamnoides (sea buckthorn or SBT) was investigated by two different bioassays: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. The SBT extracts were found to possess strong antioxidant activity measured in terms of TEAC (2.03-182.13 and 6.97-282.75 mg/g) with ABTS and DPPH assays, respectively. In general, the antioxidant capacity of microwave-assisted extracts was found to be significantly higher than those obtained by ultrasound-assisted extraction (UAE) and maceration while being slightly higher than Soxhlet extracts. Further, microwave extracts of seeds were found to possess maximum antioxidant capacity followed by leaves, fruits, and pulp. Also, the chemical composition of extracts, studied in terms of the total phenolic content, was found to be in the range of 1.9-23.5 mg/g Gallic acid equivalent (GAE), which indicates a strong correlation between antioxidant activity and phenolic content present in the SBT. In addition, some of its bioactive phenolic constituents, such as rutin ( 1), quercetin-3- O-galactoside ( 2), quercetin ( 3), myricetin ( 4), kaempferol ( 5), and isorhamnetin ( 6), were also quantified in different extracts by reverse-phase high-performance liquid chromatography (RP-HPLC).  相似文献   

6.
Prenylated flavonoids found in hops and beer, i.e., prenylchalcones and prenylflavanones, were examined for their ability to inhibit in vitro oxidation of human low-density lipoprotein (LDL). The oxidation of LDL was assessed by the formation of conjugated dienes and thiobarbituric acid-reactive substances (TBARS) and the loss of tryptophan fluorescence. At concentrations of 5 and 25 microM, all of the prenylchalcones tested inhibited the oxidation of LDL (50 microg protein/ml) induced by 2 microM copper sulfate. The prenylflavanones showed less antioxidant activity than the prenylchalcones, both at 5 and 25 microM. At 25 microM, the nonprenylated chalcone, chalconaringenin (CN), and the nonprenylated flavanone, naringenin (NG), exerted prooxidant effects on LDL oxidation, based on TBARS formation. Xanthohumol (XN), the major prenylchalcone in hops and beer, showed high antioxidant activity in inhibiting LDL oxidation, higher than alpha-tocopherol and the isoflavone genistein but lower than the flavonol quercetin. When combined, XN and alpha-tocopherol completely inhibited copper-mediated LDL oxidation. These findings suggest that prenylchalcones and prenylflavanones found in hops and beer protect human LDL from oxidation and that prenylation antagonizes the prooxidant effects of the chalcone, CN, and the flavanone, NG.  相似文献   

7.
The present study aims first to compare the antioxidant microconstituent contents between organically and conventionally grown tomatoes and, second, to evaluate whether the consumption of purees made of these tomatoes can differently affect the plasma levels of antioxidant microconstituents in humans. When results were expressed as fresh matter, organic tomatoes had higher vitamin C, carotenoids, and polyphenol contents (except for chlorogenic acid) than conventional tomatoes. When results were expressed as dry matter, no significant difference was found for lycopene and naringenin. In tomato purees, no difference in carotenoid content was found between the two modes of culture, whereas the concentrations of vitamin C and polyphenols remained higher in purees made out of organic tomatoes. For the nutritional intervention, no significant difference (after 3 weeks of consumption of 96 g/day of tomato puree) was found between the two purees with regard to their ability to affect the plasma levels of the two major antioxidants, vitamin C and lycopene.  相似文献   

8.
The contents of chalconaringenin, chlorogenic acid, rutin, ascorbic acid, lycopene, and beta-carotene were analyzed during postharvest and vine ripening of cherry tomatoes (Lycopersicon esculentumMill.) (cv. Jennita) produced in a greenhouse. A remarkable decrease in the content of chalconaringenin took place during postharvest ripening. The tomatoes were found to contain 15.26 mg 100 g(-1) fresh weight (FW) at harvest but held only 0.41 mg after 3 weeks at 20 degrees C in darkness. Chalconaringenin did not convert into naringenin. The content of chlorogenic acid fell from 0.51 to 0.06 mg 100 g(-1) FW at the same conditions. The content of rutin and that of total phenolics remained stable during postharvest ripening. The amounts of lycopene as well as beta-carotene and ascorbic acid increased during postharvest ripening. No significant change in the amount of methanol soluble antioxidants or total soluble solids was found during postharvest ripening of the tomato fruits. During vine ripening, the total amount of phenolics and that of soluble solids (% Brix) increased. The content of phenolics correlated well with the content of methanol soluble antioxidants (p < 0.001). The amount of ascorbic acid increased from 9.7 mg in green-yellow tomatoes to 17.1 mg 100 g(-1) FW in red tomatoes. The amount of chalconaringenin decreased to 8.16 mg 100 g(-1) FW, whereas no significant change was observed for chlorogenic acid or rutin. Possible causes for the decrease in chalconaringenin are discussed.  相似文献   

9.
Antioxidant activity of citrus limonoids, flavonoids, and coumarins   总被引:12,自引:0,他引:12  
A variety of in vitro models such as beta-carotene-linoleic acid, 1,1-diphenyl-2-picryl hydrazyl (DPPH), superoxide, and hamster low-density lipoprotein (LDL) were used to measure the antioxidant activity of 11 citrus bioactive compounds. The compounds tested included two limonoids, limonin (Lim) and limonin 17-beta-D-glucopyranoside (LG); eight flavonoids, apigenin (Api), scutellarein (Scu), kaempferol (Kae), rutin trihydrate (Rut), neohesperidin (Neh), neoeriocitrin (Nee), naringenin (Ngn), and naringin(Ng); and a coumarin (bergapten). The above compounds were tested at concentration of 10 microM in all four methods. It was found that Lim, LG, and Ber inhibited <7%, whereas Scu, Kae, and Rut inhibited 51.3%, 47.0%, and 44.4%, respectively, using the beta-carotene-linoleate model system. Lim, LG, Rut, Scu, Nee, and Kae showed 0.5% 0.25%, 32.2%, 18.3%, 17.2%, and 12.2%, respectively, free radical scavenging activity using the DPPH method. In the superoxide model, Lim, LG, and Ber inhibited the production of superoxide radicals by 2.5-10%, while the flavonoids such as Rut, Scu, Nee, and Neh inhibited superoxide formation by 64.1%, 52.1%, 48.3%, and 37.7%, respectively. However, LG did not inhibit LDL oxidation in the hamster LDL model. But, Lim and Ber offered some protection against LDL oxidation, increasing lag time to 345 min (3-fold) and 160 min (33% increase), respectively, while both Rut and Nee increased lag time to 2800 min (23-fold). Scu and Kae increased lag time to 2140 min (18-fold) and 1879 min (15.7-fold), respectively. In general, it seems that flavonoids, which contain a chromanol ring system, had stronger antioxidant activity as compared to limonoids and bergapten, which lack the hydroxy groups. The present study confirmed that several structural features were linked to the strong antioxidant activity of flavonoids. This is the first report on the antioxidant activity of limonin, limonin glucoside, and neoeriocitrin.  相似文献   

10.
为筛选出欧李叶片类黄酮和9种类黄酮物质中单一物质含量较高的品种,并分析确定具有抗氧化和抑制酪氨酸酶活性的物质,本研究以38份欧李种质基生枝成熟期叶片为试材,利用超高效液相色谱法(UHPLC)测定儿茶素、表儿茶素、甘草素、芦丁、槲皮素、槲皮素-7-O-葡萄糖苷、杨梅素、光甘草定、根皮素活性物质含量,对其抗氧化及抑制酪氨酸...  相似文献   

11.
The objective of this study was to investigate the inhibitory effect of naturally occurring flavonoids on individual stage of protein glycation in vitro using the model systems of delta-Gluconolactone assay (early stage), BSA-methylglyoxal assay (middle stage), BSA-glucose assay, and G.K. peptide-ribose assay (last stage). In the early stage of protein glycation, luteolin, qucertin, and rutin exhibited significant inhibitory activity on HbA1C formation (p < 0.01), which were more effective than that of aminoguanidine (AG, 10 mM), a well-known inhibitor for advanced glycation endproducts (AGEs). For the middle stage, luteolin and rutin developed more significant inhibitory effect on methylglyoxal-medicated protein modification, and the IC50's were 66.1 and 71.8 microM, respectively. In the last stage of glycation, luteolin was found to be potent inhibitors of both the AGEs formation and the subsequent cross-linking of proteins. In addition, phenyl-tert-butyl-nitron served as a spin-trapping agent, and electron spin resonance (ESR) was used to explore the possible mechanism of the inhibitory effect of flavonoids on glycation. The results indicated that protein glycation was accompanied by oxidative reactions, as the ESR spectra showed a clear-cut radical signal. Statistical analysis showed that inhibitory capability of flavonoids against protein glycation was remarkably related to the scavenging free radicals derived from glycoxidation process (r = 0.79, p < 0.01). Consequently, the inhibitory mechanism of flavonoids against glycation was, at least partly, due to their antioxidant properties.  相似文献   

12.
Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals   总被引:11,自引:0,他引:11  
To express the antioxidant capacity of plant foods in a more familiar and easily understood manner (equivalent to vitamin C mg/100 g), two stable radical species, ABTS(*)(-) and DPPH(*), commonly used for antioxidant activity measurements, were employed independently to evaluate their efficacies using apple polyphenolic extracts and seven polyphenolic standards including synthetic Trolox. Their antioxidant activities were expressed as vitamin C equivalent antioxidant capacity (VCEAC) in mg/100 g apple or mg/100 mL of the reference chemical compounds in 10 and 30 min using the ABTS(*)(-) and DPPH(*) scavenging assays, respectively. The antioxidant capacity of Gala apples and seven phenolic standards, determined by both ABTS(*)(-) and DPPH(*) scavenging assays, showed a dose-response of the first-order. Fresh Gala apples had a VCEAC of 205.4 +/- 5.6 mg/100 g using the ABTS assay, and the relative VCEACs of phenolic standards were as follows: gallic acid > quercetin > epicatechin > catechin > vitamin C > rutin > chlorogenic acid > Trolox. With the DPPH radical assay, the VCEAC of fresh Gala apples was 136.0 +/- 6.6 mg/100 g, and the relative VCEACs of seven phenolic standards were, in decreasing order, as follows: gallic acid > quercetin > epicatechin > catechin > or = vitamin C > Trolox > rutin > chlorogenic acid. Because the ABTS assay can be used in both organic and aqueous solvent systems, employs a specific absorbance at a wavelength remote from the visible region, and requires a short reaction time, it is a more desirable method than the DPPH assay. Therefore, it is recommended that antioxidant capacity be expressed as vitamin C mg/100 g equivalent (VCEAC) using the ABTS assay.  相似文献   

13.
The free radical scavenging activities of two major flavonoids (baicalein and baicalin) in Scutellaria baicalensis were determined. The antioxidant capacities of baicalein and baicalin were determined by the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)(*)(-) scavenging assay and showed about 110 and 70% vitamin C equivalent antioxidant capacity, respectively. Because amyloid beta (Abeta) protein is known to increase free radical production and lipid peroxidation in PC12 nerve cells, leading to apoptosis and cell death, treatment with baicalein and baicalin may result in the prevention of cellular damage by the Abeta-induced reactive oxygen species. We found that baicalein and baicalin resulted in a dose-dependent anti-Abeta toxicity by means of three different assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction, lactate dehydrogenase release, and trypan blue exclusion assays]. These results suggest that baicalein as well as baicalin can reduce the cytotoxicity of Abeta protein in PC12 cells, possibly by a reduction of oxidative stress, and these flavonoids may be useful in the chemoprevention of Alzheimer's disease.  相似文献   

14.
Processed fruits and vegetables have been long considered to have lower nutritional value than their fresh commodities due to the loss of vitamin C during processing. This research group found vitamin C in apples contributed < 0.4% of total antioxidant activity, indicating most of the activity comes from the natural combination of phytochemicals. This suggests that processed fruits and vegetables may retain their antioxidant activity despite the loss of vitamin C. Here it is shown that thermal processing elevated total antioxidant activity and bioaccessible lycopene content in tomatoes and produced no significant changes in the total phenolics and total flavonoids content, although loss of vitamin C was observed. The raw tomato had 0.76 +/- 0.03 micromol of vitamin C/g of tomato. After 2, 15, and 30 min of heating at 88 degrees C, the vitamin C content significantly dropped to 0.68 +/- 0.02, 0.64 +/- 0.01, and 0.54 +/- 0.02 micromol of vitamin C/g of tomato, respectively (p < 0.01). The raw tomato had 2.01 +/- 0.04 mg of trans-lycopene/g of tomato. After 2, 15, and 30 min of heating at 88 degrees C, the trans-lycopene content had increased to 3.11+/- 0.04, 5.45 +/- 0.02, and 5.32 +/- 0.05 mg of trans-lycopene/g of tomato (p < 0.01). The antioxidant activity of raw tomatoes was 4.13 +/- 0.36 micromol of vitamin C equiv/g of tomato. With heat treatment at 88 degrees C for 2, 15, and 30 min, the total antioxidant activity significantly increased to 5.29 +/- 0.26, 5.53 +/- 0.24, and 6.70 +/- 0.25 micromol of vitamin C equiv/g of tomato, respectively (p < 0.01). There were no significant changes in either total phenolics or total flavonoids. These findings indicate thermal processing enhanced the nutritional value of tomatoes by increasing the bioaccessible lycopene content and total antioxidant activity and are against the notion that processed fruits and vegetables have lower nutritional value than fresh produce. This information may have a significant impact on consumers' food selection by increasing their consumption of fruits and vegetables to reduce the risks of chronic diseases.  相似文献   

15.
The content of selected plant constituents was measured in cherry tomatoes (Lycopersicon esculentumMill. cv. Jennita) during conventional Norwegian tomato production in a greenhouse from May until October 2004. Samples were collected according to standard production procedure with orange-yellow colored fruits at weight in the range of 12.4-19.3 g and size in the range of 28.9-33.0 mm (diameter). The content of selected compounds based on 100 g FW were found to vary in the following range during the season: 7.38-28.38 mg of chalconaringenin, 0.32-0.92 mg of rutin, 0.24-1.06 mg of chlorogenic acid, 5.60-20.02 mg of ascorbic acid, 1.60-5.54 mg of lycopene, and 0.37-0.55 mg beta-carotene. Only minute amounts of naringenin together with kaempferol 3-rutinoside and caffeic acid, which previously have been reported from tomatoes, were detected. The content of chalconaringenin to rutin and that of lycopene to beta-carotene showed a strong correlation during the season (p < 0.001). The content of total phenolics and methanol-soluble antioxidants also showed a correlation (p < 0.001), and were found in the range 14.6-32.6 mg of gallic acid equivalents (GAE)/100 g fresh weight (FW) and 445-737 micromol of Fe(II)/100 g FW, respectively. Seasonal variation in the level of plant constituents is shown to be related to photon flux density and fertilization level.  相似文献   

16.
Lipase-catalyzed synthesis of lipophilic phenolic antioxidants was carried out with a concentrate of n-3 polyunsaturated fatty acids (PUFAs), recovered from oil extracted from salmon ( Salmon salar ) byproduct. Vanillyl alcohol and rutin were selected for the esterification reaction, and obtained esters yields were 60 and 30%, respectively. The antioxidant activities of the esters were compared with those of commercial butylated hydroxytoluene (BHT) and α-tocopherol using DPPH radical scavenging and thiobarbituric acid assays. In the DPPH assay, rutin esters showed better activity than vanillyl esters, and on the contrary in lipophilic medium, vanillyl esters were found to be superior to rutin esters. In bulk oil system, the antioxidant activities of rutin and vanillyl derivatives were lower than that of BHT and α-tocopherol, but in emulsion, they showed better activity than α-tocopherol. By attaching to natural phenolics, the PUFAs are protected against oxidation, and PUFA improves the hydrophobicity of the phenolic, which could enhance its function in lipid systems.  相似文献   

17.
The genetic modification in fruit and vegetables could lead to changes in metabolic pathways and, therefore, to the variation of the molecular pattern, with particular attention to antioxidant compounds not well-described in the literature. The aim of the present study was to compare the quality composition of transgenic wheat ( Triticum durum L.), corn ( Zea mays L.), and tomato ( Lycopersicum esculentum Mill.) to the nontransgenic control with a similar genetic background. In the first experiment, Ofanto wheat cultivar containing the tobacco rab1 gene and nontransgenic Ofanto were used. The second experiment compared two transgenic lines of corn containing Bacillus thuringiensis "Cry toxin" gene (PR33P67 and Pegaso Bt) to their nontransgenic forms. The third experiment was conducted on transgenic tomato ( Lycopersicum esculentum Mill.) containing the Agrobacterium rhizogenes rolD gene and its nontransgenic control (cv. Tondino). Conventional and genetically modified crops were compared in terms of fatty acids content, unsaponifiable fraction of antioxidants, total phenols, polyphenols, carotenoids, vitamin C, total antioxidant activity, and mineral composition. No significant differences were observed for qualitative traits analyzed in wheat and corn samples. In tomato samples, the total antioxidant activity (TAA), measured by FRAP assay, and the naringenin content showed a lower value in genetically modified organism (GMO) samples (0.35 mmol of Fe (2+) 100 g (-1) and 2.82 mg 100 g (-1), respectively), in comparison to its nontransgenic control (0.41 mmol of Fe (2+) 100 g (-1) and 4.17 mg 100 g (-1), respectively). On the basis of the principle of substantial equivalence, as articulated by the World Health Organization, the Organization for Economic Cooperation and Development, and the United Nations Food and Agriculture Organization, these data support the conclusion that GM events are nutritionally similar to conventional varieties of wheat, corn, and tomato on the market today.  相似文献   

18.
Stability of dried and intermediate moisture tomato pulp during storage   总被引:1,自引:0,他引:1  
Commercial tomato pulp was air-dried to two final moisture contents in order to obtain intermediate moisture pulp (IMP, 23% moisture) and dried pulp (DP, 9% moisture). IMP and DP were stored at 4, 20, and 37 degrees C for approximately 5 months; periodically samples were analyzed to evaluate heat and oxidative damage by measurement of color changes, total phenolics, rutin, lycopene and furosine concentrations, and antioxidant activity of the lipophilic extract. IMP and DP, despite different drying degree, had similar antioxidant activity; in fact, whereas lycopene was stable to drying treatments, ascorbic acid was totally degraded in both products. During storage, IMP and DP showed different behavior: IMP was more sensitive to degradation than DP, especially with regard to lycopene, rutin, and antioxidant activity degradation and to nonenzymatic browning. Effects of storage temperature varied with regard to different parameters: variations in rutin, furosine, and color indices were higher in products stored at higher temperatures, while lycopene and antioxidant activity of the lipophilic fraction were maximally degraded in products stored at 4 degrees C.  相似文献   

19.
The antioxidant activities of two freeze-dried tomato powders as additives for food fortification and stabilization were studied. The two tomato powders were obtained from the whole fruit and from the pulp after "serum" separation, respectively. The antioxidant activity was studied by measuring (a) the inhibition of the singlet oxygen-catalyzed oxidation of alpha-linolenic acid, in the presence or absence of copper ions, as a model of the oxidative processes occurring in foods, and (b) the inhibition of xanthine oxidase (XOD)- and myeloperoxidase (MPO)-catalyzed reactions and copper-induced lipid peroxidation. The partial separation of "serum" decreased the freeze-drying time by 50%. The partially fractionated tomato powder had a 60% lower phenolic content and an 11-fold higher lycopene content than the whole tomato powder, on a dry weight basis. Ascorbic acid was almost completely removed by fractionation. Both the powder obtained from the whole tomato and that obtained from the partially fractionated tomato had antioxidant activity in all the model systems used. Based on these results, we conclude that tomato powders have multifunctional properties, which could address the prevention of oxidative degradations both in foods and in vivo. Therefore, tomato can be regarded as source of food additives for fortification and stabilization, even if it is submitted to technological processes that can cause the loss of the more labile hydrophilic antioxidants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号