首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
We examined the effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on the rates of abnormal morphology in juvenile brown sole Pseudopleuronectes herzensteini. Larvae during the D–E stages (15–24 days post hatching) were fed live food containing various amounts of DHA and/or EPA prepared using emulsified oils (DHA ethyl ester, EPA ethyl ester, and corn oil). Larvae during the F–I stages were fed Artemia enriched with a commercial diet supplement. We found that DHA and EPA promoted larval development and improved the incidence of morphological abnormalities in brown sole juveniles to a similar extent. However, DHA was more effective than EPA in preventing the appearance of morphological abnormalities in brown sole. The incidence of normal morphology was clearly improved by an increase of the DHA content in brown sole larvae at 25 days post-hatching. These results suggest that it is important to promote larval development and feed larvae with live food containing high levels of DHA during the D–E stages to prevent morphological abnormalities in brown sole juveniles.  相似文献   

2.
The effects of weaning strategies of cobia (Rachycentron canadum L.) larvae to commercial microdiets, either from rotifers or from Artemia, on growth, survival and enzymatic digestive capacity, were investigated. In the first experiment, cobia larvae were weaned from rotifers by co-feeding with a microdiet (Otohime) from 8, 13 or 20 days post-hatching (dph). The larvae in the control treatment were fed rotifers (2–12 dph), Artemia nauplii from 7 dph, and co-fed with the microdiet from 20 dph. In the second experiment, the larvae were weaned from Artemia, which was fed to the larvae from 7 dph, by co-feeding with a microdiet (NRD) from 8, 13 or 18 dph. The larvae in control treatment were fed rotifers, then Artemia to the end of the experiment (28 dph). Weaning of cobia larvae onto a microdiet directly from rotifers significantly reduced growth, survival and digestive capacity of the larvae and did not lead to larval acceptance of the microdiet, compared to those weaned from Artemia in the first experiment. Early weaning of cobia larvae onto NRD microdiet (on 8 or 13 dph) from Artemia in the second experiment also reduced growth, survival rate and gut maturation index, compared to those fed live feed. With available microdiets, weaning of cobia larvae could start from Artemia at around 18 dph in order to obtain comparable growth, survival and gut maturation to larvae fed live feed.  相似文献   

3.
Morphological development and allometric growth patterns of Seriola lalandi larvae were assessed to characterize normal growth patterns under culture conditions. Early ontogenetic stages of yellowtail kingfish exhibited an exponential growth in terms of standard length as a function of age. Five development stages were characterized from hatching to the juvenile stage: larval stage I (0–2 days post hatch, dph) with endogenous feeding, characterized by a small yolk sac, unpigmented eyes, primordial finfold surrounding the body and a closed mouth; larval stage II (2–15 dph) characterized by mouth opening, complete pigmentation of eyes and the beginning of the exogenous feeding; subsequently, in the larval stage III (15–25 dph) the posterior tip of notochord of the larvae bended upward and the first rays appeared in fins, concomitant with a change in swimming behaviour; thereafter, larval stage IV (post‐flexion stage; 25–30 dph) began when larvae resembled in morphology to a juvenile organism; however, caudal and dorsal fins were not completely development. Lastly, the juvenile stage was reached 30 dph characterized by a morphology and fin structures similar to those of the adults. Growth and development of structures and organs associated with vital functions such as feeding, sensorial and breathing systems seemed to be more critical previous to 23 dph, which was reflected with a positive allometric growth of head and eyes during this period. The results from this study can be used as a tool‐guide to assess normal development in larval research with S. lalandi to improve existing rearing protocols in hatchery production.  相似文献   

4.
Two groups of Senegal sole (Solea senegalensis) larvae were cultured. One used rotifers for the first 10 days after hatching (dph) and enriched Artemia metanauplii from 6 to 30 dph and the other without rotifers, using enriched Artemia metanauplii as the sole food source. The quantity of metanauplii used was the same (group A), twice (group A2) and three times (group A3) the quantity of live prey (in dry weight) of the group fed with rotifers (group R). At the end of the experiment, the growth, in terms of total length and individual dry weight was significantly higher for the larvae on group A2 whilst rotifer fed larvae (R) showed the poorest results. Eye migration was also delayed by approximately 2 days in the group R. No significant differences were found in survival rates. The influence of diet on Senegal sole metamorphosis and its relationship with the size rather than the age of the fish are discussed.  相似文献   

5.
The study investigated the combined effect of weaning from live feed to a commercial dry pellet at 10, 15, 20, 25 or 30 days posthatching (dph) and co‐feeding for 1, 3 or 6 days on survival and growth of Coregonus peled larvae. Additional groups fed only live Artemia sp. nauplii (ART), and only Biomar LARVIVA ProWean 100 (DRY) were included. A final survival rate of 66.4%–85.5% was observed in groups weaned after 20 dph. Final body weight (BW) and total length (TL) were significantly lower in groups weaned at 10 and 15 dph, regardless of the duration of co‐feeding. Larvae reached 29–37 mg BW and TL of 17.7–19.0 mm in groups weaned at 20, 25 and 30 dph. The recommended minimum duration of feeding with live food, based on these results, is 20 days. Based on the significantly higher yield of larvae weaned after 20 dph irrespective of co‐feeding duration, it can be concluded that abrupt weaning to dry food after 20 days of feeding with live prey can provide adequate production while reducing the effort and costs associated with live feed.  相似文献   

6.
The aim of this study was to compare the nutritional composition and effects of short periods with cultivated copepod nauplii versus rotifers in first‐feeding. Atlantic cod (Gadus morhua) and ballan wrasse (Labrus bergylta) larvae were given four different dietary regimes in the earliest start‐feeding period. One group was fed the copepod Acartia tonsa nauplii (Cop), a second fed enriched rotifers (RotMG), a third fed unenriched rotifers (RotChl) and a fourth copepods for the seven first days of feeding and enriched rotifers the rest of the period (Cop7). Cod larvae were fed Artemia sp. between 20 and 40 dph (days posthatching), and ballan wrasse between 36 and 40 dph, with weaning to a formulated diet thereafter. In addition to assessing growth and survival, response to handling stress was measured. This study showed that even short periods of feeding with cultivated copepod nauplii (7 days) had positive long‐term effects on the growth and viability of the fish larvae. At the end of both studies (60 days posthatching), fish larvae fed copepods showed higher survival, better growth and viability than larvae fed rotifers. This underlines the importance of early larval nutrition.  相似文献   

7.
Systemic granulomatosis is the most frequent disease in juvenile and adult meagre, but studies regarding the first appearance of granulomas in larvae do not exist. In order to evaluate this, meagre larvae were fed four different feeding regimes as follows: RS and RO (rotifer enriched with Easy DHA Selco or Ori‐Green from 3 to 30 dph respectively), RAS and RAO (rotifer enriched with Easy DHA Selco or Ori‐Green from 3 to 21 dph and Artemia enriched with Easy DHA Selco or Ori‐Green from 12 to 30 dph respectively). All treatments were also fed with commercial microdiet from 20 to 30 dph. At 30 dph weight, length, specific growth rate and survival were significantly higher in Artemia‐fed larvae, regardless of the enrichment. Microscopic first appearance of granulomas was observed in 20 dph larvae fed RS and RO. At 30 dph granulomas and thiobarbituric acid reactive substances (TBARS), values were significantly higher in RS and RO‐fed larvae than in RAS and RAO‐fed larvae. The results showed that granulomas first appeared in meagre larvae at 20 dph when fed rotifers only. Conversely, a reduced appearance of granulomas and lipid peroxidation occurs when Artemia is included in the feeding sequence reinforcing the hypothesis of a nutritional origin of the systemic granulomatosis.  相似文献   

8.
The effects of different levels of vitamin A (VA) in Senegalese sole larval performance and development were evaluated by means of a dietary dose–response experiment using enriched Artemia metanauplii as a carrier of this micronutrient. Larvae were fed from 6 to 27 days post hatch (dph) with enriched Artemia containing graded levels of total VA (1.3, 2.1, 4.5 and 12.9 µg VA mg− 1 DW). The content of VA in live prey directly affected its accumulation in larvae and early juveniles. Retinyl palmitate accumulated during larval ontogeny, whereas retinol showed the opposite trend, decreasing from hatching until 41 dph and then remaining constant until the end of the study.In metamorphic larvae (10 and 15 dph), VA did not affect the number of thyroid follicles or the intensity of the immunoreactive staining of T3 and T4. However, at older stages of development (post-metamorphic larvae: 20, 30, 41 and 48 dph), VA decreased the number of thyroid follicles but increased their mean size and enhanced T3 and T4 immunoreactive staining. A dietary excess of VA did not affect either larval performance in terms of growth and survival or the maturation of the digestive system. However, the most remarkable impact of this morphogenetic nutrient was detected during skeletal morphogenesis. Dietary VA accelerated the intramembranous ossification of vertebral centrums, which led to the formation of a supranumerary haemal vertebra and a high incidence of fused and compressed vertebrae in fish fed 2.1, 4.5 and 12.9 mg VA mg− 1 DW. In addition, VA also affected those structures from vertebrae and caudal fin formed by chondral ossification, leading to defects in their shape and fusions with adjacent skeletal elements. In particular, the caudal fin was the region most affected by the dietary treatments. In order of importance, the bones with more developmental anomalies were the modified neural and haemal spines, epural, hypurals and parahypural. The impact of systemic factors such as thyroidal hormones in skeletogenesis should not be neglected since present results revealed that an excess of dietary VA affected the levels of T3 and T4, which might have affected bone formation and remodelling, leading to skeletal deformities.  相似文献   

9.
Weaning marine fish larvae from live prey to a dry microdiet is an important step towards optimizing the commercial production, but early weaning is constrained by the lack of sufficient digestive enzymes at first feeding. This study quantified the activity of five digestive enzymes throughout the larval period of pigfish (Orthopristis chrysoptera [L.]) to assess ontogenetic changes in digestive abilities, and then trials were conducted that determined the optimal time for weaning. The activity of all digestive enzymes was low or undetectable at first feeding (3 days post hatching, dph; 2.5 mm standard length, SL). A substantial increase in activity occurred at 5.7 mm SL (17 dph), 6.9 mm SL (21 dph), 7.7 mm SL (23 dph), 8.4 mm SL (25 dph) and 11.2 mm SL (30 dph) for bile salt‐dependent lipase, trypsin, chymotrypsin, amylase and acid protease respectively. During the weaning experiment, larvae were co‐fed live prey and microdiet beginning 15 dph (4.8 mm SL). Live prey was withdrawn from the diet at 24, 28, 32 or 36 dph, with the control receiving live prey and microdiet throughout (to 43 dph). There were no significant differences in mean final SL among treatments, but survival was significantly lower when larvae were weaned at 24 dph compared to 32–43 dph. Based on the digestive enzyme activity and survival, weaning larval pigfish at 32 dph (11.7 mm SL) when reared at 24°C is recommended.  相似文献   

10.
We examined the effect of dietary eicosapentaenoic acid (EPA, 20:5n‐3) on growth, survival, pigmentation and fatty acid composition of Senegal sole larvae. From 3 to 40 days post‐hatch (dph), larvae were fed live food that had been enriched using one of four experimental emulsions containing graduated concentrations of EPA and constant docosahexaenoic acid (DHA, 22:6n‐3) and arachidonic acid (ARA, 20:4n‐6). Final proportions of EPA in the enriched Artemia nauplii were described as ‘nil’ (EPA‐N, 0.5% total fatty acids, TFA), ‘low’ (EPA‐L, 10.7% TFA), ‘medium’ (EPA‐M, 20.3% TFA) or ‘high’ (EPA‐H, 29.5% TFA). Significant differences among dietary treatments in larval length were observed at 25, 30 and 40 dph, and in dry weight at 30 and 40 dph, although no significant correlation could be found between dietary EPA content and growth. Eye migration at 17 and 25 dph was affected by dietary levels of EPA. Significantly lower survival was observed in fish fed EPA‐H diet. Lower percentage of fish fed EPA‐N (82.7%) and EPA‐L (82.9%) diets were normally pigmented compared with the fish fed EPA‐M (98.1%) and EPA‐H (99.4%) enriched nauplii. Tissue fatty acid concentrations reflected the corresponding dietary composition. ARA and DHA levels in all the tissues examined were inversely related to dietary EPA. This work concluded that Senegal sole larvae have a very low EPA requirement during the live feeding period.  相似文献   

11.
The point of no return (PNR) and disappearance of the oil droplet were measured in Chirostoma estor larvae as a function of the time of first feeding. In a separate trial, growth and survival of larvae fed rotifers enriched with Chlorella sp., cod liver oil and corn oil were assessed. Fatty acid and lipid composition of eggs, oil droplets, egg yolk, feed and larvae were also evaluated. The PNR was found between 7 and 8 days posthatching (dph). Total oil droplet depletion occurred between 7 and 11 dph, depending on the time of first feeding. Best growth and survival were obtained in larvae fed with Chlorella‐enriched rotifers, followed by those fed cod liver oil‐enriched rotifers. In larvae fed corn oil, Chlorella and cod liver oil‐enriched rotifers, total oil droplet depletion took place on days 9, 10 and 11, respectively. There was a direct relationship between presence and duration of oil droplets and the survival of larvae under different starvation conditions. The feed source could prolong the existence of the oil droplet depending on particular dietary supply of essential fatty acids; the time of its disappearance could be a useful indicator of larval vigour and health status.  相似文献   

12.
The effects of four light intensities (1000 lx, 500 lx, 50 lx, 3 lx) on growth, survival and feeding activity in common sole (Solea solea L.) larvae were studied from 4 to 51 days post hatching (dph). During the pelagic larval stage (4–12 dph), larvae reared at 3 lx showed a lower growth. From 19 onwards, the larvae reared under 3 lx displayed a significant ( 0.05) higher SGR than the other treatments and a higher final weight compared to 1000 lx and 500 lx. Survival rate was higher under intermediate light intensities (500 and 50 lx). Larvae reared at 3 lx displayed a significant delay in the degree of metamorphosis compared to the other treatments, while at 33 dph metamorphosis was completed under all treatments. Histological examination revealed the importance of vision and light in the first feeding of this species, while after metamorphosis, the full development of other sensory organs indicated that feeding activity is also mediated by chemosensory perception. Results indicate that high light intensity seems to be more suitable during the pelagic larvae, while the opposite would ensure better growth from the onset of metamorphosis to the benthic phase.  相似文献   

13.
In hatcheries, meagre Argyrosomus regius larvae still depend on an adequate supply of rotifers and Artemia, as no artificial diet can totally fulfil their nutritional requirements. However, production of live feed is highly expensive and demands intensive labour and specific facilities. This study investigated the effect of a dietary regime without the use of rotifers, to simplify the meagre larval rearing protocol. Two feeding treatments (T1 & T2) are compared to investigate their effects on survival and growth of meagre larvae. In T1, larvae were fed rotifers from 2 to 5 days post hatch (dph), and Artemia from 4 to 15 dph. In T2, larvae were kept under dark conditions and fed Artemia from 6 to 15 dph. Standard larval length (SL) was significantly higher in T1 (p < .01) until 8 dph in comparison with larvae reared initially without rotifers. No significant difference in SL was found among treatments (= .187) at 15 dph. Significant difference was found among treatments in survival rate at 15 dph (p < .003). The survival rate observed at 15 dph in T2 (30 ± 4.2%) represents an important finding, although the highest survival rate was observed in T1 (45.0 ± 3.4%). This study showed that it is possible to conduct larval rearing of meagre without using rotifers. Nevertheless, further research efforts are still needed to improve these results in comparison with the common larval rearing protocol.  相似文献   

14.
Turbot, Scophthalmus maximus, larvae were start‐fed with formulated feeds containing soya phospholipids (SP), marine phospholipids (MP) or triacylglycerol (TAG). The levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were the same in the MP and TAG feeds. The control group was given rotifers (R). The larvae were offered feed from day 4 post‐hatch. Larvae fed formulated feed with added MP showed good initial growth and there were no significant differences in weight on day 6 between this group and the group given rotifers. Using feed with added TAG enriched with EPA and DHA gave no growth at all. Using SP as the lipid source in the feed resulted in reduced initial growth. Electron microscopical examination of enterocytes was performed on larval intestines on day 6. Larvae fed MP, TAG or rotifers had normal looking enterocytes with numerous normal looking mitochondria. In the enterocytes of larvae fed SP the mitochondria appeared swollen with a translucent matrix and fragmented cristae. Thus, SP or TAG appear not to be suitable as the sole source of lipids and/or phospholipids in start‐feed for turbot larvae and the effects of MP are not solely caused by high levels of EPA and DHA.  相似文献   

15.
Growth, development, antioxidant enzymes, stress proteins (HSP70 and HSP60), lipid peroxidation (LP) and histology in Solea senegalensis larvae were followed from 8 to 30 days post hatching (dph). Larvae were fed on three different diets: (1) live Artemia nauplii, (2) microcapsules elaborated by internal gelation, (MA) and (3) these same microcapsules but 10-fold supplemented with vitamin A (MAV). The Artemia fed group showed higher growth and a faster metamorphosis than the ones fed with microencapsulated diets, although all had similarly high survival rates of 80%. Vitamin A (VA) supplementation improved growth and development from 15 dph in relation to the strictly inert diet (MA). Larvae fed with Artemia showed organs and tissues with a normal pattern of development, whereas histological alterations were seen in larvae fed with both inert diets. The antioxidant enzymes: catalase (KAT), superoxide dismutase (SOD), and total glutathione peroxidase (t-GPX) as well as LP levels and stress proteins (HSP70 but not HSP60), measured in whole larvae, showed diet and age dependence in their response. Larvae fed with both inert diets showed similar biomarker activities, but these activities were different (p < 0.05) from larvae fed with Artemia. That is, KAT and HSP70 were lower in larvae fed with live prey and t-GPX and LP levels were lower in larvae fed with the inert food. Among the factors responsible for increased antioxidant defenses were the initiation of metamorphosis and the use of inert food. This study suggests the usefulness of the biomarkers selected as tools to evaluate the effects of compound diets on larvae.  相似文献   

16.
Eggs of European hake (Merluccius merluccius L.) were stripped from fish caught at sea. Larvae were kept under semi‐intensive conditions at around 12°C. In addition, eggs were incubated in single wells at 9.2, 12.7 and 14.5°C, where hatching, development and survival were closely examined. During the larval stage, a total of 299 larvae were sampled to follow development and growth. In addition a small number of juveniles were sampled. Larvae hatched approximately 4 days after fertilization, and were 2.9 mm in total length (TL). At 6‐day post hatching (dph), the larvae were 4.1 mm (TL), the jaw apparatus was developed, and the larvae had started to feed. Most of the growth during the early larval period is restricted to the head, and there is almost no increase in length for the first 3–4 weeks post hatching. Teeth and pelvic fins appear at 25 dph. Development of unpaired fins at approximately 30 dph marks the start of the larval–juvenile transition. Weaning to formulated feed was accomplished 50 dph, when external morphology was similar to that of adult hake.  相似文献   

17.
We determined the effect of dietary arachidonic acid (20:4n-6, ARA) on tissue ratios of ARA/eicosapentaenoic acid (20:5n-3, EPA) and subsequent whole body production of the eicosanoids, prostaglandin F (PGF) and E2 (PGE2) in the marine larvae of striped trumpeter, Latris lineata. Larvae were also subjected to a hypersaline challenge (55 ppt) with an aim to determine possible relationships between tissue fatty acid profiles, prostanoid production, and their tolerance to osmotic challenge. From 5 to 23 days post-hatch (dph) larvae were fed live food, rotifers (Brachionus plicatilis), that had been enriched with one of five experimental emulsions containing increasing concentrations of ARA and constant EPA and 22:6n-3 (docosahexaenoic acid, DHA). Final ARA concentrations in the rotifers were 1.33, 3.57, 6.21, 8.21 and 11.22 mg g−1 DM. Larval growth and survival was unaffected by dietary ARA. Tissue fatty acid concentrations generally corresponded with dietary fatty acids and final tissue ratios of ARA/EPA ranged from 0.9 to 4.9. At 18 and 23 dph whole body concentrations of PGF and PGE2 generally increased as more dietary ARA was provided in a dose-response manner, and a significant elevation in both PGF and PGE2 in larvae fed the highest dietary ARA concentration was recorded at 23 dph compared to larvae receiving the lowest concentration. At 18 dph, the highest cumulative inactivity following a hypersaline challenge occurred in larvae fed 8.21 or 11.22 mg ARA g−1 DM, which was significantly greater than those receiving 3.57 mg ARA g−1 DM. At 23 dph no relationship between inactivity of larvae subjected to a hypersaline challenge to dietary ARA was evident. In summary, dietary ARA altered tissue ARA/EPA ratios, prostanoid production and resistance to a hypersaline challenge in larval striped trumpeter. While increasing dietary ARA generally resulted in elevation of prostanoids as well as increasing the number of inactive larvae following a hypersaline challenge at 18 dph, similar trends between prostanoids and larval inactivity were not evident at 23 dph, suggesting the exact mechanisms and relationships between eicosanoids and larval osmoregulation warrants further investigation. Nevertheless the study provides preliminary data on the effect of dietary ARA on the prostaglandin production in marine fish larvae.  相似文献   

18.
High mortality frequently occurs in larval mass production of Korean rockfish, Sebastes schlegeli Hilgendorf. Nutritional deficiencies in live feeds, rotifers and Artemia nauplii, fed to larvae could be a reason. A series of experiments was carried out to evaluate the effect of nutritional enrichment of live feeds by ω‐yeast, Spirulina powder and Super SelcoTM on survival and growth rates in rockfish larvae. Preference of rockfish larvae for the live feeds was determined by analysis of stomach contents. In addition, the effect of green water produced by the use of Chlorella ellipsoidea and Spirulina powder on the growth performance of larvae was evaluated. Larvae fed rotifers nutritionally enriched with Super Selco showed significantly higher survival rates than those fed rotifers enriched with ω‐yeast. Larvae fed rotifers that were nutritionally enriched with both Super Selco and Spirulina together exhibited improved growth and survival rates. Larvae fed Artemia nauplii nutritionally enriched with Spirulina powder showed significantly higher survival than larvae fed Artemia nauplii without enrichment. When larvae were fed rotifers, Artemia nauplii or the mixture of rotifers and Artemia nauplii, the second and last group showed significantly higher survival than the first group. Fatty acid composition in live feeds was improved by enrichment of ω‐yeast and larvae fed this feed showed higher survival and growth rates compared with larvae fed non‐enriched feeds. No positive effect of green water in the tank produced with C. ellipsoidea or Spirulina powder was observed on survival and growth rates for larvae fed nutritionally enriched rotifers with Super Selco and Spirulina powder. However, when the larvae were fed Artemia nauplii that were nutritionally enriched with ω‐yeast and Spirulina powder, green water obtained by adding Spirulina powder to the tanks resulted in significantly higher growth rates of larvae than was obtained by adding C. ellipsoidea.  相似文献   

19.
Effects of two weaning diets that differed in phospholipid (PL) classes on growth, survival and deformities of cod larvae and early juveniles were evaluated. Cod larvae were fed rotifers until 21 days post hatch (dph) and then weaning onto dry diet started. One group of larvae were fed a control diet with low levels of phosphatidylcholine (PC), PE and phosphatidylinositol (PI) and the other group of larvae were fed with an experimental diet containing higher levels of PC, PE and PI. Larvae fed with the control diet were significantly smaller than larvae fed with the experimental diet at the end of the experiment. Swim bladder abnormalities were significantly higher in larvae fed with control diet at 35 dph than the larvae fed with experimental diet; however, no significant difference was evident at 42 dph. Vertebral deformities were significantly higher in larvae fed with control diet and scoliosis was significantly different between the treatments. Survival was also significantly higher in the experimental group. Our results indicate that dietary levels of PL, PC and PI may affect the cod larval growth, survival and deformities. More detail studies are needed to find out the optimal levels of these important PL classes in larval cod diets.  相似文献   

20.
The combined effects of stocking density and microalgae ration on survival and size of Saccostrea echinata larvae were studied in two‐factor experiments for the major developmental stages: D‐veliger (1‐day posthatch [dph], Experiment 1), umbonate (12 dph, Experiment 2), and eyed (19 dph, Experiment 3) larvae. Larvae were stocked into replicate sets of four 10‐L aquaria with ambient 1‐μm filtered sea water (28 ± 1.5°C and 36 ppt) and cultured for four days at densities of 0.5, 2, 5, 7, or 10 larvae/mL and provided with microalgae rations at each of five densities (cells larvae?1 day?1); 0, 1, 3, 5, or 8 × 103 (D‐veliger larvae, Experiment 1); 0, 5, 12, 18, or 25 × 103 (umbonate larvae, Experiment 2); and 0, 15, 30, 40, or 60 × 103 (eyed larvae, Experiment 3). Microalgae rations for each larval life stage were selected on the basis of increasing food requirement with larval size and comprised a 2:1:1 mixture of Chaetoceros calcitrans, Tisochrysis lutea, and Pavlova spp., calculated on an equal dry‐weight basis. Contour plots were generated from larval survival and larval size (dorso‐ventral measurement [DVM]) data to determine optimal culture conditions. Larvae showed high survival (54–100%) over a wide range of both treatment parameters across all life stages, confirming broad tolerance limits for this species. The interaction effects of larval stocking density and microalgae ration on larval size were significant (p < 0.001) across all life stages. Results indicate that maximum larval size (DVM) is achieved when S. echinata are cultured at: 6–8 larvae/mL and fed 5–6 × 103 cells larvae?1 day?1 for D‐veligers (mean DVM >80 μm), at 2–8 larvae/mL and fed 11–25 × 103 cells larvae?1 day?1 for umbonate larvae (mean DVM > 190 μm), and at 1–4 larvae/mL and fed 15–40 × 103 cells larvae?1 day?1 for eyed larvae (mean DVM >230 μm). Results will help refine current hatchery methods for S. echinata supporting further development toward commercial aquaculture production of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号