首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 264 毫秒
1.
为了对杨桦次生林下生物量模型进行补充研究,以长白山金沟岭林场杨桦次生林固定样地为研究对象,采用样地抽样的方法对林下主要树种幼树进行抽样,运用异速生长方程对幼树生物量模型进行拟合。结果表明,林下主要树种幼树生物量模型呈异速生长关系,自变量以地径D0,树高H最为紧密。其中,仅以地径D0作为单一自变量的模型精度明显低于以地径D0和树高H为自变量的模型精度;调整系数Radj2均在0.9以上,平均预测误差MPE范围在5%~49%之间,椴树的枝、叶、根和地上生物量,色木的枝生物量模型相对较差,平均预测误差均达到了40%以上;其次,根茎比与地径D0呈明显负相关关系,与树高H相关性不显著,调整系数Radj2较低,范围仅为0.053~0.507之间。最后,主要树种幼树生物量随着郁闭度的增大,表现依次下降的趋势,即W(0.6)W(0.8)W(1.0)。  相似文献   

2.
长白山云冷杉林下主要树种幼树生物量   总被引:1,自引:0,他引:1  
为了对林下灌木草本生物量进行补充和完善,提供更为详实、丰富的灌木层、草本层生物量数据,将长白山云杉Piceajezoensis一冷杉Abiesnephrolepis林(云冷杉林)样地按郁闭度0.6,0.8,1.O分类,以林下主要树种幼树生物量进行模型拟合并估算了主要树种幼树生物量。结果表明,云冷杉林主要树种器官(干、枝、叶、根)生物量模型自变量与DW和DH(D为地径,H为树高)关系最为紧密,最优函数以线性函数为主。其次,随着郁闭度的增加.幼树生物量(W)呈现先减小后增加的趋势。再次,郁闭度为0.6,0-8和1.0时,冷杉对林下幼树生物量贡献率较大.分别达到了34.94%,40.79%和50.26%;云杉对林下幼树贡献率较小,只有6.03%,8.58%和8.03%。图1表4参16  相似文献   

3.
【目的】灌木是森林生产力的重要组成部分,探索北亚热带地区常绿阔叶林林下灌木生长模型,为森林生物量及其碳储量估算奠定基础。【方法】在安徽南部查湾自然保护区,选取4种常见林下灌木树种(老鼠矢、乌药、朱砂根和香桂),通过野外实测获得地径(D)、树高(H)、地径平方乘树高(D2 H)、冠径树高乘积(CH)、植冠面积(AC)和植冠体积(VC)等模型参数,拟合生物量模型,基于独立检验数据对模型进行验证,获得生物量最优模型。【结果】各灌木树种单器官及全株生物量模型以D2 H和CH为自变量都具有较高的拟合优度(0.815~0.983)和较小的标准误(SEE)。不同灌木树种、不同器官之间的生物量最优模型选用方程均存在一定差异,以幂函数、二项式方程为主,且模型检验精度均较高(总相对误差(RS)30%,平均相对误差绝对值(RMA)20%)。模型的普适性研究表明,叶、枝和根生物量最优通用模型为W=a+bX+cX2(X为D2 H(叶、枝)或CH(根)),拟合效果较优;而全株生物量最优模型为W=1.423 2(D2 H)0.832 4,拟合指数(FI)=0.960,适用于4种灌木叶、枝、根和全株生物量的估算,但根系通用模型的估算精度低于叶、枝与全株的最优生物量通用模型。【结论】基于生物量模型可以精准地估算亚热带地区的灌木生物量。  相似文献   

4.
长白山林区14种幼树生物量估测模型   总被引:4,自引:4,他引:0  
以长白山林区林下14种幼树为对象,采用收获法对胸径D1.3≤2.5cm的幼树植株进行随机取样,通过对不同树种各器官和全株生物量的统计,建立了幼树生物量的最优估测模型,并进行了实测验证。结果表明:以地径(D0)和地径平方与株高乘积(D20H)为自变量,拟合的14种幼树各器官和全株生物量最优模型为幂函数,并达到了极显著水平,而且都有较大的R2值(0.712~0.983)和较小的SEE值(0.217~1.122)。幼树器官和全株生物量最优回归方程的R2值,从大到小依次为全株生物量地上部分枝地下部分叶。验证结果表明:以地径(D0)为自变量时,建立的幼树器官和全株生物量模型,对生物量的估测结果均较为准确。自变量为地径平方与株高乘积(D20H)时,怀槐、东北槭等8种幼树器官和全株生物量模型对生物量预测效果较好;除红松、拧筋槭等6种幼树部分器官和全株生物量模型估测效果相对较差外,其他模型均可对生物量进行准确估测。  相似文献   

5.
对分布于贵州省都匀市大河乡的白栎次生林进行了地上部分生物量测定。结果表明,白栎次生林单株及各构件生物量随林木胸径、树高的增大而增加,不同径阶林木单株及各构件生物量之间的差异较大。各构件生物量的分配规律为:树干>活枝>枯枝,其中树干生物量所占比例最大,平均达72%以上。白栎次生林单株及各构件生物量(W)与胸径平方与树高乘积(D2H)之间的关系,可采用幂函数模型W=b0(D2H)b1进行模拟。本文所拟合的3个回归模型精度均较高,可初步用于调查区白栎次生林地上部分生物量的预测。  相似文献   

6.
【目的】异速生长方程是构建林木生物量最简单常用的方法,本研究旨在为川西亚高山森林生物量及碳储量估测提供有效的研究方法,同时为异速生长模型优化以及植被原生演替过程研究提供基础依据。【方法】本文基于海螺沟冰川退缩区植被原生演替过程中主要树种的生物量实测数据,通过模型将树木的总生物量及不同组分(如枝、叶、树干、根等)生物量与胸径和树高等易测指标联系起来,建立了各树种总生物量及各组分生物量异速生长方程。【结果】引入树高(H)的二元模型拟合效果要优于一元模型,同一模型对地上和树干生物量估计精度要优于枝叶和地下生物量的估计。【结论】以D~2H为自变量的方程对树干和地上生物量的拟合效果更好,而以D~3/H为自变量的方程更适合枝叶和根的生物量拟合。在实际工作中,考虑到野外测量的难度,可以采用一元模型W=aD~b。本次构建的生物量异速生长方程对于青藏高原东缘亚高山森林生态系统生物量的估算以及植被演替过程中生物量的动态研究具有重要参考价值。  相似文献   

7.
该文以山湾子林场杨桦次生林为研究对象,通过人工更新在带状间伐地栽植樟子松、云杉、红松3种不同造林树,并调查其成活率、树高生长量以及林下生物多样性的差异,分析人工更新对杨桦次生林的影响。结果表明:当年及二年成活率均为云杉樟子松红松;树高年生长量均为樟子松云杉红松。3种更新树种林下植被丰富度、Simpson多样性指数、Pielou均匀度指数以及盖度都高于对照,但不同更新造林树种间差异不显著。因此,可初步确定对研究区域内杨桦次生林进行人工更新有助于提高林下生物多样性。  相似文献   

8.
  目的  雪岭云杉Picea schrenkiana是新疆山区重要树种。了解雪岭云杉地上地下生物量分配及碳储量,对新疆森林资源调查具有一定意义。  方法  采用整株收获法分析30株雪岭云杉地上地下生物量分配格局,利用胸径(D)、树高(H)和胸径-树高(D2H、D3/H和DbHc)作为变量建立树干、树枝、树叶、树根、地上及整株生物量异速生长模型。  结果  雪岭云杉树干、树枝、树叶及树根生物量存在显著性差异(P<0.01)。整株生物量为12.04~2 014.34 kg·株?1,地上和地下生物量分别为10.16~1 475.17和1.88~539.18 kg·株?1,树干、树枝、树叶及树根生物量占整株生物量的56.86%、13.03%、5.96%和24.15%,根冠比为0.08~0.55。植株水平上,建立基于胸径及树高变量的各器官生物量模型,其中树根生物量的最优生物量模型为W=a(D2H)b,其他器官生物量模型均为W=aDbHc。影响云杉生物量的主要环境因素重要性排序依次为坡位、坡度、海拔及土壤厚度。  结论  基于胸径-树高因素的异速生长模型可以较好地实现雪岭云杉各器官生物量的拟合,可对其生物量及碳储量进行有效估算。图4表3参30  相似文献   

9.
以金沟岭林场云冷杉林、杨桦次生林和落叶松人工林为研究对象,分别设置郁闭度0.20、0.40、0.60、0.80、1.00样地,采用灌木生物量模型法和草本生物量平均木法,估算出不同林型不同郁闭度林下灌草生物量。结果表明:云冷杉林郁闭度为0.02时灌草生物量最大,郁闭度1.00时,灌草生物量最小,灌草生物量随林分郁闭度的增加而减小;杨桦次生林郁闭度为0.20时灌草生物量最大,郁闭度1.00时,灌草生物量最小,灌草生物量随林分郁闭度的增加而减小;落叶松人工林在林龄较小时,灌草生物量最小,母树林灌草生物量最大。不同林型在同一郁闭度林下灌草生物量差异显著。郁闭度为0.20和0.40时,杨桦次生林灌草生物量均大于云冷杉林;郁闭度为0.60时,灌草生物量由大到小的顺序为云冷杉林、杨桦次生林、落叶松人工林;郁闭度为0.80时,3种林型灌草生物量几乎相等;郁闭度为1.00时,落叶松人工林灌草生物量最大,且其灌木和草本生物量均大于其他两种林型。  相似文献   

10.
银杏生物量分配格局及异速生长模型   总被引:2,自引:1,他引:2  
以苏北地区银杏人工林为研究对象,选取13株进行整株挖掘,分析不同器官生物量的分配格局,以及地上和地下生物量之间的关系;再分别以胸径(D)、树高(H)、D2H、DaHb为自变量建立银杏各器官生物量模型,选择调整决定系数(Radj2)、残差平方和(SSE)、平均偏差(ME)、平均绝对偏差(MAE)和平均相对误差(MPE)作为选择最优模型的检验指标,根据检验结果筛选出各器官的最优模型。结果表明:13株银杏的整株生物量变化范围为28.50~320.27 kg,树干生物量占总生物量的49.4%~56.6%,树枝生物量占总生物量的12.1%~18.9%,树叶生物量占总生物量的3.8%~5.5%,根生物量占总生物量的26%;地上部分生物量与地下生物量线性方程的斜率为0.35,具有显著的线性相关性(P<0.01);枝和叶生物量都集中于树冠中部,树冠上层和下层的枝、叶生物量明显低于树冠中层生物量(P<0.05),上层和下层生物量之间差异不显著(P>0.05),70%根生物量集中0~1.0 m的土层;枝水平上,基于基径和枝长的枝生物量模型解释量超过95%;在各器官生物量最优模型选择上,以D为自变量的W=aDb的叶、枝、地上部分生物量模型要优于其他模型;树干、根和全株生物量则是以W=aDbHc模型最优。银杏各器官生物量表现为干>根>枝>叶,枝和叶生物量垂直分配上,中冠层占最大比例;基于树高和胸径的相对生长模型可以实现对银杏各器官生物量的准确拟合,银杏生物量及碳储量的有效估算。   相似文献   

11.
熊雨忠 《安徽农业科学》2014,(20):6761+6790-6761,6790
[目的]研究丝栗栲单木级生物量模型及估算参数。[方法]以闽北典型的阔叶树种——丝栗栲为研究对象,基于20株标准木的测量数据建立丝栗栲的单木级生物量模型和生物量估算参数。[结果]①筛选出总量及各部分生物量模型分别是B=0.095D2.561(整株)、B=0.026(D2H)0.986(树干)、B=0.004D2.916(树枝)、B=0.002D3.074(树叶)、B=0.085D2.536(地上)和B=0.010D2.718(地下)。②生物量换算系数的平均值为0.853 mg/m3(n=20,SD=0.167);生物量扩展系数的平均值为1.403(n=20,SD=0.260);根茎比的平均值为0.189(n=20,SD=0.046)。[结论]该研究为亚热带常绿阔叶林的森林生物量准确估算提供了必要的数据支撑。  相似文献   

12.
雾灵山灌木生物量模型研究   总被引:1,自引:0,他引:1  
采用模型法研究了雾灵山自然保护区锦带花、木本香薷、小花溲疏、山楂叶悬钩子4种灌木生物量与地径(D)、株高(H)、冠幅(C)、植冠面积(A)、植株体积(V)、基径与株高乘积(DH)、基径平方与株高乘积(D2H)的相关关系。通过回归分析拟合了各灌木种器官生物量与总生物量模型,结果表明:W=a+b(D2H)+c(D2H)2、W=a+b(D2H)+c(D2H)2+d(D2H)3、W=aVb、W=a+bV+cV2+dV3、W=a+bV+cV2能较好地描述灌木种叶生物量、枝生物量、根生物量及总生物量与各形态因子的相关关系。  相似文献   

13.
吉林蛟河针阔混交林12个树种生物量分配规律   总被引:1,自引:1,他引:0  
研究生物量分配是了解植物结构与功能的有效手段,对陆地森林生态系统碳循环研究起着重要作用。本文以吉林省蛟河林业实验区管理局天然次生混交林内12个优势树种为研究对象,探讨了各树种生物量器官(叶、枝、干、根)分配特征及其与个体大小的关系。结果表明:1)12个树种各器官的相对生长遵循异速生长理论,相对生长关系并不一致。枝与干(1.091~1.254)、枝与根(1.012~1.158)、根与干(1.015~1.202)以及地下与地上部分(0.991~1.070)近于等速生长,叶与枝(0.655~0.757)、叶与干(0.777~0.931)和叶与根(0.718~0.859)呈现为异速生长。2)12个树种各器官生物量分配遵循异速生长分配理论,叶、枝、干和根生物量分配比例的范围依次为1.80%~6.54%、13.87%~27.09%、51.12%~65.03%和15.76%~25.52%,各器官生物量分配比例的均值大小表现为:干(57.09%)>, 根(21.46%)>, 枝(18.59%)>, 叶(2.86%)。根茎比(R/S)范围为0.189~0.355,均值为0.279。3)各器官生物量分配比例以及R/S均与树种有关,不同树种各器官生物量分配比例以及树种间R/S存在显著差异(P<, 0.05), 除根生物量分配比例、R/S与个体大小无显著相关外(P>, 0.05),其他各器官分配比例均与个体大小呈显著相关关系(P<, 0.05)。具体表现为随个体增大,叶和干生物量分配比例显著降低、枝生物量分配比例显著增加(P<, 0.05)的趋势。研究表明:植物各器官在其生长过程中并非都是等速生长,异速生长广泛存在于各器官的生长过程中,同时各器官的生物量分配遵循异速生长分配理论。为了获得更多的空间和营养,植物在生长过程中遵循最优化分配理论,将更多的资源分配给有利于提高自身竞争力的器官,以达到具有更强竞争力和生产力的目的。   相似文献   

14.
紫椴生物量分配格局及异速生长方程   总被引:2,自引:2,他引:0  
紫椴是东北地区阔叶红松林中重要的阔叶树种,采用整株收获法分析39 株紫椴地上、地下生物量分配格局。 根据胸径(DBH)大小将紫椴划分为3 个等级:小树(1 cmDBH 10 cm)、中树(10 cmDBH 20 cm)和大树 (DBH20 cm)。以不同高度处树干直径作为自变量建立紫椴各器官生物量异速生长模型。结果显示: 1) 随着径 级的增加,紫椴干、根生物量比例先增加后减小而树冠生物量比例先减小后增加,但不同径级间差异不显著; 2) 不 同径级紫椴枝、叶生物量均位于树冠中下层; 3) 紫椴地上、地下生物量之间呈显著线性相关(P 0.001),拟合线 性方程斜率为0.31; 4) 胸径和树高与地上竞争强度均呈显著的指数相关(P 0.001),地上竞争强度并没有影响 树冠比例、茎叶比和根冠比,但与树高胸径比成幂相关(P 0.05); 5) 综合考虑模型的可解释量及回归系数显著 性可知,胸径是预测紫椴不同器官生物量的最可靠变量。更准确地估测紫椴各器官生物量需要针对不同生长阶段 或不同径级建立相应的生物量方程。   相似文献   

15.
为了解干热河谷地区造林树种在不同恢复模式下生物量及其分配的差异,进而评价该地区树种的混交效益.以元谋干热河谷9年生印楝Azadirachta indica和大叶相思Acacia auriculiformis为研究对象,对印楝纯林、大叶相思纯林及印楝与大叶相思混交林林木生物量及其分配特征进行了研究.结果表明:①混交林内印楝单株生物量(5.713 kg·株-1)比纯林印楝(4.898 kg·株-1)高16.6%;大叶相思(14.943 kg·株-1)比纯林大叶相思(17.377 kg· 株-1)低14.0%,但差异均未达到95%显著水平(P>0.05).混交林林分生物量(16.525 t·hm-2)介于印楝纯林(7.837 t·hm-2)和大叶相思纯林(27.802 t·hm-2)之间.②在纯林和混交林恢复模式下,印楝各器官生物量大小顺序分别为干>根>枝>皮>叶和干>枝>根>叶>皮;大叶相思分别为枝>干>根>叶>皮和干>枝>根>叶>皮.混交林印楝根冠比(0.280)较纯林(0.400)小(P<0.05),而混交林大叶相思(0.163)较纯林(0.132)大(P>0.05).(③印楝和大叶相思各器官之间及其与测树因子(D或D2H)均呈异速生长关系,不同恢复模式下印楝和大叶相思各器官之间异速生长速率差异较小,印楝表现现为枝>叶/干>根,地上部分>地下部分;而大叶相思为枝>干/根>叶,地上部分>地下部分.干热河谷印楝和大叶相思混交种植9a后,提高了印楝生物量,而大叶相思生物量有所下降,不同恢复模式下同一树种器官生物量分配大小也发生了变化.  相似文献   

16.
吉林蛟河天然阔叶红松林下5种灌木生物量估算模型   总被引:1,自引:0,他引:1  
以吉林蛟河地区天然红松阔叶林林下常见的5种灌木为研究对象,分乔木型灌木﹝地面分枝少、主干明显,包括卫矛(Euonymus alatus)、东北鼠李(Rhamnus yoshinoi)﹞和典型灌木﹝地面分枝多、主干不明显,包括长白茶藨(Ribes komarovii)、暖木条荚蒾(Viburnum burejaeticum)、鸡树条荚蒾(Viburnum sargentii)﹞,以易测因子通过回归分析构建了单种各器官和全株(丛)生物量模型。结果表明:最优生物量模型均为幂函数模型或一次线性模型,除长白茶藨的丛当年枝生物量模型和丛多年枝生物量模型在0.01水平上显著以及暖木条荚蒾的当年枝生物量模型在0.05水平上显著外,其余模型均在0.001水平上显著。以植株个体为单位的生物量模型中,除东北鼠李叶生物量和枝生物量与植灌体积Vc相关性最好外,其余各器官生物量和全株生物量均与地径D或地径平方与树高的乘积D2H相关性最好。典型灌木的叶、当年枝、多年枝、枝、茎和地上生物量以分支个体为单位构建的生物量模型要好于以丛为单位构建的生物量模型,但地下生物量和全丛生物量模型正好相反,因此,以丛为单位构建地下生物量和全丛生物量模型为典型灌木的生物量估算提供了简便可行的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号