首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
《Soil Use and Management》2018,34(3):418-426
Soil quality is an important and integral aspect of soil health which is defined as the continued capacity of the soil to function as a living system within the ecosystem and land use boundaries. It refers to the capacity of soil to supply nutrients, maintain suitable biotic habitat and resist degradation. This study focuses on describing the soil quality through aggregate index termed as Soil Quality Index (SQI ). The assessment of soil quality involves physical and chemical soil parameters along with the local climatic conditions and the experts’ opinion. The proposed aggregation method utilizes three scoring functions; ‘more is better’, ‘less is better’ and ‘optimum’ for which the score is interpreted either as very low, low, medium, high or very high. The methodology has been applied to Msange irrigation scheme which falls under semi‐arid climate conditions of Tanzania. The results show that the average SQI in the Msange irrigation scheme is 0.565 for the silt loam soil and can be classified as medium quality. In order to improve the soil quality and hence the land productivity, one should improve the organic matter contents, available water and nutrients availability to the soil. It is hoped that this study will be a baseline study on soil quality evaluation for effective agricultural practices.  相似文献   

2.
Soil quality indices based on soil characteristics can be used to assess the sustainability of soil and to assist in soil management decisions. Principal component analysis (PCA) technique was used to identify dominant soil characteristics in relation to soil erodibility in watersheds of submontane Punjab (India). Soil physical and chemical characteristics were evaluated for four locations with four land uses at each location whereas runoff, soil loss and soil erodibility were determined at two locations under natural rainfall conditions and at four locations under simulated rainfall conditions. PCA was performed on 22 physical and chemical soil characteristics, which grouped these soil characteristics into five distinct principal components (PCs). These five PCs namely soil hydraulic factor, density factor, structural factor, sand factor and cation factor, explained 86% variability in data. These PCs also explained 86, 96 and 93% variability under natural rainfall conditions and 75, 76 and 77% variability under simulated rainfall conditions in relation to runoff, soil loss and soil erodibility, respectively. Soil total organic carbon content can be considered as dynamic soil physical quality indicator and can be used to monitor temporal and spatial changes in soil quality.  相似文献   

3.
Land degradation is the major economic and environmental threat in Ethiopia. Since the 1960s, the various traditional land management systems have undergone unprecedented changes. Within the context of farmers' awareness of land degradation and local responses to the problems, the objective of this study is to examine the resilience and stability of traditional land management knowledge in Southern Ethiopia. Data were collected using interviews, group discussions and field observations. Results of the study demonstrate that farmers have a wealth of experience in identifying the severity, dynamics and causes of soil erosion and soil fertility decline and grazing land deterioration. In response to these problems, farmers have developed a wide range of traditional land management practices, supported across the generations by the traditional law (benee woga) and norms. However, recent changes include reduction and abandonment of fallowing, modification of crop rotation and large‐scale reduction of manuring. The current practices used to fulfil livelihood requirements are the main driving forces that affect the resilience of the system. Thus, environmental and land use management planning should consider rehabilitating land not only based on traditional land management knowledge but also with regards to raising its agricultural productivity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Soil and land degradation in the tropics can be identified and described in terms of physical,chemical,and biological changes from its pristine state brought about by natural and anthropogenic influences.A characteristic of these ecosystems is their capacity to recycle nutrients through soil organic matter(SOM). Following disturbance through changed land management.SOM is rapidly mineralized and there is a cor responding decline in fertility and the variable charge component of the cation exchange capacity.As these ecosystems are strongly dependent on SOM for their functionality,changed land use can have irreversible impacts on the productivity of these systems.The paper focuses on quantifying chemical degradation throughbenchmaking using data from paried sites in tropical China and Thailand using surface charge finger printing.Using values taken from the fingerprint of an undistubed soil,an index of chemical degradation from ideality was calculated.Various management stratgeies that attempt to reverse degradative trends or improve poor quality soils in their natural condition are discussed.such as the ddition of natural clays and silicated materials.Results are present to whow the effect of each of the aforementional strategies on surface charge characteristics and associated increases in plant productivity.  相似文献   

5.
Soil quality is considered to be the key element in the system of the agroecological assessment of lands. Soil quality is characterized by a combination of conditions ensuring sustainable crop yields and determining the ecological functions and stability of agrolandscapes. Soil conditions, i.e., the character of soilscapes and the soil quality, are integrated with all the other agroecological conditions in the system of land assessment. The soil quality reflects the integral effect of soil properties on the yield and quality of particular crops under certain climatic and landscape conditions and the level of agriculture; the ecological functions of soils are also taken into account. The productive capacity of agricultural land is the integral criterion of land quality; it is characterized by the yield of crops of particular quality at the given levels of agriculture intensity, energy inputs, and economic efficiency.  相似文献   

6.
In this research, the effects of land use and slope position on soil properties and its agronomic productivity were studied in a greenhouse experiment. The study also covered the effects of water stress, fertilizer treatment and their interactions. Eight soil samples were collected from four slope positions along hill slopes from two adjacent land use types of rangeland and dry farmland in a semiarid region of Iran. Soil samples were analyzed for their physical and chemical properties and yield and yield components of wheat were measured as indices of soil agronomic productivity in a replicated pot experiment. Soils of the dry farmland showed higher fertility and better quality than the soils from the adjacent degraded rangeland, especially at the upper slope positions. The results indicated that yield components of wheat were all higher for the dry farming land compared to the degraded rangeland, and at the bottom of slopes compared to the top. The effect of land use and slope position on agronomic productivity of soil was influenced by water supply. The actual impact on soil productivity of soil degradation, induced by land use and slope position, was overshadowed by the dominating effect of water stress. While both chemical fertilizer and fertilizer + manure treatments enhanced the agronomic productivity of all soils, their effects were much more pronounced on the degraded soils of the rangeland. Water stress reduced fertilizer efficiency on all the soils used in this study. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Stability and resilience of a variety of soil properties and processes are emerging as key components of soil quality. We applied recently developed measures of biological and physical resilience to soils from an experimental site treated with metal‐contaminated sewage sludge. Soils treated with cadmium‐, copper‐ or zinc‐contaminated, digested or undigested sewage sludge were studied. Biological stability and resilience indices were: (i) the time‐dependent effects of either a transient stress (heating to 40°C for 18 hours) or a persistent stress (amendment with CuSO4) on decomposition, and (ii) the mineralization of dissolved organic carbon (DOC) released by drying–rewetting cycles. Physical stability and resilience measures were: (i) compression and expansion indices of the soils, and (ii) resistance to prolonged wetting and structural regeneration through drying–rewetting cycles. Soil total carbon and DOC levels were greater in the sludge‐amended soils, but there were no differential effects due to metal contamination of the sewage sludge. Effects of metals on physical resilience were greater than effects on soil C, there being marked reductions in the expansion indices with Cd‐ and Cu‐contaminated sludge, and pointed to changes in soil aggregation. The rate of mineralization of DOC released by drying and wetting was reduced by Zn contamination, while biological resilience was increased in the Zn‐contaminated soil and reduced by Cd contamination. We argue that physical and biological resilience are potentially coupled through the microbial community. This needs to be tested in a wider range of soils, but demonstrates the benefits from a combined approach to the biological and physical resilience of soils.  相似文献   

8.
Soil degradation reduces soil productivity and is a serious problem on much of the land in semi-arid regions. To avert continued degradation, the soil productivity balance must be shifted from degrading processes to conservation practices. Crop residue management and conservation tillage are on the positive side of the balance. When adequate residues are available and conservation tillage is used, soil erosion is greatly reduced and water conservation is enhanced. Water conservation is important for improving crop yields in semi-arid regions, especially where irrigations is not used. A major constraint to residue management in many countries is low production and widespread use for other purposes. In such cases, clean tillage and appropriate support practices such as contouring, furrow diking, strip cropping and terracing may provide adequate soil and water conservation benefits. Where these are not adequate, alternative management practices should be implemented to ease the demand for residues, thus permitting more of them to be retained on the land for soil and water conservation purposes. Some alternative practices include limited or selective residue removal, substituting high quality forages for residues as animal feed, alley cropping, using wasteland areas more effectively, improving the balance between feed supplies and animal populations, and using alternative fuel sources.  相似文献   

9.
耕作对土壤有机物和土壤团聚体稳定性的影响   总被引:17,自引:8,他引:17  
Agricultural sustainability relates directly to maintaining or enhancing soil quality. Soil quality studies in Canada during the 1980‘s showed that loss of soil organic matter (SOM) and soil aggregate stability was standard features of non-sustainable land management in agroecosystems. In this study total soil organic carbon (SOC), particulate organic matter (POM), POM-C as a percentage of total SOC, and aggregate stability were determined for three cultivated fields and three adjacent grassland fields to assess the impact of conventional agricultural management on soil quality. POM was investigated using solid-state ^13C nuclear magnetic resonance (NMR) to determine any qualitative differences that may be attributed to cultivation. Results show a highly significant loss in total SOC, POM and aggregate stability in the cultivated fields as compared to the grassland fields and a significant loss of POM-C as a percentage of total SOC.Integrated results of the NMR spectra of the POM show a loss in carbohydrate-C and an increase in aromatic-C in the cultivated fields, which translates to a loss of biological lability in the organic matter. Conventional cultivation decreased the quantity and quality of SOM and caused a loss in aggregate stability resulting in an overall decline in soil quality.  相似文献   

10.
In recent decades, the conversion of forest to agricultural land has been a major worldwide concern and a cause of environmental and soil-quality degradation. In this study, soil-quality indices (SQIs) were applied using several soil properties to determine the effects of land use on soil quality in a 206.50 km2 area in Kurdistan Province, Iran. The Weighted Additive Soil Quality Index (SQIw) was calculated using two scoring methods and two soil indicator selection approaches. Nine soil-quality indicators/variables were measured for 124 soil samples (0–30 cm depth). Calculated SQIs were digitally mapped with a random forest (RF) model using auxiliary data. The RF model was the best predictor of the SQI computed using the total dataset (TDS) and linear score function (SQIw-TDS-linear). Soil quality was better estimated using non-linear scoring (r2 = 0.82) than with linear scoring (r2 = 0.73). The mean values of all SQIs were significantly greater in forestland than cropland. It is clear that soil quality is considerably reduced by deforestation, and that best management practices that maintain soil quality and reduce erosion must be developed for the soils of this region if they are to remain productive.  相似文献   

11.
The analysis of modern Russian legislation in the sphere of environmental protection, management of natural resources, soil conservation, and land cadaster works has been performed. It is shown that a common federal approach to environmental impact assessments and soil quality assessments is virtually absent. Ecological indices are not taken into account in the federal land cadaster. Most of the recently adopted legislative regulations in this sphere have a technocratic character. The recent governmental regulations on land and environmental monitoring have still not been put into practice. To ensure soil conservation policy and protect soils as a component of the environment, a distinction should be made between the notions of soil and land in the legal documents. The basic principles of the proposed law “On Soil Conservation” are outlined. It is argued that a system of soil-ecological criteria should be elaborated for the proper assessment of soil quality. As a soil conservation service is absent in Russia, it is suggested that the Dokuchaev Soil Science Society should organize an association for the protection and rehabilitation of Russian soils.  相似文献   

12.
To ameliorate degraded red soils and restore their productivity, it is necessary to quantitatively assess the effects of different land uses on soil fertility. In this study, surface soil samples (0–20 cm) under different land uses were collected from an 18-year ameliorative experiment site of a eroded red soil in Lanxi county, Zhejiang province of southern China. The status of surface soil fertility was quantified with a ryegrass growth test in the greenhouse and by numerical analysis of twelve important fertility indexes. The soil fertility indexes were grouped into three major factors using a factor analysis, i.e., organic matter-nitrogen-structure, acidity and phosphate. By means of principal component analysis and cluster analysis of these fertility factors, the fertility of the eroded red soil as a function of land use patterns had the following decreased order: vegetable land>paddy field, cropping arable land and ryegrass land>tea garden>citrus garden>forestland>wasteland. The result suggested that organic matter, total N, available N, and water-stable aggregates were the main characteristics for fertility restoration of the eroded red soil. Soil fertility was most rapidly restored where the soil had been used as vegetable land, and least restored when left as wasteland. The results indicated that land use strongly affected the fertility restoration of eroded red soils because of its effect on the input of nutrients and energy, thus determining the speed and direction of soil fertility evolution.  相似文献   

13.
Soil studies of ancient agricultural fields contribute to research on long-term human–environmental relationships and land use sustainability. This kind of research is especially applicable in desert landscapes of the American Southwest because: (1) soil formation is slow enough that cultivation effects persist for centuries to millennia; (2) many ancient fields in valley margins have remained uncultivated since they were abandoned, so long-term soil properties reflect ancient agricultural use; and (3) agricultural features (e.g., terraces, rock alignments and rock piles, and irrigation canals) provide clues for identifying and sampling ancient cultivated and uncultivated soils. Surficial remnants of these field systems persist and remain intact in many cases. Soil studies of ancient and modern American Indian agricultural systems across the Southwest indicate that soil changes are highly variable, ranging from degradation (e.g., organic matter/nutrient decline, compaction), to minimal net change, to enhanced soil quality. Soil changes caused by cultivation can be inferred by comparing soils in agricultural fields relative to reference uncultivated areas in similar landscape settings (that is, space-for-time substitution). Soil response trajectories vary for a number of reasons, such as variability in initial ecosystem conditions, diversity in agricultural methods, variability in the mix of crops and cropping intensity, and environmental sensitivity to alteration (varying resistance and resilience). Studies of rock mulch soils indicate enhanced fertility, with elevated organic carbon, nitrogen, and available phosphorus levels, increased infiltration rates and moisture retention, and no evidence of compaction. By contrast, cultivation effects vary widely for terraced soils. Although numerous studies have focused on irrigation canals, irrigated soils have received far less attention. Soil studies of irrigation systems along the Gila and Santa Cruz rivers of Arizona now underway will help fill this research gap.  相似文献   

14.
Assessment of soil quality is important for optimum production and natural resources conservation. Agricultural and pasture soil qualities of Deh-Sorkh region located at south of Mashhad, northeastern Iran were assessed using the integrated quality index (IQI) and Nemero quality index (NQI) models in combination with two datasets, i.e., total data set (TDS) and minimum data set (MDS). In this study 6 soil properties considered as MDS were selected out of 18 properties as TDS using principle component analysis. Soil samples were divided into 3 groups based on optimum ranges of 8 soil physical quality indicators. Soil samples with the most indicators at optimum range were selected as group 1 and the samples having fewer indicators at optimum range were located in groups 2 and 3. Optimum ranges of soil pore size distribution functions were also determined as soil physical quality indices based on 8 soil physical quality indicators. Pore size distribution curves of group 1 were considered as the optimum pore size functions. The results showed that relatively high organic carbon contents could improve pore size distribution. Mean comparisons of soil physical quality indicators demonstrated that mean weight diameter of wet aggregates, structural stability index, the slope of moisture retention curve at inflection point, and plant available water content in agricultural land use decreased significantly in relation to pasture land use. In addition, the results demonstrated that the studied MDS could be a suitable representative of TDS. 78% of pasture soils had the optimum pore size distribution functions, while this parameter for agricultural soils was only 13%. In general, the soils of the studied region showed high limitations for plant growth according to the studied indicators.  相似文献   

15.
J.H. Huddleston 《Geoderma》1984,32(4):297-317
This paper provides historical documentation of major U.S. efforts to develop numerical ratings of soil productivity. Nearly all of these efforts stemmed from needs to compare different soils objectively for purposes of agricultural land use planning and the equalization of land values and tax assessments.Several approaches are described, including U.S.D.A. work following World War I, ratings based solely on crop yield data, Storie's (1933, 1937, 1976) multiplicative factor approaches and the variations that evolved from them, and “Soil property systems” that add, rather than multiply, effects of separate factors. Taken together, these various approaches highlight a large number of soil properties, weather conditions, and crop yield data that need to be considered to develop ratings of soil productivity. They illustrate a variety of techniques for evaluating the effects of soil properties quantitatively and for combining soil factor values into overall soil ratings. Each approach has certain advantages and limitations, and these are discussed throughout. The collective experiences with the development and use of productivity ratings cover a diversity of soil and climatic conditions throughout the United States.  相似文献   

16.
应用危险确认模型评估土地管理的可持续发展   总被引:4,自引:1,他引:4  
New Zealand is highly dependent on its soil resource for continued agricultural production.To avoid depleting this resource,there is a need to identify soils and associated land management practices where there is a risk of soil degradation.Environmental integraity and ecosystem services also need to be maintoained.Accordingly,to ensure sustainable production,The on -and off-site environmental impacts of aldn management need to be identified and managed.We developed a structural vulnerability index for New Zealand soils.This index ranks solis according to their inherent susceptibility to physical degradation when used for agricultural (pasture,forestry and cropping) Purposes.We also developed a rule-based model to assess soil sompaction vulnerability by characterising the combined effects of resistance and resilience,Other soil attributes have been approatised using seven chemical,physical and biological indicators of soil quality.These indicators have been applied in a nation -wide project involving data collection from over 500 sites for a range of land uses.These soil quality data can be interpreted via the World Wide Web -through the in teractive decisionsupport tool SINDI,The land-use impact model is a framework to assess agricultural land management and environmental sustainability,and may be applied to land units at any scale.Using land resource data and information the model explicitly identifies hazards to land productivity and environmental integrity,It utilises qualitative expert and local knowledge and quantitative model-based evaluations to assess the potential environmental impacts of land-management pratices.The model is linked to a geographic information system(GIS),allowing model outputs.such at the environmental impacts of site-specific best management practices,to be identified in a spatially explicit manner,The model has been tested in New Zealand in an area of pastoral land use.Advantages of this risk identification model include:utilising current knowledege of the causes and effects of land-management practices on soil degradation;linking land management practice to both on-and off-site environmental consequences;identifying important gaps in local knowledge,and providing spatially explicit information on the environmental impact of land-management practices.  相似文献   

17.
Land use changes and soil management can potentially alter soil quality. A study was conducted to assess the long‐term (>20 years) effects of perennial trees (PT), vegetable crops (VC), rice–wheat (RW) system, sewage‐irrigated fields (SF), maize–wheat (MW) system and uncultivated soils (US) on soil quality. Soil physical quality parameters were significantly affected only in the SF system when compared with the US soil, particularly for bulk density (BD 1·51 Mg m−3 in SF vs. 1·34 in US). Among chemical parameters, electrical conductivity was high in SF, and soil nutrients (N, P, K, S, Zn, Fe, Cu and Mn) were well above the critical limits of deficiency in all the systems. Soil parameters were integrated into soil quality indices (SQIs) by unscreened transformation and principal component analysis (PCA). SQI observed under each system were compared with the US to assess the degree of degradation. Mean SQI differences showed that PT (+16·02 per cent), VC (+4·80 per cent), RW (+10·04 per cent), and MW (+11·30 per cent) are aggrading, whereas SF (−2·06 per cent) is degrading with respect to the reference soil (US). Adoption of MW system proved to be better than traditional RW; and in general agricultural crops have a significant advantage than VC, in terms of maintaining soil quality. Sewage irrigation is not a sustainable practice and long‐term use may degrade the soil. Among the SQIs, PCA with nonlinear scoring function (NLSF) based SQI was effective in judging land degradation due to soil quality changes as affected by long‐term land use and soil management practices. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
土壤侵蚀对坡耕地耕层质量退化作用及其评价趋势展望   总被引:11,自引:8,他引:3  
土壤侵蚀是导致坡耕地耕层质量退化和土壤生产力不稳定的关键驱动因素。该文从水蚀区坡耕地侵蚀控制和生产功能角度,在解析地块尺度土壤侵蚀、水土保持、农业活动对坡耕地耕层生态过程作用特征的基础上,系统分析了土壤侵蚀对坡耕地耕层质量退化作用、影响效应及作用途径。认为:1)坡耕地耕层质量变化由降雨侵蚀、耕作活动交互作用的生态过程决定,2种作用的时间、空间尺度不同;耕层土壤参数在坡耕地农业生产中作用分为保水、保土、保肥和增产潜力,由地块尺度农作物-耕层耦合效应决定土壤生产能力、坡耕地水土流失特征及耕层侵蚀性退化方向及程度。2)土壤侵蚀对坡耕地耕层质量退化作用表现为土壤性质恶化、土壤质量劣化、土地生产力衰退3个方面,耕层土壤物理性质变异程度大于化学性质变异,径流作用导致的土地生产力衰退大于土壤流失作用。3)坡耕地耕层质量评价指标体系应兼顾侵蚀下降、产量提升2个目标,地块尺度诊断指标有效土层厚度、耕层厚度、土壤容重、土壤抗剪强度、土壤有机质、土壤渗透性可作为合理耕层评价最小数据集;坡耕地合理耕层适宜性分为5级,其诊断指标分级标准宜与土壤侵蚀分级和耕地地力分级衔接。4)坡耕地合理耕层评价未来应密切关注耕层质量诊断指标最小数据集、坡耕地合理耕层阈值/适宜值分级标准、坡耕地水土流失阻控标准拟定3个主要方向。研究可为深入认识坡耕地侵蚀性退化机制,辨识坡耕地合理耕层调控途径以及坡耕地合理耕层构建技术参数提供依据。  相似文献   

19.
The aim of this work was to investigate the response of the structure, abundance and potential activity of denitrifiers to contrasting agricultural management in no-till production fields, across a regional scale within the highly productive Argentine northern Pampas. Treatment categories were grouped according to the sustainability of the soil management, in terms of crop rotation, fertilization, agrochemicals use and pest control, as good no-till agricultural practices (GAP) and poor no-till agricultural practices (PAP). Non-cultivated soils in each geographic location were also evaluated as reference groups.Mixed models, with sites treated as random factors, indicated that the potential denitrification activity and the size of the nirS community differed significantly between non-cultivated and PAP soils. Soil properties were separated into dynamic and inherent according to their variance components. The former had the largest part of their variances explained by agricultural management, while the latter were more affected by edaphic–climatic differences between sites. Both inherent and dynamic properties could explain the changes in potential denitrification activity, whereas changes in the abundance of denitrifiers were only related to inherent soil properties. Results from principal components analysis suggested site-specific response of most dynamic soil properties. Among the latter, only aggregate stability indices were strongly associated with potential denitrification activity after removing the geographical effect.  相似文献   

20.
The impact of land‐use intensity is evaluated through changes in the soil properties in different areas of the traditional central Spanish landscape. Soil organic carbon (SOC) content, bulk density, aggregate stability and water‐holding capacity (WHC) in the topsoil of active and abandoned vineyards, livestock routes (LR) and young Quercus afforested areas were analysed. These different types of land use can be interpreted as having a gradient of progressively less impact on soil functions or conservation. As soil use intensity declines, there is an increase in SOC content (from 0.2 to 0.6%), WHC (from 0.2 to 0.3 g H2O per g soil) and aggregate stability (from 4 to 33 drop impacts). Soils beneath vines have lost their upper horizon (15 cm depth) because of centuries‐old tillage management of vineyards. Except for an increase in bulk density (from 1.2 to 1.4 g/cm3), there were no differences in soil characteristics 4 yr after the abandonment of vine management. LR can be considered sustainable uses of land, which preserve or improve soil characteristics, as there were no significant differences between topsoil from LR and that from a 40‐yr‐old Quercus afforested area. SOC content, one of the main indicators for soil conservation, is considered very low in every case analysed, even in the more conservative uses of land. These data can be useful in understanding the slow rate of recovery of soils, even after long‐term cessation of agricultural land use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号