首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genotype of an individual and the environment as the maternal ability of its dam have substantial effects on the phenotype expression of many production traits. The aim of the present study was to estimate the (co)variance components for worm resistance, wool and growth traits in Merino sheep, testing the importance of maternal effects and to determine the most appropriate model for each trait. The traits analyzed were Greasy Fleece Weight (GFW), Clean Fleece Weight (CFW), average Fibre Diameter (FD), Coefficient of Variation of FD (CVFD), Staple Length (SL), Comfort Factor (CF30), Weaning Weight (WWT), Yearling Body Weight (YWT) and Faecal worm Egg Count (FEC). The data were recorded during a 15-year period from 1995 to 2010, from Uruguayan Merino stud flocks. A Bayesian analysis was performed to estimate (co)variance components and genetic parameters. By ignoring or including maternal genetic or environmental effects, five different univariate models were fitted in order to determine the most effective for each trait. For CVFD and YWT, the model fitting the data best included direct additive effects as the only significant random source of variation. For GFW, CFW, FD, SL and CF30 the most appropriate model included direct-maternal covariance; while for FEC included maternal genetics effects with a zero direct-maternal covariance. The most suitable model for WWT included correlated maternal genetic plus maternal permanent environmental effects. The estimates of direct heritability were moderate to high and ranged from 0.15 for log transformed FEC to 0.74 for FD. Most of the direct additive genetic correlation (rg) estimations were in the expected range for Merino breed. However, the estimate of rg between FEC and FD was unfavourable (−0.18±0.03). In conclusion, there is considerable genetic variation in the traits analyzed, indicating the potential to make genetic progress on these traits. This study showed that maternal effects are influencing most of traits analyzed, thus these effects should be considered in Uruguayan Merino breeding programs; since the implementation of an appropriate model of analysis is critical to obtain accurate estimates.  相似文献   

2.
本试验旨在比较不同数据结构和单性状动物模型对高山美利奴羊(14月龄)重要数量性状遗传参数估计的影响,筛选出估计体重、产毛量、净毛率、净毛量、羊毛纤维直径、羊毛纤维直径变异系数和羊毛长度7个重要经济性状遗传参数的最适模型,准确估计遗传力并为下一步遗传评定奠定基础。使用R语言数据整理相关函数将涉及20 720只14月龄高山美利奴羊数据按系谱完整度和数据量分为数据集1和数据集2。采用R语言ANOVA分析检验鉴定年份、出生类型(单胎或双胎)、群别、性别4个非遗传因素在两个数据集中的显著性,将极显著效应(P < 0.01)放入动物模型中作为固定效应。将两个数据集和两个单性状动物模型组合得到4个模型,其中模型1、模型2分别使用数据集1、数据集2,随机效应为个体加性遗传效应、残差效应;模型3、模型4分别使用数据集1、数据集2,随机效应为个体加性遗传效应、个体永久环境效应和残差效应。用ASReml4软件实现方差组分估计。通过AIC准则、BIC准则评价各模型,用LRT检验比较各模型。最后,针对各性状选出最适模型进行遗传力估计。结果显示:①非遗传效应显著性检验得到鉴定年份和群别对数据集1和数据集2中所有性状均极显著(P < 0.01),出生类型对体重和数据集1中产毛量极显著(P < 0.01),性别仅对体重反应极显著(P < 0.01)。②各模型估计的体重遗传力为0.1614~0.2392;产毛量遗传力为0.1958~0.3254;净毛率遗传力为0.4395~0.5539;净毛量遗传力为0.2003~0.2393;羊毛纤维直径遗传力为0.4024~0.5897;羊毛纤维直径变异系数遗传力为0.3174~0.6077;毛长遗传力为0.2960~0.3669。③似然比检验结果表明,模型1和模型3对所有性状差异均不显著(P > 0.05);模型1和模型4对体重和毛长差异极显著(P < 0.01);模型2和模型3对净毛量差异极显著(P < 0.01),对其他性状差异不显著(P > 0.05);模型2和模型4对所有性状差异不显著(P > 0.05)。最终得到对净毛量最适模型为模型1,体重、产毛量、净毛率、羊毛纤维直径、羊毛纤维直径变异系数、毛长的最适模型为模型2。所有性状受个体永久环境影响均不显著(P > 0.05)。基于最适模型估计高山美利奴羊(14月龄)体重、产毛量、净毛率、净毛量、羊毛纤维直径、羊毛纤维直径变异系数、毛长遗传力分别为0.2392、0.3254、0.4394、0.2893、0.4222、0.3175、0.3670。  相似文献   

3.
Variance components, heritability (direct additive and maternal) and correlations (additive genetic, phenotypic, maternal genetic and environmental) of body weight (BW) and body size including length (BL), height (BH) and chest girth (BCG) at birth in Boer goats were estimated on the basis of 5096 records obtained from a Boer Goat Breeding Station in Yidu, China, during 2001–2005. The parameters were estimated using a DFREML procedure by excluding or including maternal genetic or permanent maternal environmental effects, four different analysis models were fitted in order to determine the optimum model for each trait. The environmental factors such as year, season, sex and litter size (LS, number of kids) were investigated as the fixed effects. The results showed that the maternal effects were important determinants of estimated the genetic parameters for birth traits. Year and season had significant effect on birth traits. Single births and male kids had the heaviest live weight and the largest body size at birth. The mean values and standard deviation (SD) of BW, BL, BH and BCG were 3.87 ± 0.85 kg, 31.67 ± 2.87 cm, 32.92 ± 2.80 cm, 33.46 ± 3.21 cm. The mean values and standard error (SE) of direct additive heritability estimates for BW, BL, BH and BCG calculated with the optimum model were 0.19 ± 0.08, 0.14 ± 0.07, 0.24 ± 0.09 and 0.25 ± 0.10, respectively. For all the birth traits, estimates of the correlations between direct additive and maternal genetic (ram) were negative. The estimates of additive genetic and phenotypic correlations among the birth traits were high and positive, and implied no genetic antagonisms among these traits analyzed. The estimates of maternal genetic correlations also were high and positive. Medium and positive environmental correlations indicated the important effects of environmental factors on early growth traits.  相似文献   

4.
Estimates of (co)variance components and genetic parameters were calculated for birth weight (BWT), weaning weight (WWT), 6 month weight (6WT), 9 month weight (9WT), 12 month weight (12WT) and greasy fleece weight at first clip (GFW) for Malpura sheep. Data were collected over a period of 23 years (1985–2007) for economic traits of Malpura sheep maintained at the Central Sheep & Wool Research Institute, Avikanagar, Rajasthan, India. Analyses were carried out by restricted maximum likelihood procedures (REML), fitting six animal models with various combinations of direct and maternal effects. Direct heritability estimates for BWT, WWT, 6WT, 9WT, 12WT and GFW from the best model (maternal permanent environmental effect in addition to direct additive effect) were 0.19 ± 0.04, 0.18 ± 0.04, 0.27, 0.15 ± 0.04, 0.11 ± 0.04 and 0.30 ± 0.00, respectively. Maternal effects declined as the age of the animal increased. Maternal permanent environmental effects contributed 20% of the total phenotypic variation for BWT, 5% for WWT and 4% for GFW. A moderate rate of genetic progress seems possible in Malpura sheep flock for body weight traits and fleece weight by mass selection. Direct genetic correlations between body weight traits were positive and ranged from 0.40 between BWT and 6WT to 0.96 between 9WT and 12WT. Genetic correlations of GFW with body weights were 0.06, 0.49, 0.41, 0.19 and 0.15 from birth to 12WT. The moderately positive genetic correlation between 6WT and GFW suggests that genetic gain in the first greasy fleece weight will occur if selection is carried out for higher 6WT.  相似文献   

5.
A total of 4007 lactation records from 1520 Saanen goats kidding from 1999 to 2006 and obtained from 10 herds in Guanajuato, Mexico, were analyzed to estimate the heritabilities, repeatabilities, as well as genetic, environmental and phenotypic correlations for milk yield (MILK), fat yield (FAT), protein yield (PROT), fat content (%FAT), protein content (%PROT) and age at fist kidding (AFK). A five-trait repeatability model was used to estimate (co)variances for milk traits, and a four-trait animal model for first lactation records was used to estimate (co)variances involving AFK. For MILK, FAT, PROT, %FAT, %PROT and AFK, heritability estimates were 0.17 ± 0.04, 0.19 ± 0.05, 0.17 ± 0.04, 0.32 ± 0.06, 0.38 ± 0.07 and 0.31 ± 0.09, respectively. Repeatabilities for MILK, FAT, PROT, %FAT and %PROT were 0.43 ± 0.02, 0.42 ± 0.02, 0.42 ±0.02, 0.64 ± 0.02, and 0.63 ± 0.02, respectively. The genetic correlations between MILK and FAT, and between MILK and PROT, were high and positive (0.72 ± 0.08 and 0.87 ± 0.04, respectively). Genetic correlations between MILK and %FAT, between MILK and %PROT and between MILK and AFK, were − 0.24 ± 0.16, − 0.30 ± 0.15 and − 0.18 ± 0.23, respectively. Genetic correlations between AFK and FAT and between AFK and PROT were − 0.09 ± 0.24 and − 0.17 ± 0.25, respectively; and genetic correlations between AFK and %FAT and between AFK and %PROT were 0.29 ± 0.35 and 0.14 ± 0.27, respectively. Selection for milk traits is possible using a repeatability animal model. Selection for milk production traits would probably not increase AFK, but more precise estimates of the genetic correlations are required. Selection to lower AFK is possible. These (co)variance estimates would make it possible to predict the selection responses from different economic indices in order to maximize the economic responses for the local markets.  相似文献   

6.
The purpose of the present study was to obtain estimates of variance components and genetic parameters for direct and maternal effects on various growth traits in Beetal goat by fitting four animal models, attempting to separate direct genetic, maternal genetic and maternal permanent environmental effects under restricted maximum likelihood procedure. The data of 3,308 growth trait records of Beetal kids born during the period from 2004 to 2019 were used in the present study. Based on best fitted models, the direct additive h2 estimates were 0.06, 0.27, 0.37, 0.17 and 0.10 for birth weight (BWT), weight at 3 (WT3), 6 (WT6), 9 (WT9) and 12 (WT12) months of age, respectively. Maternal permanent environmental effects significantly contributed for 10% and 7% of total variance for BWT and WWT, respectively, which reduced direct heritability by 40 and 10% for respective traits from the models without these effects. For average daily gain (ADG1) and Kleiber ratios (KR1) up to weaning period (3 months) traits, maternal permanent environmental effects accounted for 7% and 8% of phenotypic variance, respectively, and resulted in a reduction of 6.6% and 5.4% in direct h2 of respective traits. For post-weaning traits, the maternal effects were non-significant (p > .05) which indicates diminishing influence of mothering ability for these traits. High and positive genetic correlations were obtained among WT3-WT6, WT6-WT9 and WT9-WT12 with correlations of 0.96 ± 0.25, 0.84 ± 0.23 and 0.90 ± 0.13, respectively. Thus, early selection at weaning age can be practised taking into consideration maternal variation for effective response to selection in Beetal goat.  相似文献   

7.
Hungary has a long-standing tradition in Merino breeding and improvement. During the past decades several attempts have been made to introduce a number of other sheep breeds. Although this effort was not in vain the majority of the sheep population is still the Hungarian Merino breed. The adaptability, endurance and excellent wool-producing ability of this breed is first rate and is worth preserving (V eress et al. 1997). The profitability of a sheep production system is determined by both fertility and production traits. Reproduction performance is usually defined as litter weight per dam per year. Progress can be achieved through various ways. One of them is frequent lambing which also has the advantage that lamb production becomes more consistent throughout the year. Another possibility is producing larger litter sizes (LS), and yet a another opportunity for increased production is having lambs with larger weights (WT). Simultaneous enhancement can also be achieved if there is no antagonism between these traits. From these several fertility traits LS from the first to the fifth parity was chosen for analysis as LS is one of the most important traits concerning reproduction performance. Of the production traits, WT measured at various ages, greasy fleece weight (GFW) from the first five shearings, staple length (SL) and fibre diameter (FD) at the age of 1 year were taken into the analysis. According to other studies there are several factors influencing the above mentioned traits, namely age, season of previous lambing (PLS), type of birth (TOB), and sex. In general, LS increased with advancing age (L ong et al. 1989; B unge et al. 1990; A p D ewi et al. 1996). For GFW the peak of production was achieved in a relatively early age of 3 years, reported by V eress (1969) and by T urner and Y oung (1969). The effect of PLS on LS was that smaller litters were observed with previous lambing seasons of summer and autumn (L ong et al. 1989). TOB and sex effect on WT have been investigated by several authors (T urner and Y oung 1969, p. 46, 51.; S hrestha and H eaney 1985; M avrogenis 1988; B unge et al. 1990; J urado et al. 1994; V eress et al. 1995; S hrestha et al. 1996). Single-born lambs are heavier than multiples although this difference decreases with age. All authors also agree that male lambs are heavier than females. TOB and sex effect on GFW were reported by T urner and Y oung (1969). T urner and Y oung labelled the TOB effect as a ‘maternal handicap’ as the effect is noticeable even in maturity but decreasing by age. T urner and Y oung (1969) also observed that the WT and GFW of male animals exceeds that of the females, but, unlike with the previous effect, the difference increases with age. There was a negligible difference between sexes in SL and FD. Studying the results of numerous authors, estimates of the genetic parameters of LS, WT, GFW, SL, and FD were found to be generally consistent. Heritabilities of LS ranged from 0.05 to 0.08 (A l -S horepy and N otter 1996; A p D ewi et al. 1996; for litter size at first parity only). A p D ewi et al. (1996) found very high (>0.9) genetic correlations between the first and adult litter size. Heritabilities estimated for WT were higher than those of the fertility traits and ranged in the interval of 0.05–0.47 (S hrestha and H eaney 1985; L ong et al. 1989; B unge et al. 1990; K umar and R eheja 1993; J urado et al. 1994; A l -S horepy and N otter 1996). Genetic correlations between yearling and adult WT were high (J urado et al. 1994; 0.85; A l -S horepy and N otter 1996; 0.85–1.0). GFW heritabilities reported by B lair et al. (1985); T urner and Y oung (1969) were about 0.2 thus also exceeding those of the fertility traits. Regarding the genetic parameters of SL & FD, N otter and H ough (1997); M orris et al. (1996) reported that the heritability of SL and FD was higher than that of GFW (026–0.34; 0.47–0.58). Genetic correlations among production traits were mainly low (M orris et al. 1996; and T urner and Y oung 1969). The objectives of this paper were to determine whether the characteristics of the Hungarian Merino sheep population correspond with the features given in the literature review. Thus the objectives were to obtain the factors influencing the traits examined and to estimate genetic parameters of LS, WT, GFW, SL, and FD, respectively.  相似文献   

8.
This article reports genetic analysis of the weight at different ages of Murrah water buffaloes, using random regression models (RRM). Models ranging from third to sixth order polynomial were used to describe direct genetic and animal permanent environmental effects. Contemporary group was included as a fixed effect, and a cubic polynomial was used to model the mean curve of the population. The residual was modeled considering a log‐linear function. Two models were selected for study of genetic parameters. The first model included third and sixth order polynomials for direct genetic and animal permanent environmental effects (M36). The second model included sixth order polynomials for all random effects (M66). The estimates of heritability varied from 0.16 + 0.04 (44 days) to 0.38 + 0.04 (568 days) for model M36 and from 0.16 + 0.05 (33 days) to 0.42 + 0.05 (600 days) for model M66. Regarding estimates of the correlation for all effects, the magnitude tended to decline with the increase of the time span between measurements. These results indicate that the species has potential for genetic selection based on weight at different ages, since we found favorable genetic variability within the herd, with selection likely to be more efficient at ages near 600 days.  相似文献   

9.
An understanding of influencing factors and genetic principles affecting the growth traits is needed to implement optimal breeding and selection programs. In this study, heritabilities (direct additive and maternal) of body weights at birth (BW0), 90 days (BW90) and 300 days (BW300) of age and average daily gains from birth to 90 days (ADG0-90), birth to 300 days (ADG0-300) and 90 days to 300 days (ADG90–300) of age in Boer goats were estimated on the basis of 1520 Boer goats at Boer Goat Breeding Station in Yidu, China, during 2002–2007. The parameters were estimated using a DFREML procedure by excluding or including maternal genetic or permanent maternal environmental effects, four analysis models were fitted in order to optimize the model for each trait. Influencing factors such as parity, litter size, kidding year and season, as well as sex of kids and some significant interactions among these factors were investigated as the fixed effects for the models. The results showed that the birth year and maternal genetic effects such as parity and litter size of dam were important determinants of the genetic parameter estimates for pre-weaning growth traits, and environmental effects such as birth year, season and sex of kids had some significant effect on post-weaning growth traits. The mean values and standard errors (SE) of direct additive heritability estimates calculated with the optimum model were 0.17 ± 0.07, 0.22 ± 0.08, 0.07 ± 0.07, 0.10 ± 0.08, 0.30 ± 0.12 and 0.08 ± 0.10 for BW0, BW90, ADG0-90, BW300, ADG0-300 and ADG90–300, respectively. For pre-weaning weights, correlation estimates between direct additive and maternal genetic (ra–m) effect were high and negative ranging from − 0.74 to − 0.86.  相似文献   

10.
Genetic parameters and genetic trends for weaning weight adjusted to 240 d of age (WW240), and weight gain from weaning to 24 mo of age (GW730) were estimated in a Colombian beef cattle population composed of Blanco Orejinegro, Romosinuano, Angus, and Zebu straightbred and crossbred animals. Calves were born and weaned in a single farm, and moved to 14 farms postweaning. Data were analyzed using a multiple trait mixed model procedures. Estimates of variance components and genetic parameters were obtained by Restricted Maximum Likelihood. The 2-trait model included the fixed effects of contemporary group (herd–year–season–sex), age of dam (WW240 only), breed direct genetic effects (as a function of breed fractions of calves), breed maternal genetic effects (as a function of breed fractions of dams; WW240 only), individual heterosis (as a function of calf heterozygosity), and maternal heterosis (as a function of dam heterozygosity; WW240 only). Random effects for WW240 were calf direct genetic, dam maternal genetic, permanent environmental maternal, and residual. Random effects for GW730 were calf direct genetic and residual. All relationships among animals were accounted for. Program AIREML was used to perform computations. Estimates of heritabilities for additive direct genetic effects were 0.20 ± 0.003 for WW240, and 0.32 ± 0.004 for GW730. Maternal heritability was 0.14 ± 0.002 for WW240. Estimates of heritability suggest that selection for preweaning and postweaning growth in this population is feasible. Low direct and maternal preweaning heritabilities suggest that nutrition and management should be improved to allow fuller expressions of calf direct growth and cow maternal ability. The genetic correlation between direct additive and maternal additive effects for WW240 was − 0.42 ± 0.009, indicating an antagonistic relationship between these effects. The correlation between additive direct genetic effects for WW240 and GW730 was almost zero (− 0.04 ± 0.009), suggesting that genes affecting growth preweaning may differ from those influencing growth postweaning. Trends were negative for direct WW240 and GW730 weighted yearly means of calves, sires, and dams from 1995 to 2006. Maternal WW240 showed near zero trends during these years. Trends for calf direct WW240 and GW730 followed sire trends closely, suggesting that more emphasis was placed on choosing sires than on dam replacements.  相似文献   

11.
Genetic parameters and genetic trends for age at first calving (AFC), interval between first and second calving (CI1), and interval between second and third calving (CI2) were estimated in a Colombian beef cattle population composed of Angus, Blanco Orejinegro, and Zebu straightbred and crossbred animals. Data were analyzed using a multiple trait mixed model procedures. Estimates of variance components and genetic parameters were obtained by Restricted Maximum Likelihood. The 3-trait model included the fixed effects of contemporary group (year-season of calving-sex of calf; sex of calf for CI1 and CI2 only), age at calving (CI1 and CI2 only), breed genetic effects (as a function of breed fractions of cows), and individual heterosis (as a function of cow heterozygosity). Random effects for AFC, CI1, and CI2 were cow and residual. Program AIREMLF90 was used to perform computations. Estimates of heritabilities for additive genetic effects were 0.15 ± 0.13 for AFC, 0.11 ± 0.06 for CI1, and 0.18 ± 0.11 for CI2. Low heritabilities suggested that nutrition and reproductive management should be improved to allow fuller expressions of these traits. The correlations between additive genetic effects for AFC and CI1 (0.33 ± 0.41) and for AFC and CI2 (0.40 ± 0.36) were moderate and favorable, suggesting that selection of heifers for AFC would also improve calving interval. Trends were negative for predicted cow yearly means for AFC, CI1, and CI2 from 1989 to 2004. The steepest negative trend was for cow AFC means likely due to the introduction of Angus and Blanco Orejinegro cattle into this population.  相似文献   

12.
Variance components (VC) were estimated for the semen production trait ejaculate volume, sperm concentration and sperm motility in the Swiss cattle breeds Brown Swiss (BS), Original Braunvieh (OB), Holstein (HO), Red‐Factor‐Carrier (RF), Red Holstein (RH), Swiss Fleckvieh (SF) and Simmental (SI). For this purpose, semen production traits from 2,617 bulls with 124,492 records were used. The data were collected in the years 2000–2012. The model for genetic parameter estimation across all breeds included the fixed effects age of bull at collection, year of collection, month of collection, number of collection per bull and day, interval between consecutive collections, semen collector, bull breed as well as a random additive genetic component and a permanent environmental effect. The same model without a fixed breed effect was used to estimate VC and repeatabilities separately for each of the breeds BS, HO, RH, SF and SI. Estimated heritabilities across all breeds were 0.42, 0.25 and 0.09 for ejaculate volume, sperm concentration and sperm motility, respectively. Different heritabilities were estimated for ejaculate volume (0.42; 0.45; 0.49; 0.40; 0.10), sperm concentration (0.34; 0.30; 0.20; 0.07; 0.23) and number of semen portions (0.18; 0.30; 0.04; 0.14; 0.04) in BS, HO, RH, SF and SI breed, respectively. The phenotypic and genetic correlations across all breeds between ejaculate volume and sperm concentration were negative (?0.28; ?0.56). The other correlations across all breeds were positive. The phenotypic and genetic correlations were 0.01 and 0.19 between sperm motility and ejaculate volume, respectively. Between sperm motility and sperm concentration, the phenotypic and genetic correlations were 0.20 and 0.36, respectively. The results are consistent with other analyses and show that genetic improvement through selection is possible in bull semen production traits.  相似文献   

13.
This trial was carried out in Piracicaba, São Paulo State, Brazil, to comparatively evaluate the degree of resistance to naturally acquired gastrointestinal nematode infections in sheep of the following genetic groups: purebred Santa Ines (SI), SI crossbred with Dorper (DO × SI), Ile de France (IF × SI), Suffolk (SU × SI), and Texel (TE × SI). Fifteen ewes from each group were raised indoors until 12 months of age. At this age, they were moved to pasture that was naturally contaminated by nematode infective larvae and were evaluated from December to May, 2007. Rainfall ranged from 267 mm in January to 37 mm in April. Maximum and minimum mean temperatures ranged from 32.5 °C to 19.0 °C in March and from 25.9 °C to 12.8 °C in May. There was an increase in the mean number of eggs per gram of feces (EPG) after animals were placed on pasture with significant difference between the SI (80 EPG) and IF × SI (347 EPG) groups in January; and the DO × SI (386 EPG) and TE × SI (258 EPG) groups in May. The highest mean fecal egg count (FEC), 2073 EPG, was recorded for the TE × SI group in February. All groups showed a progressive reduction in body weight throughout the experiment of 12.0% (TE × SI) to 15.9% (SU × SI). In general, the animals with the highest FEC presented the lowest packed cell volumes (PCV); the highest correlation coefficient between FEC × PCV occurred in the SU × SI sheep in January (r = −0.70; P < 0.01). Similarly, there was an inverse relationship between FEC and blood eosinophil values, with the highest correlation coefficient in the TE × SI sheep in February (r = −0.64; P < 0.05). Immunoglobulin G (IgG) levels against Haemonchus contortus antigens increased in all groups as a result of the exposure to parasites and remained relatively constant until the end of the study, with the exceptions of SU × SI and TE × SI, which showed a rise in IgG levels during the last sampling that coincided with a reduction in mean FEC. In conclusion, crossbreeding Santa Ines sheep with any of the breeds evaluated can result in a production increase and the maintenance of a satisfactory degree of infection resistance, especially against H. contortus and Trichostrongylus colubriformis, the major nematodes detected in this flock.  相似文献   

14.
Direct and maternal (co)variance components and genetic parameters were estimated for growth and reproductive traits in the Kenya Boran cattle fitting univariate animal models. Data consisted of records on 4502 animals from 81 sires and 1010 dams collected between 1989 and 2004. The average number of progeny per sire was 56. Direct heritability estimates for growth traits were 0.34, 0.12, 0.19, 0.08 and 0.14 for birth weight (BW), weaning weight (WW), 12-month weight (12W), 18-month weight (18W) and 24-month weight (24W), respectively. Maternal heritability increased from 0.14 at weaning to 0.34 at 12 months of age but reduced to 0.11 at 24 months of age. The maternal permanent environmental effect contributed 16%, 4% and 10% of the total phenotypic variance for WW, 12W and 18W, respectively. Direct-maternal genetic correlations were negative ranging from −0.14 to −0.58. The heritability estimates for reproductive traits were 0.04, 0.00, 0.15, 0.00 and 0.00 for age at first calving (AFC), calving interval in the first, second, and third parity, and pooled calving interval. Selection for growth traits should be practiced with caution since this may lead to a reduction in reproduction efficiency, and direct selection for reproductive traits may be hampered by their low heritability.  相似文献   

15.
I. Schei  I.A. Boman  H. Volden   《Livestock Science》2008,116(1-3):246-259
The objectives of this study were to investigate the effects of genetic capacity on abomasal and intravenous infusions of wheat starch or glucose (CHO) or a mixture of amino acids (AA) on milk production, nitrogen utilization efficiency, plasma metabolites and hormones of dairy cows in early and late lactation. Eight cows from two genetic lines selected for low (L) and high (H) milk production were used in a 4 × 4 Latin square design. The mean differences in pedigree index between the two groups were 1639 kg milk and 55 kg protein yield based on 305 days lactation. Infusions were: 1) starch in the abomasum (SP), 2) glucose in the blood (GB), 3) AA in the abomasum (AP), and 4) AA in the blood (AB). The experiment was conducted in early lactation (start: 57 ± 4 and 52 ± 2 days postpartum, 31.3 ± 2.8 and 34.7 ± 1.4 kg milk for L and H cows, respectively) and repeated with the same animals and treatments in late lactation (start: 168 ± 4 and 163 ± 2 d postpartum, 21.0 ± 1.9 and 23.8 ± 0.7 kg milk for L and H cows, respectively). Daily amounts infused were on average 354 and 258 g in early and late lactation, respectively. The cows were restrictively fed a basal diet consisting of concentrate mixture and grass silage (55:45 on DM basis). Differences in milk yield and ECM between the genetic groups were 3.7 and 3.3 kg in early lactation and 2.9 and 2.0 kg in late lactation, respectively, but the difference was not significant (P > 0.10). Minor effects of genetic group were found in milk production and plasma metabolite concentrations. However, the extraction rates of EAA, BCAA, NEAA and TAA were higher (P < 0.05) in H cows than in L cows in early lactation but not in late lactation. OM and CP digestibility and hormones were affected by genetic group or genetic group × treatment interaction. It is concluded that genetic capacity is important for digestion and metabolism of nutrients, and particularly, how hormone levels are influenced by different nutrient supply.  相似文献   

16.
The aim of the present investigation was to study the genetic relationships between pelt quality traits (shade of fleece, size of curl, score for fleece colour, score for curl, score for quality of hair, score for thickness of fleece, sum of pelt scores, and overall score) on one hand and maternal ability, live weight, and carcass traits on the other hand for the Gotland sheep breed. Data were received from the Swedish Sheep Recording Scheme and included observations on 4-month weight (4MW) and pelt quality for 51,402 lambs and on weight (CW), fatness (FAT), and fleshiness (FLESH) of the carcass for 12,440 lambs. The lambs were born during the period 1991–2003. When maternal genetic and permanent environmental effects were included in the model direct heritabilities for the pelt quality traits varied between 0.16 and 0.25. Maternal heritabilities (0.01 to 0.05) and common environmental variances as a fraction of the total phenotypic variances (0.07 to 0.10) were low. Maternal heritabilities were higher for 4MW (0.11) and CW (0.12) than for the pelt quality traits. Direct-maternal genetic correlations were both for the pelt quality traits and for 4MW and CW generally negative and low to medium high. Direct genetic correlations between pelt quality traits on one hand and 4MW, CW, FAT or FLESH on the other hand were low (− 0.16 to 0.12). Maternal genetic correlations between pelt quality traits and 4MW or CW were positive and high (0.38 to 0.96). It was concluded that breeding for increased growth and improved carcass quality would not influence pelt quality negatively or vice versa. If maternal genetic effects are considered for 4MW and CW in the breeding program for the Gotland sheep breed, selection for maternal effects on 4MW and CW will have positive effects both on lamb weight and pelt quality.  相似文献   

17.
The purpose of this study was to determine the diurnal composition and concentration of volatile fatty acids (VFA) and to determine VFA composition and concentration differences between stomach compartment 1 (C1) and caecum of alpacas fed grass and alfalfa hay. The study was divided into two experiments. In Experiment 1 (EXP 1), 10 male alpacas (3+ years old, 65 kg BW) were divided into two groups, housed in drylot pens, provided ad libitum water and fed alfalfa (AH) or grass hay (GH) for 30 days. The alpacas were slaughtered and the digestive tract collected, divided into sub‐tract sections, weighed and digesta sampled for pH, dry matter (DM) and NDF. Volatile fatty acid composition and concentration were determined on C1 and caecal material. Four adult male (3+ years old, 60 kg BW), C1 fistulated alpacas were housed in metabolism crates and divided into two forage groups for Experiment 2 (EXP 2). Alpacas were fed the forages as in EXP 1. Diurnal C1 VFA samples were drawn at 1, 3, 6, 9, 12, 18 and 24 h post‐feeding. There were no differences between forages for tract weight, C1 and caecum digesta DM or NDF. Differences were noted (p < 0.05) for pH between forages and sub‐tract site. Volatile fatty acids concentrations were different (p < 0.05) for forage and site, and total VFA was higher for AH than GH (110.6 and 79.1 mm ) and C1 than caecum (40.7 and 27.6 mm ). Proportion of VFA was significant (p < 0.05) for forage and site, C1 acetate highest for GH (84.8 vs. 74.0 mm ) and caecum acetate 83.7 and 76.2 mm for GH and AH respectively. These data demonstrate the level of VFA produced in C1 and the caecum of alpacas and the diurnal VFA patterns. Composition of VFA is similar to other ruminant species.  相似文献   

18.
The objective of this research was to evaluate comparative pharmacokinetics of doramectin in alpacas, after subcutaneous administration of 0.2 mg/kg dose. Six healthy adult alpacas, mean age of 5 years ± 1, (three female and three gelded males) of mean bodyweight of 62 kg ± 16 kg with an average body condition scored 2.8 ± 1 out of five, were used in this study. Serial blood samples were collected from the jugular vein before the administration until day 21 afterwards to establish the pharmacokinetics of doramectin after its subcutaneous administration at 0.2 mg/kg dose. The blood samples were analysed using high-performance liquid chromatography (HPLC), fluorescence detection method with precolumn derivatisation, validated for alpacas. The pharmacokinetic parameters were calculated using a noncompartmental model, and results showed Cmax (6.05 ± 5.34 ng/ml), Tmax (3.83 ± 2.48 days), AUC (62.12 ± 18.86 ng/ml × d), terminal half-life (6.2 ± 4.9 days) and MRT (11.56 ± 4.43 days). The results of this study showed that the Cmax and AUC were much lower than in cattle and sheep at the same dosage. Tmax remained similar to cattle and sheep. This study presents valuable information about pharmacokinetics of doramectin in alpacas, which can be utilised in its future efficacy studies.  相似文献   

19.
The objective of this study was to estimate variance and covariance components, in Iranian Cashmere goats, for birth weight (BWT) and weaning weight (WWT) performances of kids and total weight of kids weaned (TWW) per doe joined at first (TWW1), second (TWW2) and third (TWW3) parities by REML procedures using univariate and multivariate animal models. The analysis was based on 2313 records of kids and 940 records of does. Through ignoring or including maternal additive genetic or maternal permanent environmental effects, four different models were fitted for BWT and WWT performances. For TWW performances only two models (without or with service sire effect) were used. Models were compared using likelihood ratio test. Direct additive genetic and maternal permanent environmental effects had significant influence on BWT and WWT performances. These effects accounted for 9.4% and 15.6%, and 13.9% and 6.7% of phenotypic variation, respectively. No significant effect of service sire was observed on TWW. The estimates of heritabilities were 0.072, 0.109 and 0.082 for TWW1, TWW2 and TWW3, respectively. Direct genetic correlations among all performances were positive and low (for BWT with TWW) to high (for BWT with WWT and WWT with TWW). The corresponding estimates for phenotypic and residual correlations were moderate and lower than genetic correlations. The high genetic correlation among WWT and TWW suggests that direct selection on TWW1 or indirect selection on WWT would increase total weight of kids weaned per doe joined.  相似文献   

20.
The present study was conducted on 1,002 reproductive records of 430 Jersey crossbred cattle, descended from 57 sires and 198 dams, maintained at the Eastern Regional Station of ICAR-National Dairy Research Institute, Kalyani, Nadia, West Bengal, India to investigate the influence of direct genetic, maternal genetic and maternal permanent environmental effect on three most important reproductive traits viz., number of service per conception (NSPC), days open (DO) and calving interval (CI) of Jersey crossbred cattle. Six single-trait animal models (including or excluding maternal genetic or permanent environmental effects) were fitted to analyse these traits, and the best model was chosen after testing the significant increase in the log-likelihood values when additional parameters were added in the model. Direct heritability estimates for NSPC, DO and CI from the best model were 0.10, 0.14 and 0.20, respectively. The maternal permanent environmental (c2) effects on reproductive traits accounted for almost negligible fraction of the total phenotypic variance in this study. The maternal genetic effects (m2) also contributed very little (0%–3%) to the total phenotypic variance except for CI where it was important and accounted for 20% of phenotypic variance. A significantly large negative genetic correlation was observed between direct and maternal genetic effects for all traits, suggesting the presence of antagonistic relationship between dam's direct additive component and daughter's additive genetic component. Results suggest that both direct and maternal effects were important only for CI but not for other traits. Therefore, both direct additive effects and maternal genetic effect need to be considered for improving this trait by selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号