首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
开展花生种间杂交与杂种遗传研究对于探明种间亲缘关系、创制新种质和培育新品种具有重要意义。本研究利用花生栽培品种白沙1016(2n=4X=40,AABB)与二倍体野生种A.macedoi(2n=2X=20)进行种间杂交,通过胚拯救获得种间杂种F_1植株,进而对F_1进行了分子标记鉴定、有丝分裂与减数分裂观察和基因组荧光原位杂交(GISH)分析。结果显示,杂种F_1有30条染色体,其中既有来自母本白沙1016的染色质,又有来自父本A.macedoi的染色质;A.macedoi染色体经DAPI染色显示出明亮着丝粒带且包含一对"小染色体";白沙1016的A染色体组也显示出A.macedoi基因组标记探针的杂交信号;F_1减数分裂终变期染色体平均构型为0.6 III+8.27 II+11.6 I,减数分裂I期后、末期表现为不均等分裂。以上结果表明本研究获得了新的种间杂种F_1材料,所涉及的A.macedoi可能为A染色体组物种;A.macedoi染色体与花生A染色体组发生交换产生补偿性易位的几率比较大;减数分裂后、末期染色体的不均等分裂和非四分体形成,是杂种F_1表现高度不育的重要原因之一。  相似文献   

2.
本文通过染色体组型的鉴定,对花生属花生区组内种间亲缘关系进行了研究.结果表明;(1)二倍体种A染色体组之间的亲缘关系比A、B染色体组之间的亲缘关系近.在A染色体组间,又以A.stenosperma与A.cardenasii之间的关系最近;在A、B染色体组间,以A.villosa与A.batizocoi之间的关系最远。(2)栽培种的亚种内的关系比亚种间的关系近;四倍体野生种A.monricola与密枝亚种的关系比它与疏枝亚种的关系近.  相似文献   

3.
揭示栽培种花生(Arachis hypogaea L.)与同属花生区组野生种之间的亲缘关系可为野生资源引入和遗传资源保存提供重要参考。本研究基于已公布的栽培种花生叶绿体全基因组序列,以11份花生区组的野生种资源和44份不同类型的栽培种花生为研究材料,利用GBS(Genotyping-by Sequencing)测序结果中能够比对到叶绿体全基因组的序列信息,获得了叶绿体基因组上111个SNP位点和10个InDel位点。根据系统演化树以及主成分判别分析结果显示:与栽培种花生关系最近的野生种是A.monticola,较近的是A.duranensis、A.batizocoi、A.paraguariensist和A.hoehnei,较远的野生种包括A.helodes、A.cardenasii、A.villosa、A.stenosperma。花生区组种间亲缘关系的阐明,对花生远缘杂交育种具有重要意义。  相似文献   

4.
本文采用聚丙烯酰胺凝胶电泳,对花生属植物进行了酯酶同工酶的测定。结果表明:花生属植物有共同的特征酶带,不同种之间的酶带差异较大;与栽培种最相似的野生种是Amonticola;A.batizocoi是花生区组内与栽培种很不相似的野生种;二倍体野生种之间;A.stenosperma与A.cardenasii之间的关系很近,A.villosa与A.batizocoi之间的关系很远  相似文献   

5.
花生野生种尤其是不亲和野生种,具有高产、抗逆等优异基因,但长期以来得不到有效利用。为选育高油酸抗逆花生新品种,以高油酸品种花育963为母本、不亲和野生花生作父本杂交,采用原位胚拯救技术直接收获花生不亲和种间杂种F_1。利用MITE转座子分子标记对杂种进行真实性鉴定。结果表明萁中有35粒样品同时具有双亲条带,为真杂种,真杂种率为44.3%。近红外分析表明,真杂种油酸含量显著低于高油酸花生,为杂种真实性提供了旁证。  相似文献   

6.
克隆Ty1-copia类反转录转座子反转录酶序列并分析其特性,为开发栽培种花生基于LTR反转录转座子的分子标记奠定基础.根据Ty1-copia类反转录转座子反转录酶的保守区设计简并引物对,利用PCR技术对栽培种花生品种"桂花1026"的基因组DNA进行扩增,目的条带经回收、克隆、测序,最后对序列进行生物信息学分析.目的...  相似文献   

7.
花生晚斑病抗性AFLP标记   总被引:3,自引:2,他引:3  
以抗感晚斑病组合“中花5号×ICGV 86699”的F2分离群体为材料,经田间抗性鉴定明确抗性亲本ICGV 86699的抗性受隐性单基因或主效基因控制;AFLP分析结合BSA法筛选到与晚斑病抗性连锁较紧密的AFLP标记3个,即E35/M51、E37/M48和E41/M47,它们与抗性间的图距分别为7.40cM、7.40cM和8.67cM;所获得的3个标记间连锁紧密,位于同一连锁群上。这3个标记在具有野生种亲缘的7个抗病花生品种或材料中均能检测到,而在栽培种以多粒型为代表的抗病材料中均未检测到,表明ICGV 86699的抗性基因与栽培种花生中的抗性基因不同。这是国内外有关花生晚斑病抗性分子标记的首例报道。  相似文献   

8.
野生种Arachis duranensis(AA)和A. ipaensis(BB)是花生栽培种最可能的二倍体祖先种,而其合成的四倍体是研究花生起源与进化的重要材料。本研究利用A. duranensis系(PI 497262)和A. ipaensis(PI 468322),通过杂交、组织培养、寡核苷酸探针染色荧光原位杂交(OS FISH)和基因组原位杂交(GISH)技术创制和鉴定了一个新的种间杂种W1824,进一步对其花粉育性、减数分裂行为和表型性状进行分析,发现W1824花粉高度不育,染色体平均构型为0.5 III + 3.5 II + 11.5 I,主茎高、侧枝长和叶面积均表现出超亲优势。表明PI 497262和PI 468322具有较高的杂交亲和性,暗示由上述两个系合成的四倍体花生可能具有显著高于亲本的生物产量和不稳定的染色体遗传方式。  相似文献   

9.
花生野生种具有抗逆性强,含油量高等特点,若能把这些有利基因转移到栽培种上来,对花生生产将起到很大作用。但是具有这些优良性状的花生野生种多是二倍体种(2n=20),与栽培种杂交只能得到不育的三倍体杂种。所以要研究利用花生野生资源,首先要解决花生染色体的加倍技术。这个问题国外已有研究和报导,国内则未见有报导。我们于1981—1982年开展了此项研究,获得了六倍体的种间杂种和同源四倍体的野生种。  相似文献   

10.
花生根结线虫(Meloidogyne are-naria)是一种能引起花生重大损失的病原物。据估计,得克萨斯州26%的花生田有花生根结线虫,该线虫也广泛分布于美国东南部。目前还没有培育出高抗花生根结线虫的栽培品种,但已在花生属的不同种中鉴定出抗线性。Nelson等报道,许多花生野生种抗花生根结线虫,此外,他们发现了两个种间杂种抗这种线虫。抗性杂种之一T P—129是杂交组合[A.bat-izocoi×(A.cardenasiiGK P—10017×A.chacoensisGK P—10602)]4x的  相似文献   

11.
在前两年测产、观察的基础上,2002年对利用花生不亲和野生种A.glabrata与栽培种杂交、回交选育的新品系进行了进一步的田间鉴定和室内测试.研究表明,利用野生种有效拓宽了花生栽培种的遗传基础.初步选育出比当前推广种鲁花11号显著增产的品系,籽仁单产增幅6.7%~9.9%,同时蛋白质和脂肪含量也有一定程度的提高.  相似文献   

12.
利用SSR分子标记研究花生属种间亲缘关系   总被引:4,自引:0,他引:4  
以5份花生栽培种资源和花生属六个区组的19份野生种资源为研究材料,通过SSR分子标记技术分析其DNA多态性并进行聚类分析。大多数从栽培种基因组分离出的SSR引物能在野生种中扩增出DNA片段,共筛选出21对多态性SSR引物;每对引物在花生基因组中扩增出的条带数为1~13条,在供试材料中扩增出的总条带数为5~40条,平均18.1条,其中多态性条带为4~40条,平均18.0条;SSR引物的多态性指数为0.92~9.04;供试材料间的遗传距离为0.33~0.91,平均0.76。结果表明,大多数花生SSR引物为多位点引物,花生属种间种质存在丰富的DNA多态性, A. duranensis是花生栽培种(A. hypogaea L.)的野生种亲本之一,与花生区组野生种亲缘关系最近的是异形花区组,最远的是大根区组。  相似文献   

13.
AGO蛋白(Argonaute protein)是RNA诱导沉默复合体的关键组分,在植物生长发育中发挥重要作用。花 生基因组测序的完成为全基因组水平上分析AGO抗病基因提供了条件。利用AGO蛋白的保守域在花生基因组数 据库与NCBI中进行同源比对,鉴定得到花生AGO 基因家族所有成员。我们基于生物信息学对AGO蛋白家族的进 化关系、理化性质、染色体定位、基因结构、结构域、不同组织中和胁迫下的表达模式等进行分析。结果表明:试验 共鉴定得到51个花生AGO 基因,包括12个A.duranensis 基因,12个A.ipaensis 基因以及27个栽培种花生AGO 基因。 染色体定位分析结果显示这些基因不均匀地分布在花生染色体上,且A.duranensis 与A.ipaensis 基因组上有10对成 员存在较为明显的同源关系。表达模式分析表明AdAGO2、AiAGO4、AdAGO3、AiAGO7、AdAGO8、AiAGO8 基因在花生 22个组织中整体表达量偏高;而花生茎尖(Shoot Tip)与雄蕊(Stamens)中AGO 基因家族呈现较高表达量。本研究结 果为揭示AGO蛋白功能和发掘花生的抗逆育种靶向基因资源提供了一定的理论依据。  相似文献   

14.
花生是世界上重要的油料作物之一。与栽培种相比,花生野生种具有较高的遗传多样性,能够适应一系列复杂环境,是抵抗生物胁迫和非生物胁迫的重要基因来源。多项研究表明,花生野生种对根结线虫病、晚斑病和锈病具有较高抗性。本文综述了野生花生的种类以及花生栽培种起源种相关研究进展,总结了野生花生对花生病害的抗性以及在育种中应用。结合花生基因组学最新研究,展望了花生野生资源的利用前景。  相似文献   

15.
王传堂  杨新道  陈殿绪  王东 《花生学报》2003,32(Z1):291-294
从不亲和野生花生Arachis glabrata Benth与栽培种种间杂种中提取mRNA,反转录成cDNA双链并连接上接头,用接头上的引物进行PCR高保真扩增,成功建立了花生cDNA PCR库.用光敏生物素标记的探针与链亲和素包被的磁珠进行杂交筛库,与探针杂交的片段经洗脱、高保真扩增并加A后与T载体连接,转化受体菌XL1-Blue,获得白色阳性克隆菌落.用PCR快速鉴定的方法进行阳性菌落筛选,得到目的阳性克隆后测序,将可得到cDNA全编码区序列.本研究为改良花生品质与抗性奠定了基础.  相似文献   

16.
花生基因组资源的开发及应用   总被引:4,自引:0,他引:4  
花生是世界主要的油料作物,但由于花生本身的遗传特性,导致其基因组资源的开发和利用存在较大难度。花生的高度闭花授粉、初级基因库遗传基础狭窄以及栽培种与二倍体近缘野生种之间的杂交不亲和性,导致花生栽培种的分子遗传多样性偏低,成为花生分子遗传改良的主要瓶颈。然而,近五年来,花生基因组资源开发迅速,分子标记的开发、遗传和物理图谱的构建、表达序列标签(ESTs)的产生、突变体资源的创建和功能基因组学平台的构建促进了QTL的鉴定以及与农艺性状相关的耐/抗生物和非生物胁迫基因的挖掘。本文概述了当前花生基因组资源的研究现状,并对下一步的发展方向进行了展望。  相似文献   

17.
花生属野生种的核型分析及其进化   总被引:1,自引:0,他引:1  
本文研究了花生属六个区组的九个种,结果表明:除A.correntina和A.rigonii两个种没有随体外,其它二倍体种都有1—2对随体。除了A.batizocoi和A.villosulicarpa没有明显小的染色体外,其它种都有一对明显小的染色体。花生区组中具有“A”染色体组的三个种和缘脉区组的一个种的染色体全部是中部着丝点染色体,其它种有1—3对亚中部着丝点染色体。A.glabrata的染色体数为40,其核型不及栽培种对称,有3对亚中部着丝点染色体,没有“B”染色体。A.batizocoi与花生区组中的其它二倍体的核型差异较大,遗传距离也大,说明其进化程度高。五个区组二倍体种的进化程度,从低到高的顺序是:花生区组(具“A”染色体组的二倍体种→A.batizocoi)→缘脉区组→三籽粒区组→直立区组→围脉区组。  相似文献   

18.
采用聚丙烯酰胺凝胶电泳的方法,对花生属植物10个栽培种和10个野生种的酯酶同工酶谱带进行测定分析。根据酶谱的差异,栽培种花生与花生区组野生种的平均相似值为12.93%,与其他区组相比其相似值高。表明两者间亲缘关系较近,从生化测定证实了花生区组的野生种是栽培种的近缘祖先的推断。另外,结果表明不同类型的栽培种与花生区组的各个野生种的亲缘关系也存在差异,其中以珍珠豆型品种与A.durenesis的关系最近。  相似文献   

19.
研究了花生属中花生组与拟直立型组35 个种间杂交组合的杂种胚珠和幼胚的发育状况,其中23 个组合为栽培种(2n= 4x)×拟直立型组野生种(2n= 2x),12 个组合为花生组野生种(2n= 2x)与拟直立型组野生种杂交。所有组合的杂种均在发育过程的某一阶段发生败育,但组合间差异较大,野生种之间杂种胚的发育状况一般好于栽培种与野生种的杂种胚,共观察到3 种不同的败育类型。采用胚珠和幼胚离体培养方法,成功地克服了种间杂交不亲和性,在9 个杂交组合中首次获得杂种一代幼苗,移栽后有5 个组合的杂种植株存活下来,并相继开花。对这些杂种后代的花粉育性、结实性、形态特征及花粉母细胞分裂过程进行了全面分析,证实了杂种的真实性。杂种胚珠和幼胚离体培养的成功,为进一步拓宽远缘杂交的亲本范围和更好地利用宝贵的野生花生资源,提供了有效的技术途径。  相似文献   

20.
稻属(Oryza L.)植物染色体组命名的历史回顾   总被引:1,自引:0,他引:1  
 稻属约25种,分别属于AA、BB、CC、BBCC、CCDD、EE、FF、GG、HHJJ和HHKK等10类染色体组。早在20世纪30年代,日本学者Morinaga及其同事开创性地开展了稻属染色体组的鉴定和命名工作。他们采用的常规方法是,根据两物种之间的形态和生理差异,尤其是人工杂交产生的种间杂种F1的染色体配对行为来鉴定新的染色体组。其后,不少学者对此进行了补充和完善。然而,对于一些靠人工杂交难以产生种间杂种的稻种来说,就无法利用上述常规方法鉴定其染色体组。最近,人们利用分子标记和荧光原位杂交等分子生物学技术,对这些难以与稻属其他种之间实现有性杂交的个别野生种的染色体组进行了鉴定和命名。由于稻属染色体组的鉴定主要是在20世纪40~60年代间开展的工作,为使人们在今后使用时更加明确其本质含义,对稻属各个种的染色体组定名过程进行了概述和总结。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号