首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Imazalil (IMZ) is widely used in citrus packhouses to manage green mould, caused by Penicillium digitatum. The aim of this study was to investigate green mould control efficacy of IMZ applied in a wax coating, and the combination of aqueous dip and coating IMZ applications. Single application of IMZ at 3000 μg mL−1 in carnauba wax coating at rates of 0.6, 1.2 and 1.8 L tonne−1 of fruit gave better protective (mean 13% infection) than curative (mean 70% infection) control of the sensitive isolate. Imazalil residue levels increased (0.85 to 1.75 μg g−1) with increasing coating load. However, the resistant isolate could not be controlled (>74% infection). Dip only treatment (IMZ sulphate at 500 μg mL−1 for 45 s and 90 s) gave good curative control (≈77%) of the sensitive isolate at residue loading of 0.12–0.73 μg g−1. Wax coating only treatment (IMZ at 3000 μg mL−1 at 1.8 L wax tonne−1) gave good protective control and improved sporulation inhibition (≈80%) at residue loading of 1.32–7.09 μg g−1. The MRL of 5 μg g−1 was exceeded at higher wax loads on navels and clementines. Double application with dip (45 s in IMZ sulphate at 500 μg mL−1) followed by 2000 μg mL−1 IMZ in wax coating at 0.6, 1.2 and 1.8 L wax tonne−1 resulted in residue loading of 1.42 to 2.83 μg g−1, increased protective control (≈69%) as well as curative control (≈83%). In all treatments, poor curative and protective control of the resistant isolate was observed (<46% and <55%, respectively). Double application demonstrated superior green mould control by giving good curative and protective control and sporulation inhibition.  相似文献   

2.
The antifungal activities of cinnamon extract (CE), piper extract (PE) and garlic extract (GE) were evaluated on banana crown rot fungi (Colletotrichum musae, Fusarium spp. and Lasiodiplodia theobromae) in vitro. The assay was conducted with extracts of CE, PE and GE with concentrations of 0, 0.1, 0.5, 1.0, 5.0, 10.0 and 0.75 g L−1 of carbendazim (CBZ) on potato dextrose agar at room temperature. CE completely inhibited conidial germination and mycelial growth of all fungi at 5.0 g L−1. PE totally suppressed mycelial growth of all fungi at 5.0 g L−1 and conidial germination at 10.0 g L−1 except for Fusarium spp. GE had no significant effects but low concentrations (0.1 and 0.5 g L−1) enhanced germ tube elongation of the three fungi. The ED50 values were higher for mycelial growth than for conidia except for Fusarium spp. Combined treatments were investigated on crown rot development in banana fruit (Musa AAA group ‘Kluai Hom thong’). Treatments included 5.0 g L−1 CE, 1% (w/v) chitosan solution, hot water treatment (HWT, 45 °C for 20 min), CE plus chitosan, CE plus HWT and 0.75 g L−1 of CBZ, applied before and after inoculation of the fruit. Crown rot development was assessed during storage at 13 °C for 7 weeks. Disease development was least (25%) on CE treated fruit after inoculation compared to CBZ but was higher when CE was applied before inoculation. Chitosan significantly delayed ripening as in terms of peel color, firmness, soluble solids and disease severity. CE showed no negative effects on quality of fruit. CE plus HWT caused unacceptable peel browning.  相似文献   

3.
The combined effects of a sanitizer mixture, ultraviolet-C (UV-C), and modified atmosphere packaging (MAP) on the quality of non-inoculated and inoculated (Escherichia coli O157:H7 and Salmonella typhimurium) buckwheat sprouts were examined. Buckwheat sprouts were treated with a sanitizer mixture (comprising 100 mg L−1 aqueous ClO2 and 0.3% fumaric acid) and 2 kJ m−2 UV-C, packaged under two different conditions (air and CO2 gas) and storage for 8 d at 4 °C. The combination of the sanitizer mixture and UV-C treatment reduced the initial counts of preexisting microorganisms in the buckwheat sprouts by 1.9 log CFU g−1 and reduced the initial inoculated counts of E. coli O157:H7 and S. typhimurium on buckwheat sprouts by 3.0 and 2.3 log CFU g−1, respectively. The preexisting microorganisms and inoculated pathogens in buckwheat sprouts packaged under CO2 gas were significantly reduced during storage following the combined treatment compared to those of the control by above 95%. Differences in Hunter L*, a*, and b* values among the treatments were negligible. The combined sanitizer mixture and UV-C treatment increased the sprout rutin content by 147%, but there was no significant difference in 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity between treatments during storage. Therefore, the combination of sanitizer mixture made from aqueous ClO2 and fumaric acid, UV-C irradiation, and MAP can improve the microbial safety and quality of buckwheat sprouts.  相似文献   

4.
The influence of the first and second cutting at harvest on the physiological response of four baby leaf Brassica species was studied. The species were salad rocket (Eruca vesicaria), wild rocket (Diplotaxis tenuifolia), mizuna (Brassica rapa L. ssp. nipposinica) and watercress (Nasturtium officinale) stored at 1, 4, 8 and 12 °C. In addition, the microbial and metabolic behaviours of baby leaves were evaluated after different washing treatments including water, ozonated water (10 mg L−1 total dose), ozonated water activated with ultraviolet C light (UV-C) and heat shock wash (50 °C, 1 min). Temperature had a significant effect on both respiration rate and post-cutting life. The production of CO2 increased between 2- and 4-fold when temperature increased from 1 to 12 °C. Minor differences in leaf respiration rate between the first and second leaf cutting were observed for salad rocket and wild rocket, while leaves from the second cutting of mizuna and watercress leaves had a higher respiration rate than from the first cutting. Ozone, and ozone combined with UV-C, were the most efficient washing treatments in reducing total mesophilic counts, while heat shock treatment did not affect them. Additionally, naturally occurring Listeria spp. were controlled well in wild rocket and mizuna (<1 log cfu g−1) when the ozone treatments were applied. On the other hand, respiration rates of the Brassica species were not substantially affected by the washing treatments when stored at 4 °C. Maximum CO2 production was observed immediately after washing but decreased during the first 24 h of storage. Baby leaves washed with cold water consistently showed a lower respiration rate than the other washing treatments. Heat shock was the washing treatment that most influenced the increase in the respiration rate of baby leaves during storage at 8 °C.  相似文献   

5.
An experiment was conducted in order to investigate hay yield and nitrogen harvest in binary smooth bromegrass (Bromus inermis Leyss cv. Tohum Islah) mixtures with alfalfa (Medicago sativa L. cv. Kayseri) and red clover (Trifolium pratense L. cv. Tohum Islah) in Erzurum, Turkey for 5 years between 1991 and 1995. The Hay yield, nitrogen harvest, protein concentration and land equivalent ratio (LER) in the mixtures with alternating rows of 1:1, 2:1 and 1:2 of smooth bromegrass with alfalfa and red clover were compared to those in pure legume stands without any N-fertilizer application or pure smooth bromegrass stands that received 0, 50, 100 and 150 kg ha−1 N. The mixtures had no N fertilization apart from 40 kg N ha−1 in the establishment year. The dry matter production in all the mixtures receiving no N fertilizer application was higher than in pure legume stands. Pure grass stands were sustained only with the application of 150 kg ha−1 N. The highest hay yields were obtained from the mixtures of smooth bromegrass (Sb) with red clover (Rc) (2Rc 1Sb) (14.65 t ha−1) and with alfalfa (A) (1A 1 Sb) (14.49 t ha−1). Although N application increased Sb yields in pure stands, the highest yields obtained with N fertilization were still lower than the yields in the mixtures without N application. The superiority of the mixtures was also reflected by their large N harvests (e.g. 355.9 kg N ha−1 in 2Rc 1Sb plots) compared to pure Rc (317.8 kg N ha−1), pure A (294.3 kg N ha−1) and pure Sb stands that received 150 kg N ha−1. The nitrogen harvest increased in pure Sb plots as the N doses applied increased. Furthermore, the protein concentration of the hay from the mixtures (158.2–165.7 mg g−1) was equal to that of the pure A stands (165.7 mg g−1) and higher than that of pure Sb stands (122.9 mg g−1 at 150 kg N ha−1 application) although the hay from pure Rc plots had the highest protein concentration (179.3 mg g−1). The LER values were also higher in the mixtures (e.g. 1.28 in 1A 1Sb and 1.28 in 2Rc 1Sb plots) compared with the pure stands. The mixture plots also had a more balanced temporal distribution of hay. The grass component was more productive in early spring, whereas the legume fractions grew better in the summer. In conclusion, for a sustainable production of high-quality hay and greater N harvests without using N fertilizers, binary mixtures of Sb with A in alternating rows (1A 1Sb) were recommended for long-purpose stands and in alternation with double red clover rows (2Rc 1Sb) for short purpose stands under similar conditions. N application could be eliminated in the grass–legume mixtures without any yield depression.  相似文献   

6.
White (Opuntia albicarpa) and red (Opuntia ficus-indica) prickly pears were peeled and submerged in chitosan solutions containing different concentrations of acetic acid (1.0 or 2.5%) to obtain ready-to-eat prickly pear products. Some physicochemical (pH, total soluble solids, color, weight loss, and firmness), antioxidant (phenolic compounds and antioxidant activity), microbiological (aerobic mesophile bacteria and yeasts plus molds), and sensory (color, firmness, aroma, flavor, and overall acceptance) characteristics were assessed during 16 d of storage at 4 ± 1 °C and 85 ± 5% of relative humidity. Chitosan coating containing 1.0% of acetic acid delayed weight loss, maintained firmness and color of white prickly pear during the storage time. Most of the sensory values for white prickly pear coated with chitosan containing 1.0 and 2.5% of acetic acid were higher than those obtained for uncoated fruit. Red prickly pear coated with chitosan with 2.5% acetic acid did not maintain its sensory quality throughout 16 d of storage. Chitosan coating with 1 and 2.5% acetic acid did not affect phenolics content and antioxidant activity in white prickly pears; however, an increase of these compounds was observed in red prickly pears. Microbe populations were unchanged in white prickly pears (<10 CFU g−1) and slightly increased in red prickly pears (10–500 CFU g−1) coated with chitosan during the entire storage time.  相似文献   

7.
Competition for soil resources plays a key role in the crop yield of intercropping systems. There is a lack of knowledge on the main factors involved in competitive interactions between crops and weeds for nutrients uptake. Hence, the purpose of this work was to compare the effects of arbuscular mycorrhial fungi (Funneliformis mosseae) colonization in interspecific competitive relations and its effect on nutrients uptake and weed control in dill and common bean intercropping. Two field experiments were carried out with factorial arrangements based on randomized complete block design with three replications during 2013–2014. The factors were cropping systems including a) common bean (Phaseolus vulgaris L.) sole cropping (40 plants m−2), b) dill (Anethum graveolens L.) sole cropping at different densities (25, 50 and 75 plants m−2) and c) the additive intercropping of dill + common bean (25 + 40, 50 + 40 and 75 + 40 plants m−2). All these treatments were applied with (+AM) or without (-AM) arbuscular mycorrhiza colonization. In both cropping systems, inoculation with F. mosseae increased the P, K, Fe and Zn concentrations of dill plants by 40, 524, 57 and 1.0 μg kg−1 DW, respectively. Intercropping increased Mn concentration in common bean (4.0 μg kg−1 DW) and dill (3.0 μg kg−1 DW), and also seed yields of both crops (198 g m−2 and161 g m−2, respectively). AM colonization improved seed yields of dill and common bean by 169 and 177 g m−2 in 2013 and 2014, respectively. Moreover, AM application enhanced competitive ability of dill + common bean intercrops against weeds at different intercropping systems. Intercropping significantly changed weed density compared to sole cropping, as weed density was decreased in the dill + common bean intercropping. Diversity (H), Evenness (E) and richness of weed species of weeds for intercrops were higher than those for sole crops.  相似文献   

8.
Current problems with outbreaks of serious infections caused by human pathogens on fresh-cut greens highlight the need for new, optimized postharvest sanitation treatments to effectively meet recent food safety standards. In contrast to various chemical treatments, non-thermal plasma (NTP) has a high potential as a gentle target sanitation technique. However, possible interactions between NTP and the physiology of treated fresh products have not been investigated in detail. Here, chlorophyll fluorescence image analysis (CFIA) was used to study the potential impacts of non-thermal plasma on the photosynthetic activity of highly perishable corn salad leaves as a model produce. For this purpose, an atmospheric pressure plasma jet, driven at radio frequency, and transforming argon with flow rates of 20 L min−1 into non-thermal plasma at 10, 20, 30, and 40 W generator power was applied for various times to the surface of corn salad leaves. Thermographic measurements indicated maximum temperatures of 39.0 °C, 44.4 °C, 60.1 °C, and 66.0 °C, respectively, on treated leaf surfaces. CFIA revealed that treatment at moderate generator power of 20 W for up to 1 min was the maximum setting for quality retention. Furthermore, the microbial inactivation efficiency of the plasma jet system at these operating parameters was successfully tested on Escherichia coli bacteria, inoculated on corn salad surface at 107 cfu cm−2 and 104 cfu cm−2. At 20 W, bacteria with lower initial load could be inactivated by 3.6 (±0.6) log-cycles within 15 s of treatment duration; whereas at the higher initial load of 107 cfu cm−2, bacteria were reduced by 2.1 (±0.2) log-cycles after 30 s.  相似文献   

9.
Green mould (caused by Penicillium digitatum) is a major cause of postharvest losses in citrus. Residue loading of thiabendazole (TBZ) with application methods typically used in South African packhouses and green mould control was studied. TBZ was applied curatively and protectively in dip, drench and wax coating treatments and fruit were inoculated with a TBZ-sensitive or a TBZ-resistant isolate of P. digitatum. The dip treatments consisted of TBZ concentrations of 0–2000 μg mL−1; fruit were dipped for 60 s at 22 °C at a pH of 7. Residues differed between fruit batches and ranged from 0.5 to 1.7 μg g−1 at 1000 μg mL−1 TBZ. Curative dip treatments almost completely controlled green mould (>96% at 1000 μg mL−1 TBZ). The residue level needed for 75% curative control ranged from 0.06 to 0.22 μg g−1, depending on citrus type. Protective treatments were unreliable and control varied from 17% to 97.9% at 1000 μg mL−1 TBZ between fruit batches. Drench treatments consisted of exposure times of 30, 60 and 90 s with 1000 or 2000 μg mL−1 TBZ. Average TBZ residues were 2.14 μg g−1 for Clementine mandarin fruit and 3.50 μg g−1 for navel orange fruit. Green mould control on navel orange fruit resulted in 66–92%, 34–90% and 9–38% control for curative treatments after 6 and 24 h and protective treatments, respectively, depending on fruit batch. Wax with 4000 μg mL−1 TBZ was applied at 0.6, 1.2 and 1.8 L wax ton−1 fruit. Chilling injury was evaluated after fruit storage at −0.5 °C for 40 days. Average TBZ residues loaded was 1.3, 1.3 and 2.7 μg g−1 at the recommended 1.2 L ton−1 for Satsuma mandarin, Clementine mandarin and Valencia orange fruit, respectively. Protective treatments showed lower infection levels (14–20%) than curative treatments (27–40%) for Valencia orange fruit. The same trend was observed with Satsuma (92–95% curative; 87–90% protective) and Clementine mandarin fruit (82–90% curative; 59–88% protective), but control was relatively poor. TBZ application in wax exceeded 5 μg g−1 at higher wax loads (1.2 and 1.8 L ton−1). Wax treatments showed a significant reduction in chilling injury; TBZ had an additive effect. TBZ resistant isolates could not be controlled.  相似文献   

10.
A measure of a crop's nitrogen (N) status can be obtained by relating the actual N concentration of the crop to the critical plant nitrogen concentration (PNCc), the minimum N concentration required for maximum growth. In annual crops, PNCc declines as plant size increases. Describing this decline is one of the main challenges for the implementation of the PNCc concept in fertilizer management strategies. From two field experiments with repeated harvests of Dutch white cabbage and with N supply ranging from limitation to excess, the relation between PNCc and weight per unit ground area of plant dry matter exclusive of roots (W) was estimated as: PNCc = 5.1W−0.33% for the linear growth phase (W > 1.5 t ha−1; LAI > 1.4). From a third field experiment, a value of 4.5% N was estimated for PNCc for the pre-linear growth phase. Also a power function: LAR = 0.011W−0.33 described the relationship between leaf area ratio and weight. The exponent of the power function determines the rate of the decline. Therefore, having the same value of the exponent: −0.33, LAR and PNCc declined at the same rates. The proportional decline in LAR and PNCc corresponded to a constant nitrogen content on a leaf area basis of 4.7 g N m−2 until onset of head formation.  相似文献   

11.
Kenaf is a warm-season species that recently has been proved to be a good source of biomass for cellulose pulp for the paper industry in Mediterranean countries, where the use of hemp is problematic for legal reasons. A two-year research program aiming at studying the effects of different water regimes and nitrogen fertilization levels, upon plant growth, leaf area index, biomass accumulation, water and radiation use efficiency, was carried out on kenaf under a typically semi-arid Mediterranean climate of South Italy. In cv. Tainung 2, four different water regimes (I0 = no irrigation, I25, I50 and I100 = 25, 50 and 100% ETc restoration, respectively) and three nitrogen levels (N0 = no nitrogen, N75 and N150 = 75 and 150 kg ha−1 of N, respectively) were studied. The amount of water applied strongly affected plant growth (in terms of LAI, plant height and biomass) and final total and stem dry yield, which significantly increased from I0 to I100. Nitrogen did not exert any beneficial effect upon dry yield. Radiation Use Efficiency (RUE), calculated in the second year only, was the highest (1.95 g DM MJ−1) in fully irrigated treatment (I100) and the lowest (0.86 g DM MJ−1) in the dry control.Water use efficiency (WUE) was rather similar among water regimes, whilst irrigation water use efficiency (IWUE) progressively increased with the decrease of total volume of water distributed to the crop by irrigation, from 3.47 to 12.45 kg m−3 in 2004 and from 4.27 to 7.72 kg m−3 in 2005. The results obtained from this research demonstrate that in semi-arid areas of South Italy, irrigation at a reduced rate (50% ETc restoration) may be advantageous, since it allowed a 42–45% irrigation water saving, when compared to the fully irrigation treatment, against a 23% (in 2004) and 36% (in 2005) yield reduction, and a still good efficiency (near that potential) in transforming the solar radiation in dry biomass was maintained (RUE = 1.76 g DM MJ−1, against 1.95 g DM MJ−1 in fully irrigated treatment).  相似文献   

12.
For biomethane production, the cup plant (Silphium perfoliatum L.) is considered a promising alternative substrate to silage maize (Zea mays L.) due to its high biomass potential and associated ecological and environmental benefits. It has also been suggested to grow cup plant on less productive soils because of its presumed drought tolerance, but robust information on the impact of water shortage on biomass growth and substrate quality of cup plant is rare. Therefore, this study assesses the effects of soil water availability on the chemical composition and specific methane yield (SMY) of cup plant. Furthermore above-ground dry matter yield (DMY) was analysed as a function of intercepted photosynthetic active radiation (PAR) and radiation use efficiency (RUE). Data were collected in a two-year field experiment under rainfed and irrigated conditions with cup plant, maize, and lucerne-grass (Medicago sativa L., Festuca pratensis Huds., Phleum pratense L.). The cup plant revealed a slight decrease of −6% in the SMY in response to water shortage (less than 50% of plant available water capacity). The average SMY of cup plant [306 l (kg volatile solids (VS))−1] was lower than that of maize [362 l (kg VS)−1] and lucerne-grass [334 l (kg VS)−1]. The mean drought-related reduction of the methane hectare yield (MHY) was significantly greater for cup plant (−40%) than for maize (−17%) and lucerne-grass (−13%). The DMY reduction in rainfed cup plant was mainly attributed to a more severe decrease in RUE (−29%) than for maize (−16%) and lucerne-grass (−12%). Under water stress, the mean cup plant RUE (1.3 g MJ−1) was significantly lower than that of maize (2.9 g MJ−1) and lucerne-grass (1.4 g MJ−1). Compared to RUE, the reduced PAR interception was less meaningful for DMY in rainfed crops. Hence, the cup plant is not suitable for growing on drought prone lands due to its high water demand required to produce reasonably high MHYs.  相似文献   

13.
In Mediterranean environments, flood irrigation of rice (Oryza sativa L.) crops is in danger of disappearance due to its unsustainable nature. The aim of the present study was to determine the short- and long-term effects of aerobic rice production, combined with conventional and no-tillage practices, on soils' physical, physicochemical, and biological properties, as well as on the rice yield components and productivity in the semi-arid Mediterranean conditions of SW Spain. A field experiment was conducted for three consecutive years (2011, 2012, and 2013), with four treatments: anaerobic with conventional tillage and flooding (CTF), aerobic with conventional tillage and sprinkler irrigation (CTS), aerobic with no-tillage and sprinkler irrigation (NTS), and long-term aerobic with no-tillage and sprinkler irrigation (NTS7). Significant soil properties improvements were achieved after the long-term implementation of no-tillage and sprinkler irrigation (NTS7). The short-term no-tillage and sprinkler irrigated treatment (NTS) gave lower yields than CTF in 2011 and 2012, but reached similar yields in the third year (NTS 8229 kg ha−1; CTF 8926 kg ha−1), with average savings of 75% of the total amount of water applied in CTF. The NTS7 data showed that high yields (reaching 9805 kg ha−1 in 2012) and water savings are sustainable in the long term. The highest water productivity was with NTS7 in 2011 (0.66 g L−1) and 2012 (1.46 g L−1), and with NTS in 2013 (1.05 g L−1). Thus, mid- and long-term implementation of sprinkler irrigation combined with no-tillage may be considered as a potentially productive and sustainable rice cropping system under Mediterranean conditions.  相似文献   

14.
Pantoea agglomerans CPA-2 is an effective biocontrol agent of postharvest diseases of citrus and pome fruit. A monitoring technique was developed for its identification and to quantify its populations. The methodology used consisted of (i) searching for a semi-selective medium, (ii) identification of molecular markers and (iii) monitoring population dynamics in a commercial trial. As a semi-selective medium, Malonate Broth Agar supplemented with tetracycline hydroxychloride and incubation at high temperature (max. of 40 °C) facilitated the selective recovery of P. agglomerans CPA-2 colonies. The RAPD technique was applied to a collection of 13 strains of P. agglomerans, including CPA-2. Among the 12 primers tested, OPL-11 amplified a fragment (about 720 bp) specific to strain CPA-2. On the basis of this fragment, two SCAR markers were amplified using a primer pair derived from OPL-11 elongation. A first SCAR marker of 720 bp was specifically amplified for the strain CPA-2 and a second one of 270 bp was obtained for all P. agglomerans strains tested, including CPA-2. Commercial trials demonstrated a significant reduction of decay with the treatment of formulated cells of P. agglomerans CPA-2. Population dynamics of CPA-2 in commercial trials were determined on fruit surfaces and in the environment using both the classical plating technique and PCR with SCAR primers. In general, no significant differences were observed between results obtained from the two methods. On fruit surfaces, 1 day after CPA-2 applied its population by classical methods was 4.37 × 106 cfu wound−1 and at the end of the experiment the population increased to 5.8 × 105 cfu wound−1. The percentages of colonies identified as P. agglomerans CPA-2 at these sampling times using SCAR primers were 90 and 95%, respectively. Population dynamics in the environment to evaluate the environmental fate of P. agglomerans CPA-2 showed that it has a limited persistence and limited capacity for dispersion.  相似文献   

15.
Genetic gains in quality traits were assessed in grain samples from 4 field experiments involving 16 bread wheat varieties representative of those most widely cultivated in Spain during the 20th century. The allelic composition at three glutenin loci (Glu-A1, Glu-B1, and Glu-D1) was obtained by PCR-based DNA markers and published references. From 1930 to 2000 grain protein content decreased by −0.030% y−1, or in relative terms by −0.21% y−1, but the protein produced per hectare increased by 0.39% y−1. Alveographic tests revealed significant changes in dough rheological properties. Dough strength (W) and tenacity (P) increased at relative rates of 1.38% y−1 and 0.99% y−1, respectively, while dough extensibility (L) decreased by −0.46% y−1, resulting in an increase of 1.45% y−1in dough equilibrium (P/L). The rise in protein quality could be related to the replacement of the null allele by subunits 1 or 2* at Glu-A1 and the prevalence of subunits 7 + 8 and 5 + 10 at Glu-B1 and Glu-D1 loci, respectively, in the most recent varieties. Dough extensibility was affected by water input during the crop cycle, this relationship being partially explained by the presence of the 5 + 10 HMW glutenin subunit. Fermentation tolerance was improved in the most modern varieties. Collapse during fermentation was avoided only in doughs with a W  159 J × 10−4 and a P/L  0.56 mm H2O mm−1, levels achieved by most of the modern varieties. The over-strong and unbalanced rheological properties of some modern varieties resulted in highly porous doughs, and no clear advances in dough maximum height during fermentation were attained.  相似文献   

16.
Integrated crop–livestock systems can help achieve greater environmental quality from disparate crop and livestock systems by recycling nutrients and taking advantage of synergies between systems. We investigated crop and animal production responses in integrated crop–livestock systems with two types of winter cover cropping (legume-derived N and inorganic fertilizer N), two types of tillage [conventional disk (CT) and no tillage (NT)], and whether cover crops were grazed by cow/calf pairs or not. The 13-ha field study was a modification of a previous factorial experiment with four replications on Ultisols in Georgia, USA. Recurring summer drought severely limited corn and soybean production during all three years. Type of cover crop had little influence and grazing of cover crops had minor influence on crop production characteristics. Cattle gain from grazing of winter cover crops added a stable component to production. No-tillage management had large positive effects on corn grain (95 vs. 252 g m−2 under CT and NT, respectively) and stover (305 vs. 385 g m−2) production, as well as on soybean grain (147 vs. 219 g m−2) and stover (253 vs. 375 g m−2) production, but little overall effect on winter wheat grain (292 g m−2) and stover (401 g m−2) production. Our results suggest that robust, diversified crop–livestock systems can be developed for impoverished soils of the southeastern USA, especially when managed under no tillage to control environmental quality and improve resistance of crops to drought.  相似文献   

17.
The risk of undesirable by-products from chlorine disinfection in fresh-cut industries, together with its limited efficacy, has led to a search for alternative agents. The aim of this study was to test several alternative putative antimicrobial substances to reduce Escherichia coli O157:H7, Salmonella spp. and Listeria spp. populations on fresh-cut apple. Carvacrol, vanillin, peroxyacetic acid, hydrogen peroxide, N-acetyl-l-cysteine and Citrox were selected for their results in in vitro assays against E. coli O157:H7 and Listeria spp., to be tested on fresh-cut apple plugs. Apple flesh was inoculated by dipping in a suspension of a mix of the studied pathogens at 106 cfu mL?1, and then treated with the antimicrobial substances. All treatments were compared to deionized water and a standard sodium hypochlorite treatment (SH, 100 mg L?1, pH 6.5). Pathogen population on apple plugs was monitored for up to 6 days at 10 °C. Bacterial reductions obtained by peroxyacetic acid (80 and 120 mg L?1), vanillin (12 g L?1), hydrogen peroxide (5, 10, 20 mL L?1) and N-acetyl-l-cysteine (5 and 10 g L?1) were similar or higher than reduction obtained by SH. In addition, bacterial populations were maintained at low levels throughout storage. No cells of any of the pathogens were detected in the peroxyacetic acid, hydrogen peroxide, Citrox and SH washing solutions after apple treatment. Peroxyacetic acid, hydrogen peroxide and N-acetyl-l-cysteine could be potential disinfectants for the fresh-cut industry as an alternative to chlorine disinfection. However, their effect on sensory quality and effectiveness under commercial processing conditions should be evaluated.  相似文献   

18.
The accumulation of bacteria in vase water is often associated with premature senescence in many cut flower species. In the present study, we tested the efficacy of aqueous chlorine dioxide (ClO2) to extend flower display life by preventing the build-up of bacteria in vase solutions. The addition of 2 or 10 μL L−1 ClO2 to clean deionized water extended the vase life of Alstroemeria peruviana ‘Senna’, Antirrhinum majus ‘Potomic Pink’, Dianthus caryophyllus ‘Pasha’, Gerbera jamesonii ‘Monarch’, Gypsophila paniculata ‘Crystal’ and ‘Perfecta’, Lilium asiaticum ‘Vermeer’, Matthiola incana ‘Ruby Red’ and Rosa hybrida ‘Charlotte’ flowers by 0.9–13.4 d (7–77%) relative to control (i.e. 0 μL L−1 ClO2) stems. The beneficial effects of ClO2 treatment were associated with a reduction in the accumulation of aerobic bacteria in vase water and on cut surfaces of flower stems. ClO2 treatment was also effective in maintaining or extending the vase life of A. majus ‘Potomic Pink’, Dendrathema × grandiflorum ‘Albatron’, G. paniculata ‘Perfecta’ and M. incana ‘Ruby Red’ flowers even when stems were placed into water containing 1011 CFU L−1 bacteria. The efficacy of 10 μL L−1 ClO2 in vase water containing 0.2 g L−1 citric acid and 10 g L−1 sucrose to extend the display life of G. jamesonii ‘Lorca’ and ‘Vilassar’ flowers was equal to or greater than other tested biocides (i.e. aluminum sulfate, dichloroisocyanuric acid, 8-hydroxyquinoline sulfate, Physan 20™, sodium hypochlorite). Taken collectively, the results of the present study highlight the potential of aqueous ClO2 for use as an alternative antibacterial agent in flower vase solutions.  相似文献   

19.
Fogging with formaldehyde of citrus packinghouses when the fruit are absent is a practice to control conidia of Penicillium digitatum (Pers.) Sacc., the cause of citrus green mold. Replacements for formaldehyde in these facilities are needed because of worker and environmental health issues. To evaluate the effectiveness of candidate sanitizers, craft wood sticks with conidia of P. digitatum were attached throughout commercial citrus ethylene degreening rooms and either water alone or the sanitizers were applied. The rooms were 20 ± 2 °C and humidified to 85–90% relative humidity. Aldehydes, peroxygen compounds, sodium hypochlorite, chlorine dioxide, quaternary ammonium, alcohols, one phenolic compound, and one organic acid were applied with a compressed air assisted atomizer or fan atomizer in a volume of approximately 6 L per 100 m3 of room volume dispensed over a 3 h period. Rates applied were expressed as active ingredient per m3 of room volume. All were compared to formaldehyde applied at 1.98 g m−3 of room volume. After 24 h, the craft wood sticks were retrieved, and germination of the conidia assessed. Five sanitizers reduced germination of conidia by more than 95% and equaled formaldehyde in effectiveness. They were (effective rates): (1) glutaraldehyde (0.1 g m−3); (2) hydrogen peroxide (4.4 g m−3); (3) Citrisol (1.0 g m−3), a proprietary mineral oxychloride oxidizer; (4) acetic acid (5.3 g m−3); and (5) peracetic acid (2.4 g m−3). The toxicity of effective sanitizers was determined by exposure of P. digitatum conidia for 10 min to concentrations of each and the proportion of survivors used to estimate EC50 and EC99 concentrations. The toxicity of the sanitizers in this assay did not predict their effectiveness when applied by fogging, probably because other factors, such as distribution, persistence, droplet size, or vapor pressure also influenced their effectiveness.  相似文献   

20.
The effects of radiation and temperature during the seed set period (SSP) on pod number per square metre (PN m−2) and seed number per square metre (SN m−2) and those of temperature during grain filling on unit seed weight (USW, milligram per seed) of field pea (Pisum sativum L.) were examined in experiments involving irrigated crops of three or more cultivars of contrasting maturity sown on two or more dates per year from 1996 to 1998 at Buenos Aires, Argentina. The duration of the seed-setting phase was estimated from records of the progress of flowering on the main stem and an estimate (obtained using an optimisation procedure) of the thermal time from flowering at which the uppermost reproductive node reached the final stage of seed abortion (FSSA). The FSSA at a particular node was assumed to be achieved 200 °C day (Tb=4 °C) after flowering at the same node. The grain-filling phase was assumed to run from the achievement of FSSA at the first reproductive node through to 200 °C day (Tb=0 °C) after the date of achievement of the FSSA by the second flowering node.The treatments (cultivar, sowing date, year) produced important ranges of above-ground biomass (AGB) at maturity (271–782 g m−2), seed yield (SY, 119–331 g m−2), SN (1062–3698 seeds m−2) and USW (67–150 mg seed−1). Seed yield was strongly correlated with SN, and there was full compensation between SN and USW in large-seeded cultivars in the high SN range, but not at lower values of SN or in small-seeded cultivars. Both PN (r=0.83) and SN (r=0.87, P<0.0005) were strongly correlated with the mean daily value of the photothermal quotient (PQ=incident radiation/(mean temperature − base temperature)) for the seed-setting phase. Large- and small-seeded cultivars had PN/PQ and SN/PQ relationships with slopes which did not differ among categories but with significantly different intercepts. When the effects of low temperatures during flowering and early grain growth were allowed for, outliers on the PN/PQ and SN/PQ relationships for unstressed crops fell within the confidence limits of the respective linear regressions. Unit seed weight showed a negative response to mean temperature during the grain-filling phase in large- and small-seeded cultivars. We conclude that the relationships established in these experiments, taken together with previous work by other authors, constitute a robust basis for modelling the yield of unstressed field pea crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号