首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fresh basil (Ocimum basilicum L.) is a highly perishable leafy green vegetable with a storage life of 4–5 d at room temperature. Exposure of basil leaves to temperatures below 12 °C during storage results in chilling injury; therefore, refrigeration cannot be used to extend postharvest life of basil. Typically, leafy vegetables are stored in darkness or extremely low irradiance. Darkness is known to induce senescence, and the initial phase of senescence is reversible by exposure to light. In this work, we studied the effects of low-intensity white light pulses at room temperature on postharvest senescence of basil leaves. Daily exposure for 2 h to 30–37 μmol m−2 s−1 of light was effective to delay postharvest senescence of basil leaves. Chlorophyll and protein levels decreased, ammonium accumulated and leaves developed visual symptoms of deterioration (darkening) during storage in darkness. Light pulses reduced the intensity of these senescence symptoms. The photosynthesis light compensation point of basil leaves was 50 μmol m−2 s−1 i.e., higher than the intensity used in this study, and the effect of treatment with red light was the same as with white light, while far red light was ineffective. Light pulses exerted a local effect on chlorophyll loss, but the effect on protein degradation was systemic (i.e., spreading beyond the illuminated parts of the leaf blade). The results of this study indicate that daily treatment for 2 h with low intensity light (30–37 μmol m−2 s−1 every day) during storage at 20 °C is an effective treatment to delay postharvest senescence of basil leaves. The delay of postharvest senescence by low intensity light pulses seems to be mediated by phytochromes, and it is systemic for protein, and partially systemic for chlorophyll degradation.  相似文献   

2.
Fresh-cut spinach during processing undergoes several mechanical procedures such as cutting, which may induce stress responses. These stresses may trigger the accumulation of harmful reactive oxygen species (ROS). Plants respond through a wide range of mechanisms and ascorbic acid (AsA) has an important role. The combined effect of cutting, temperature and storage time on AsA recycling route in spinach fresh-cut leaves was studied. AsA, gene expression and activities of the enzymes involved in the AsA oxidation and recycling were considered. Spinach leaves were cut in six pieces and stored at 4 °C or 20 °C. AsA content and enzymes activities were measured over six days of storage, while gene expression analyses were performed in a time-point experiment within 24 h after cutting. Results showed that AsA decreased after cutting (from 19.41 mg/100 g FW to 15 mg/100 g FW) and generally was higher in samples stored at 4 °C. After six days, AsA was 10 mg/100 g in control and 5 mg/100 g FW in cut leaves. The expression of genes and activities of the enzymes involved in the AsA oxidation and recycling route were, for some enzymes, in accordance with AsA levels. The APX (EC 1.11.1.11) activity after cutting increased up to 290 nmol AsA mg−1 prot min−1 compared to the control with 190 nmol AsA mg−1 prot min−1. AsA reduction is firstly affected by temperature and aggravated by cutting procedures. AsA represents a valuable postharvest quality indicator of freshness in spinach leaves.  相似文献   

3.
It has been reported that a short duration hot water treatment, applied as a heat shock, improves subsequent postharvest quality in bagged spinach and rocket leaves. This study has established that the maximum hot water temperature and duration before spinach leaves showed damage, was 45 °C for 60 s. Subsequent detailed studies compared postharvest quality of leaves treated at 45 °C for 60 s immediately after harvest with untreated leaves after 5 and 10 days of storage at 4 °C. Heated leaves were significantly lighter and more yellow suggesting enhanced senescence, but leaf membrane integrity and associated gas composition of the storage atmosphere were not significantly different. Hot water treatment at 45 °C for 60 s applied immediately after harvest had a mixed effect on the biochemical constituents of the leaves; total carotenoid concentration was maintained compared to untreated leaves but the contents of ascorbic acid, dehydroascorbic acid, chlorophyll a and b were not affected. These observations suggest that in contrast to other reports, hot water treatments have limited commercial potential for postharvest quality improvement of spinach leaves.  相似文献   

4.
Senescence of detached spinach leaves either untreated or treated with 0.1 or 1.0 μL L?1 1-MCP has been investigated. 1-MCP treated leaves had higher chlorophyll content and photosystem II potential quantum yield (Fv/Fm) and lower solute leakage than untreated leaves after storage in darkness at 23 °C for 6 d, indicating a delay of senescence. Ethylene production was increased in spinach supplemented with 1-MCP after 3 d storage and then declined to the rates of untreated leaves. 1-MCP treated spinach had higher ascorbic acid and glutathione concentrations, and a low oxidised/reduced ratio for both antioxidants. Accumulations of ammonium and protein degradation were reduced by 1-MCP. The results presented here indicate that inhibition of ethylene sensitivity can be successfully used to extend the postharvest life of spinach leaves.  相似文献   

5.
The development of red color in the peel of red Chinese sand pears (Pyrus pyrifolia Nakai) is influenced by temperature and light; however, the response patterns vary among different cultivars. In this study, we systematically investigated the influence of postharvest treatment with various temperatures (low, high, variant and constant) on detached mature fruit of red Chinese sand pear ‘Mantianhong’ and ‘Meirensu’. Fruit of red apple (Malus domestica Borkh.) ‘Royal Gala’ and red European pear (P. communis L.) ‘Cascade’ received the same treatments for comparison. Furthermore, the effects of light quality and irradiance level on ‘Mantianhong’ pears were evaluated at the optimum temperature for anthocyanin accumulation. Fruit firmness and concentrations of total soluble sugars and organic acids were measured to determine fruit quality. The effect of temperature on red Chinese sand pear fruit color was similar to that of apples, but not European pear. Moreover, low temperature more effectively induced red coloration in ‘Mantianhong’ and ‘Meirensu’ pears than high temperature; anthocyanin levels increased with increasing irradiance level from 0 to 532 μmol m−2 s−1, and UV-B and visible light synergistically improved the red color of the fruit. Therefore, a combination of low temperature and high intensity of UV-B/visible light could improve the postharvest coloration of red sand pear fruit. The results will contribute to an improved understanding of the mechanism responsible for the coloration of red Chinese sand pears and will aid development of new techniques to improve color in postharvest fruit.  相似文献   

6.
To identify the best practice for nitrogen (N) fertilization of overwinter processing spinach, two field experiments were carried out in the Foggia plain (Southern Italy), one of the most vocated area for leafy vegetables production. The field trials were aimed to define and suggest the proper fertilizer dose, typology and the right time of application. Experiment 1 evaluated four N fertilizer doses (0, 150, 225, 300 kg ha−1) in a two-year field trial. Experiment 2 was aimed to assess the effect of the split distribution of prilled urea fertilizer in comparison with the application of nitrification inhibitor (DMPP) containing urea fertilizer, broadcasted at sowing.Spinach yield, yield quality (nitrate – NO3 – and carotenoids content), N-use efficiency and risk of soil nitrate (NO3-N) leaching were evaluated. The processing spinach yielded 37.8 and 3.6 t ha−1 of fresh and dry yield, respectively (average of the two experiments). Fresh and dry yield among the fertilizing treatments were similar. Also the β-carotene and the lutein content of spinach leaves (19.5 and 38.1 mg kg−1, respectively) were not affected by the N fertilizer dose. Conversely, the N dose strongly influenced the NO3 content of the leafy vegetable tissues (1286 mg kg−1 on average, 58% lower than the limits imposed by the EC regulation). As expected, the different rainfall pattern influenced both the leaf NO3 content and the risk of soil NO3-N leaching. The results achieved demonstrated that, in order to get a favorable trade-off, among yield, yield quality, N-use efficiency and environmental impact, the processing spinach growers of the Foggia plain area should be encouraged to apply 225 kg N ha−1 as maximum fertilization rate. Also, the split urea fertilizer application appeared as the more effective strategy for N fertilization of overwinter spinach in comparison with the use of the nitrification inhibitor containing urea fertilizer, being the last strategy not able to adequately match the N crop demand.  相似文献   

7.
Exposure of mature ‘Fallglo’ tangerine fruit to blue light with a photon fluence rate 40 μmol m−2 s−1 reduced symptom development of blue mold (Penicillium italicum), green mold (Penicillium digitatum), and stem end rot (Phomopsis citri) postharvest decays. Direct exposure to blue light was required to reduce decay caused by Penicillium. Blue light (40 μmol m−2 s−1) reduced in vitro fungal growth of P. italicum and P. citri. The growth of P. digitatum was more tolerant to blue light, however, the activity of fungal polygalacturonase was reduced by blue light at the intensity of 40 μmol m−2 s−1. Gas chromatography–mass spectrometry analysis identified 29 chemical constituents in flavedo oil; blue light induced only octanal accumulation. Application of octanal suppressed growth of P. italicum, P. digitatum, and P. citri in vitro. Treatment of fruit with octanal at 5 mM or 50 mM suppressed symptom development caused by Penicillium and P. citri, but discolored the peel. Inhibition of postharvest decays by blue light may be due to a combination of inhibition of fungal growth and induction of defensive responses in the host.  相似文献   

8.
Postharvest diseases limit the storage period and marketing life of figs. The efficacy of chlorine dioxide by fogging was tested for the control of postharvest diseases of black fig (Ficus carica L. cv. Bursa Siyahi). Fruit were fogged with various concentrations of chlorine dioxide in a cold storage unit for 60 min at room temperature. Treated fruit were stored either in air or modified atmosphere bags for 7 d at 1 °C followed by 2 d shelf-life at 20 °C. Fogging at 300–1000 μL L−1 significantly reduced natural incidence of decay, most of which was gray mold. The efficacies of fogging at 500 and 1000 μL L−1 were at the same level and fogging at 1000 μL L−1 was superior to that at 300 μL L−1 in fruit stored in air. Modified atmosphere packaging did not improve the efficacy of fogging in reducing decay incidence. The epiphytic population on the fruit surface was similarly reduced by chlorine dioxide fogging. All treatments significantly reduced total microorganisms, fungal and bacterial populations in fruit. In addition, microorganisms in the storage atmosphere were significantly reduced. None of the treatments affected the visual quality and taste of fruit.  相似文献   

9.
Effects of continuous light exposure (24 μmol m−2 s−1) on browning enzyme activity and total phenol (TP) content in fresh cauliflower heads were investigated during 7 d storage at 7 °C using darkness as the control. Results showed that light exposure inhibited polyphenol oxidase activity (PPO) by 26% and peroxidase (POD) by 16%, as well as lowering the browning index (BI) by 33%, compared to darkness, at the end of storage. Light exposure also induced 43%, 35%, and 20% increases in phenylalanine ammonia lyase (PAL) activity at 1, 3, and 5 d storage, respectively, thus accumulating 41% more de novo TP content than in darkness after 7 d storage. In addition, vitamin C content deteriorated during storage under both light and dark conditions, with light exposure preserving vitamin C content 30% more than in darkness. However, light exposure accelerated fresh weight loss, with the largest value of 1.8% at the end of storage.  相似文献   

10.
In this study, the changes in vitamin C, l-ascorbic acid (AA) and l-dehydroascorbic acid (DHA) levels in broccoli flower buds were examined during pre-storage and storage periods, simulating refrigerated transport with wholesale distribution and retail, respectively. Broccoli heads were pre-stored for 4 or 7 days at 0 °C or 4 °C in the dark and then stored for 3 days at 10 °C or 18 °C. During storage the broccoli heads were exposed for 12 h per day to three different levels of visible light (13, 19 or 25 μmol m−2 s−1) or a combination of visible light (19 μmol m−2 s−1) and UV-B irradiation (20 kJ m−2 d−1), or they were stored in the dark. The vitamin C content in broccoli flower buds during storage was significantly affected by pre-storage period and temperature. Higher vitamin C levels in flower buds after storage were observed for broccoli heads pre-stored for 4 days or at 0 °C as compared to those pre-stored for 7 days or at 4 °C. Storage temperature also affected vitamin C in broccoli flower buds, with higher levels observed for broccoli stored at 10 °C than at 18 °C. Hence, vitamin C in broccoli flower buds was demonstrated to decrease together with increasing pre-storage period, pre-storage temperature and storage temperature. AA in broccoli flower buds was influenced mainly by storage temperature and to a minor extent by pre-storage temperature. The DHA level and DHA/AA ratio were stable in flower buds of broccoli pre-stored for 7 days, whereas increasing tendencies for both DHA level and ratio were observed after pre-storage for 4 days. These results indicate a shift in the ascorbate metabolism in broccoli flower buds during storage at low temperatures, with its higher rate observed for broccoli pre-stored for shorter time. There were no effects of the light and UV-B irradiation treatments on vitamin C, AA and DHA levels in broccoli flower buds.  相似文献   

11.
Net photosynthetic rate was measured from the youngest fully expanded leaves of field grown cocksfoot (Dactylis glomerata L.) in open pastures and under trees in the Lincoln University silvopastoral experiment (New Zealand). The photosynthetic efficiency (α) and convexity (θ) of the light-response curve were derived from 209 fitted non-rectangular hyperbola functions. There was no relationship between θ and any of the environmental or management variables with a stable mean value of 0.96. For α, individual functions were required for temperature (10–31 °C), nitrogen (N) concentration (1.5–5.9% N), water status (expressed as pre-dawn leaf water potential, ψlp) (−0.01 to −1.6 MPa), regrowth duration (20–60 days), and different times (up to 180 min) under moderate (850–950 μmol m−2 s−1 photon irradiance) and severe (85–95 μmol m−2 s−1 photon irradiance) shade. The highest α of 0.036 μmol CO2/μmol photon irradiance was found in non-limiting conditions and defined as the standardised maximum (αs=1). Values of αs=1 were measured in optimum ranges of 10–24 °C, 4.0–5.9% N, −0.01 to −1.0 MPa and 20 days regrowth. In addition, values of αs reached a steady-state asymptote of 0.74 after 60 min of severe shade and 0.92 after 40 min of moderate shade. Individual functions of α could not be integrated into a simple multiplicative model but a ‘law of the minimum factor’ model was appropriate. Predicted results from this model were then validated with 46 independent data points collected when at least two factors were outside their optimum range. The model accounted for 88% of the variation in observed α values. This research has derived functional relationships for α that can be used to assist predictions of leaf photosynthesis and ultimately pasture growth by their inclusion in canopy photosynthesis models.  相似文献   

12.
‘Crimson Seedless’ is a popular table grape cultivar, but in warm-climates, its fruits often fail to develop adequate red color, even after they have been treated with ethephon. Application of abscisic acid (ABA) may improve color more effectively than ethephon, but its potential effects on postharvest quality must be considered before recommending its use on table grapes. Therefore, we compared the postharvest quality attributes of grapes treated preharvest with 250 μL L−1 ethephon, the current industry standard, to that of grapes treated with 150 or 300 μL L−1 ABA, or nontreated. Treatment with either ethephon or 150 μL L−1 ABA allowed grapes to be harvested 10 d before nontreated fruit, and fruits treated with 300 μL L−1 ABA attained marketable quality 30 d before nontreated fruit. Early harvest was possible because the treatments induced more rapid coloring of the grapes, and though total yield was not affected by any plant growth regulator (PGR), all PGRs doubled packable yields by improving the color of the grapes. ABA-treated grapes were characterized by superior appearance both in berries and clusters’ rachises compared to ethephon-treated and control grapes. Other quality attributes such as firmness, berry weight, decay incidence, and shatter remained unaffected among treatments. Therefore, ABA is an effective alternative to ethephon for enhancing the color and maintaining postharvest quality of ‘Crimson Seedless’ grapes.  相似文献   

13.
This study evaluated the effects of composite chemical pretreatment on the quality of postharvest button mushrooms. Three different treatments, including (T1) control (water), (T2) 1 mmol L−1 Na2EDTA + 10 mmol L−1 CaCl2 and (T3) 1 mmol L−1 Na2EDTA + 2.5% CaCl2 + 0.5% citric acid + 2.5% sorbitol were used for pretreatments. The results showed that T3-treated samples maintained good firmness and color and had less weight loss during the postharvest storage. Lower levels of H2O2, OH and low malondialdehyde content (MDA) were observed in T3 compared with T1 and T2 samples. Significantly higher soluble protein contents and higher activities in the antioxidant enzymes, i.e., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD) were observed in T3 compared with T1 and T2 at the end of the storage period (P < 0.05). These results suggest that the T3 treatment could be useful in preserving button mushrooms.  相似文献   

14.
Chinese kale (Brassica oleracea var. alboglabra) leaves were stored at 1 °C (95% RH) under relatively low light levels (21.8 μmol m−2 s−1) or in darkness. Stomata were closed in darkness but remained open in the light. Stomatal opening was positively correlated with loss of fresh weight. Ascorbic acid levels rapidly decreased in leaves stored in darkness. The decrease was reduced to about half by storage in the light. Light resulted in higher carotenoid, glucose, fructose and starch levels. Leaves held in darkness did not turn yellow, although total chlorophyll levels slightly decreased. The levels of chlorophyll a accumulated whereas those of chlorophyll b dropped rapidly, which is consistent with the hypothesis that the first step of chlorophyll b degradation is conversion to chlorophyll a, and with the suggestion that under the present conditions chlorophyll a was not degraded rapidly. It is concluded that fluorescent light, at the level used, induced higher weight loss, whilst partially preventing the loss of vitamin C, and increasing the levels of starch, fructose and glucose.  相似文献   

15.
This study aimed to investigate the application of microbubble technology for delaying banana ripening. A preparation of 1-MCP designed for use as a form of aqueous micro bubble (MBs) solutions was formulated. Banana fruit were immersed in 500 nL L−1 of aqueous 1-MCP microbubbles (1-MCP-MBs) or fumigated with 500 nL L−1 1-MCP, then stored at 25 °C for 8 days. 1-MCP-MBs were more effective in delaying postharvest ripening than conventional 1-MCP fumigation. 1-MCP-MBs reduced the respiration rate and ethylene production compared to the control and 1-MCP fumigated fruit. Moreover, 1-MCP-MBs delayed yellowing and maintained firmness of banana fruit during storage. These results indicate that 1-MCP-MBs can be used as an alternative method for delaying the postharvest ripening of banana fruit, and its application for other commodities needs to be further elucidated.  相似文献   

16.
Hexanal vapour and intact tomatoes were used as models to assess the opportunities for control of Botrytis cinerea rots by controlled release of organic vapours. Hexanal vapour concentrations in the ranges 5–270 μL L−1 were applied continuously or as a single dose at the start of storage. The postharvest microbiological, physiological and quality attributes of control and hexanal treated tomatoes were investigated during storage for 7 days at 20 ± 1 °C and ∼99% RH. Continuous hexanal exposure effectively suppressed grey mould with the minimum inhibitory concentration (MIC) being 40–70 μL L−1; the single-dose treatment showed minimal antifungal activity. During continuous exposure at the MIC the fruit respiration rate was increased ∼50% and reddening was slowed. No clear trend was observed in ethylene production and treated fruit did not differ from the controls in firmness or mass loss. The controlled release of low concentrations of hexanal vapour into a packaging headspace appears a feasible mechanism for prolonging tomato storage life.  相似文献   

17.
Current problems with outbreaks of serious infections caused by human pathogens on fresh-cut greens highlight the need for new, optimized postharvest sanitation treatments to effectively meet recent food safety standards. In contrast to various chemical treatments, non-thermal plasma (NTP) has a high potential as a gentle target sanitation technique. However, possible interactions between NTP and the physiology of treated fresh products have not been investigated in detail. Here, chlorophyll fluorescence image analysis (CFIA) was used to study the potential impacts of non-thermal plasma on the photosynthetic activity of highly perishable corn salad leaves as a model produce. For this purpose, an atmospheric pressure plasma jet, driven at radio frequency, and transforming argon with flow rates of 20 L min−1 into non-thermal plasma at 10, 20, 30, and 40 W generator power was applied for various times to the surface of corn salad leaves. Thermographic measurements indicated maximum temperatures of 39.0 °C, 44.4 °C, 60.1 °C, and 66.0 °C, respectively, on treated leaf surfaces. CFIA revealed that treatment at moderate generator power of 20 W for up to 1 min was the maximum setting for quality retention. Furthermore, the microbial inactivation efficiency of the plasma jet system at these operating parameters was successfully tested on Escherichia coli bacteria, inoculated on corn salad surface at 107 cfu cm−2 and 104 cfu cm−2. At 20 W, bacteria with lower initial load could be inactivated by 3.6 (±0.6) log-cycles within 15 s of treatment duration; whereas at the higher initial load of 107 cfu cm−2, bacteria were reduced by 2.1 (±0.2) log-cycles after 30 s.  相似文献   

18.
Anthracnose caused by Colletotrichum gloeosporioides is a major postharvest disease in avocados that causes significant losses during transportation and storage. Complete inhibition of the radial mycelia growth of C. gloeosporioides in vitro was observed with citronella or peppermint oils at 8 μL plate−1 and thyme oil at 5 μL plate−1. Thyme oil at 66.7 μL L−1 significantly reduced anthracnose from 100% (untreated control) to 8.3% after 4 days, and to 13.9% after 6 days in artificially wounded and inoculated ‘Fuerte’ and ‘Hass’ fruit with C. gloeosporioides. GC/MS analysis revealed thymol (53.19% RA), menthol (41.62% RA) and citronellal (23.54% RA) as the dominant compounds in thyme, peppermint and citronella oils respectively. The activities of defence enzymes including chitinase, 1, 3-β-glucanase, phenylalanine ammonia-lyase and peroxidase were enhanced by thyme oil (66.7 μL L−1) treatment and the level of total phenolics in thyme oil treated fruit was higher than that in untreated (control) fruit. In addition, the thyme oil (66.7 μL L−1) treatment enhanced the antioxidant enzymes such as superoxide dismutase and catalase. These observations suggest that the effects of thyme oil on anthracnose in the avocado fruit are due to the elicitation of biochemical defence responses in the fruit and inducing the activities of antioxidant enzymes. Thus postharvest thyme oil treatment has positive effects on reducing anthracnose in avocados.  相似文献   

19.
Central broccoli heads (cv. de Cicco) were harvested and treated with UV-C light (4, 7, 10, or 14 kJ m−2). All treatments delayed yellowing and chlorophyll degradation at 20 °C but the irradiation dose of 10 kJ m−2 allowed retaining the highest chlorophyll content yet had lower amounts of pheophytins than every treatment other than 7 kJ m−2. This dose was selected to analyze the effect of UV-C on postharvest broccoli senescence at 20 °C. The UV-C treatment delayed yellowing, chlorophyll a and b degradation, and also the increase in pheophytins during storage. The activity of chlorophyll peroxidase and chlorophyllase was lower in UV-C treated broccoli. Instead, Mg-dechelatase activity increased immediately after the treatment, but after 4 and 6 d this activity was lower in UV-C treated florets than in controls. Treated broccoli also displayed lower respiration rate, total phenols and flavonoids, along with higher antioxidant capacity. The results suggest that UV-C treatments could be a useful non-chemical method to delay chlorophyll degradation, reduce tissue damage and disruption, and maintain antioxidant capacity in broccoli.  相似文献   

20.
One experiment lasting for two years was carried out at Pegões (central Portugal) to estimate the impact of mature white lupine residue (Lupinus albus L.) on yield of fodder oat (Avena sativa L. cv. Sta. Eulalia) as the next crop in rotation, comparing with the continuous cultivation of cereal, under two tillage practices (conventional tillage and no-till) and fertilized with five mineral nitrogen (N) rates, with three replicates. Oat as a first crop in the rotation provided more N to the agro-ecosystem (63 kg N ha−1) than did lupine (30–59 kg N ha−1). This was at a cost of 100 kg of mineral N ha−1, whereas lupine was grown without addition of N. A positive response of oat as a second crop was obtained per kg of lupine-N added to the system when compared with the continuous oat–oat. The cereal also responded positively to mineral N in the legume amended soil in contrast with the oat–oat sequence where no response was observed, partly due to the fast mineralization rate of lupine residue and a greater soil N immobilization in the continuous oat system. Each kg N ha−1 added to the soil through the application of 73 kg DM ha−1 mature lupine residue (above- and belowground material) increased by 72 kg DM ha−1 the oat biomass produced as the second crop in rotation when 150 kg mineral N ha−1 were split in the season, independent of tillage practice. Mature legume residue conserved in the no-tilled soil depressed the yield of succeeding cereal but less than the continuous oat–oat for both tillage practices, where the application of mineral N did not improve the crop response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号