首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the degree of chilling injury (CI) in mango (Mangifera indica) fruit stored at 4 °C or 12 °C, in relation to peel ascorbic acid concentrations, total antioxidant capacity, and the activities of four antioxidative enzymes. In cv. Nam Dok Mai fruit exposed to 4 °C, CI (peel browning) was found after 5 days, whilst CI in cv. Choke Anan fruit started after 10 days and did not reach the same degree. When held at 27–28 °C, following various periods of exposure to 4 °C, peel browning in both cultivars increased, but that in cv. Nam Dok Mai remained higher than in cv. Choke Anan. An inverse correlation was found between peel browning and ascorbic acid concentrations, and between peel browning and total antioxidant capacity, measured using the FRAP method. In cv. Nam Dok Mai, the superoxide dismutase (SOD) and catalase (CAT) activities were lower during storage at 4 °C than during storage at 12 °C, while such a difference was not found in cv. Choke Anan. When compared to cv. Choke Anan, lower activities of ascorbate peroxidase (APX) and of guaiacol peroxidase (POX) were found in the peel of cv. Nam Dok Mai. However, no difference was observed in APX and in POX activities in the peel of cv. Nam Dok Mai stored at 4 °C or 12 °C. This means that the relationships between CI and APX and POX activities were weak.  相似文献   

2.
Mycobiocides are attracting research interest worldwide as possible postharvest pathogen control measures to replace synthetic fungicides. In this study, the application of two essential oils as fungicides was evaluated. Initially, the in vitro antifungal effects of Lippia scaberrima essential oil and three of the major oil components, (d)-limonene, R-(−)-carvone, and 1,8-cineole, as well as that of S-(+)-carvone, were investigated against Colletotrichum gloeosporioides, Lasiodiplodia theobromae, and an Alternaria isolate. The oil and terpenoids caused significant inhibition of the mycelial growth of all the pathogens when applied at a concentration of 2000 μL L−1. The most potent volatile component of L. scaberrima essential oil, able to inhibit all the pathogens tested, proved to be R-(−)-carvone. The efficacy of the essential oil (1000 and 2000 μL L−1) incorporated into the commercial coating was confirmed on fruit inoculated with two of the pathogens. A simulated export trial was done using Lippia essential oil, in addition to Mentha spicata (spearmint) essential oil, as supplements for fruit coatings. Results indicate that essential oils rich in R-(−)-carvone could be valuable alternatives to synthetic fungicides for the postharvest management of avocado fruit. The combination of essential oils with a commercial coating, acceptable to the organic market, offers additional protection to this vulnerable commodity.  相似文献   

3.
Changes in the composition of fructooligosaccarides (FOSs) and related enzyme activities of burdock root during low-temperature storage (1 °C) were measured. Burdock root is composed of monosaccharides, such as glucose and fructose, disaccharides, such as sucrose, and FOS in the extracted carbohydrates. The composition was the highest in fructose, followed by sucrose, FOS, and glucose. The FOS composition was the highest in 1-kestose, followed by nystose and 1-fructofuranosyl nystose. The fructose and glucose contents in burdock root during storage at 1 °C decreased significantly, whereas the sucrose content increased sharply. In contrast, the 1-kestose, nystose, and 1-fructofuranosyl nystose contents significantly increased. The activities of sucrose:sucrose 1-fructosyl transferase (1-SST) and fructan:fructan 1-fructosyl transferase (1-FFT) increased sharply and then gradually decreased, and they were closely related to the changes in FOS content. However, the activity of fructan 1-exohydrolase (1-FEH) was constant. These results indicate that changes in the FOS composition and related enzyme activities of burdock root might be related to low temperature during long term storage.  相似文献   

4.
Conventional chitosan (CC) and submicron chitosan dispersions (SCD) were evaluated for the control of postharvest anthracnose and maintenance of quality of dragon fruit during storage at 10 ± 2 °C and 80 ± 5% RH for 28 days. All the chitosan treatments significantly reduced anthracnose symptoms, resulting in a reduction of disease development and thereby maintained the quality of fresh fruit for extended periods. SCD at 1.0% with 600 nm droplet size gave the best result in that it delayed the onset of disease and maintained the quality of dragon fruit for up to 28 days of storage. It can be concluded from the present investigation that SCD have potential to be used as an antifungal agent to control postharvest anthracnose and maintain quality of dragon fruit during storage.  相似文献   

5.
Strawberries at white ripening stage were heat treated at 45 °C for 3 h in an air oven and then stored at 20 °C for 72 h. Firmness, activity of enzymes associated to cell wall degradation, and expression of related genes were determined during the storage. Fruit firmness decreased during the incubation time, and after 24 h of storage the heat-treated fruit softened less than the control fruit. However, after 3 days at 20 °C no differences in firmness were detected between control and heat-treated fruit. Immediately after heat treatment application, the activity of endo-1,4-β-d-glucanase (EGase), β-xylosidase and β-galactosidase decreased, while polygalacturonase activity remained at a level similar to the control fruit. However, lower activities of all these enzymes, including polygalacturonase, were detected in heat-treated fruit after 24 h at 20 °C. The enzyme activity of β-xylosidase, β-galactosidase and polygalacturonase increased after 72 h up to similar or higher values than those of controls. However, endo-1,4-β-d-glucanase activity remained lower in heat-treated samples even after 72 h at 20 °C. The expression of genes encoding endoglucanase (FaCel1), β-xylosidase (FaXyl1), polygalacturonase (FaPG1) and expansin (FaExp2) was reduced immediately after treatment and during the following 4 h, and then increased after 24 h to levels similar to or higher than those of control fruit.

Therefore, the selected treatment (45 °C, 3 h in air) effectively reduced strawberry softening and caused a temporary reduction of both the expression of above-mentioned genes and the activity of a set of enzymes involved in cell wall disassembly.  相似文献   


6.
Harvested papaya fruit are perishable due to rapid ripening and softening and susceptibility to biotic or abiotic stresses. Hot water treatment (HWT) can preserve fruit quality by reducing decay. The present study investigated effects of HWT on controlling fungal pathogens of papaya fruit and the possible mechanism by which HWT induced disease resistance. HWT (54 °C, 4 min) of papaya fruit had a pronounced effect on reducing the carrier rate of Colletotrichum gloeosporioides (C. gloeosporioides) in fruit peel, significantly inhibited the incidence of anthracnose and stem-end rot, effectively delayed fruit softening, but slightly promoted the rate of fruit coloring. HWT reduced the anthracnose index and fruit ripeness to a certain extent and induced changes in the wax arrangement on the surface of treated fruit, causing the wax to melt. The cracks and most stomata appeared to be partially or completely plugged by the melted wax, thereby providing a mechanical barrier against wound pathogens. HWT induced the expression of CpPGIP and promptly induced the expression of CpNPR1, and then regulated the expression of the CpPR1 gene, which may enhance the resistance of the fruit to anthracnose disease and reduce the decay rate. Together, these results confirm that HWT could reduce disease incidence and induce resistance, and thus maintain postharvest quality during storage and prolong the shelf-life of papaya fruit.  相似文献   

7.
Gaseous 1-methylcyclopropene (1-MCP) has been widely employed for delaying ripening and senescence of harvested fruit and vegetables; however, details on ingress of gaseous1-MCP in plant tissues, which might contribute to differences in responsiveness of different horticultural commodities to 1-MCP, have not been reported. In this study, we used spinach and bok choi leaves, disks from tomato epidermis, stem-scar and avocado-exocarp tissues, and whole tomato fruit to examine ingress of gaseous 1-MCP. Using a dual-flask system, equilibration of 20 μL L−1 (831 μmol m−3) 1-MCP through leaf tissue was reached within 1–2 h, and paralleled 1-MCP transfer through glass-fiber filter paper. For disks derived from fruit tissues, changes in 1-MCP concentrations in the dual-flask system showed anomalous patterns, declining as much as 70% in source flasks with negligible accumulation in sink flasks. The pattern of 1-MCP distribution was markedly different from that of ethylene, which approached equal distribution with tomato stem-scar and avocado exocarp but not tomato epidermis tissues. 1-MCP ingress was further addressed by exposing whole tomato fruit to 20 μL L−1 1-MCP followed by sampling of internal fruit atmosphere. Tomato fruit accumulated internal gaseous 1-MCP rapidly, reaching approximately 8–9 μL L−1 within 3–6 h at 20 °C. Internal 1-MCP concentration ([1-MCP]) declined around 74 and 94% at 1 and 3 h after exposure, respectively. Ingress was similar at all ripening stages and reduced by 45% in fruit coated with commercial wax. Blocking 1-MCP ingress through stem- and blossom-scar tissues reduced accumulation by around 60%, indicating that ingress also occurs through epidermal tissue. Fruit preloaded with 1-MCP and immersed in water for 2 h retained about 45% of post-exposure gaseous [1-MCP], indicating that 1-MCP is not rapidly sorbed or metabolized by whole tomato fruit. Rapid ingress of gaseous 1-MCP was also observed in tomato fruit exposed to aqueous 1-MCP. Both accumulation and post-exposure decline in internal gaseous [1-MCP] are likely to vary among different fruit and vegetables in accordance with inherent sorption-capacity, surface properties (e.g., waxes, stoma), volume and continuity of gas-filled intercellular spaces, and tissue hydration.  相似文献   

8.
The effect of calcium (Ca) on lentil (Lens culinaris Medic.) seedlings exposed to cadmium (Cd) stress was studied by investigating plant growth and antioxidant enzyme activities. Plants were grown for 14 days in full-strength Hoagland nutrient media supplemented with Cd concentrations of 0, 10, 20, and 40 μM, and on corresponding medium supplied with 5 mM Ca(NO3)2 prior to Cd addition. Increasing Cd led to accumulation of metal and reduced the fresh weight of the shoots more strongly than that of the roots. Cd concentrations of 20 and 40 μM were selected to study its toxic effect on seedlings. Activities of superoxide dismutase, ascorbate peroxidase, catalase, dehydroascorbate reductase, and glutathione reductase decreased at much higher magnitude in the shoots than those observed in the roots under Cd exposure. Failure of antioxidant defense in scavenging of reactive oxygen species was evidenced by abnormal rise in H2O2, resulting in enhancement of lipid peroxidation and membrane electrolyte leakage as the marks of Cd-induced oxidative stress in lentil seedlings. Ca priming in the media significantly reduced the Cd accumulation and considerably alleviated the adverse impact of Cd treatment by modulating the antioxidant enzyme activity. Mitigation of Cd-induced stress by Ca application was strongly suggested by declining levels of H2O2 and consequent lowering of oxidative damage of membrane. Consequently, this enhanced fresh mass of plant parts as the sign of Ca-mediated normal growth in Cd-treated lentil seedlings.  相似文献   

9.
Olive oil yield and its components (fruit number, average fruit weight and fruit oil concentration) depend on crop load and source–sink ratios as affected by environmental conditions, management and the alternate bearing typical of the species. The aims of this work were to: (i) establish quantitative relationships between oil yield and its components as affected by fruit load in a high-yielding production system, (ii) analyse the dynamics of fruit weight and fruit oil concentration in terms of rates and durations, and (iii) explore the relationships between the dynamics of oil and water in fruit. In a fully irrigated olive orchard in Mendoza (32° S), Argentina, cv. Arbequina trees with similar crown volume and three fruit loads (3-fold range) were monitored during two seasons. Oil yield was positively associated with both fruit number and fruit fresh weight, but not with fruit oil concentration. Across seasons and fruit loads, fruit yield increased linearly with fruit number at ~1.5 kg per thousand fruit and reached a maximum ~60 kg tree?1 (or 25 t ha?1) at a fruit load of 32,700 fruit tree?1. The fruit filling rate was affected by fruit load, while the duration of fruit growth and the dynamics of oil and water concentration were unaffected by fruit load. Fruit water concentration reached a minimum at the onset of Stage III of fruit growth, which was marked by a rapid increase in oil concentration. Fruit fresh weight and oil weight increased with source–sink ratio from ~0.5 up to a threshold ~2 m3 crown per thousand fruit. In contrast, a 8-fold range of source–sink ratio did not affect fruit oil concentration.  相似文献   

10.
柠檬酸合酶与柠檬酸的积累密切相关,通过分析其与酸含量的关系,为研究该基因的调控机制奠定理论基础。设计特异性引物对柠檬酸合酶基因进行克隆,并采用半定量PCR法对哈姆林叶片、果肉和果皮中该基因的表达模式进行检测。克隆得到柠檬酸合酶基因的cDNA序列,全长1535bp,ORF区含471个氨基酸残基,序列比对显示,哈姆林甜橙柠檬酸合酶基因与其他植物的该基因高度同源。半定量PCR结果显示果肉和果皮中柠檬酸合酶基因在各个时期的表达基本没有变化,而叶片中其表达水平随果实发育成熟不断降低,与果实中柠檬酸含量变化趋势相同。说明叶片中柠檬酸合酶基因表达与果实酸含量正相关。  相似文献   

11.
12.
The effect of commercial degreening with ethylene gas on fruit susceptibility and quality and development of postharvest green (GM) and blue (BM) molds on early season citrus fruit was investigated. Each cultivar was harvested with different peel color indexes (CI). Fruit were exposed for 3 d to 2 μL L−1 ethylene at 21 °C and 95–100% RH before or after artificial inoculation with Penicillium digitatum or Penicillium italicum. Control fruit were kept at the same environmental conditions without ethylene. Fruit were stored at either 20 °C for 7 d or 5 °C for 14 d and disease incidence (%) and severity (lesion diameter) were assessed. No significant effect of commercial degreening was observed on fruit susceptibility to both GM and BM on citrus cultivars inoculated after degreening. Likewise, no significant effect was observed on disease incidence on citrus cultivars inoculated before degreening and stored at either 20 °C for 7 d or 5 °C for 14 d. In contrast, in cultivars like ‘Clemenules’ mandarins and ‘Navelina’ oranges, degreening significantly increased the severity on fruit with higher initial CI (−3.6 and 1.7, respectively). GM and BM severity on degreened and control ‘Clemenules’ mandarins incubated at 20 °C for 7 d was 146 and 118 mm and 56 and 46 mm, respectively. In general, commercial degreening did not significantly affect external and internal quality attributes of citrus cultivars. Commercial degreening after inoculation of less green (more mature) fruit showed a trend to increase mold severity, presumably through an aging effect (acceleration of peel senescence).  相似文献   

13.
The kinetics of acetaldehyde (AA) and ethanol (EtOH) accumulation and pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) activities were studied in pre-climacteric ‘Hass’ avocado fruit flesh during induction and recovery from hypoxic conditions at 6 °C. Oxygen levels <0.5% resulted in a rapid accumulation of AA and EtOH. The pattern of AA and EtOH accumulation could be described by a hyperbolic model, although the initial 96 h of EtOH accumulation was linear. The accumulation of EtOH and AA was coincident with a doubling of the extractable ADH and PDC activities after 120 h exposure. Exposure of the fruit to up to 20% CO2 concentrations resulted in an increase in tissue levels of AA, but not EtOH. The pattern of AA accumulation under high CO2 was similar to that under low O2, with the level of AA being higher at higher CO2 concentrations.The AA and EtOH induced by low O2 declined to basal levels in an exponential manner when O2 was increased from ≤0.5 to ≥2%. The longer the duration of hypoxic induction, the longer the time required for AA and EtOH to decline to basal levels. When low O2 induction was 48 h or less, the time required for AA and EtOH to decline to basal levels was not affected by O2 concentrations >2%. However, after 96 h induction, the initial rate of decline in AA or EtOH was slower at lower O2 concentrations. Including 20% CO2 in the recovery atmosphere decreased the initial rapid rate of AA and EtOH decline, affecting EtOH levels more than AA, although both compounds reached pre-induction levels at approximately the same time. The rate of decline of ADH and PDC activity following low O2 induction was accelerated by the presence of CO2 in the atmosphere.Based on the rapid induction of AA and EtOH in response to low O2 stress, and the comparable rapid recovery to basal levels after removal of the stress atmosphere, together with a seemingly high tolerance to O2 atmospheres <2% and the similar but relatively smaller effect of CO2 compared with O2, it is concluded that preclimacteric ‘Hass’ avocados are physiologically well suited to dynamic CA storage.  相似文献   

14.
The effect of delays of 1, 5, 10 or 15 d after harvest in establishing a static controlled atmosphere (SCA) or dynamic controlled atmosphere (DCA) on the quality of ‘Hass’ avocados (Persea americana Mill.) was investigated. Fruit were stored at 5 °C in SCA (5% O2/5% CO2) or DCA (<3% O2/0.5% CO2) for 6 weeks and compared with fruit stored in air. In addition, to determine whether increasing the CO2 in the DCA would affect the fruit quality, DCA-stored fruit were compared with fruit held in a DCA with 5% CO2 (DCA + CO2) established 1 d after harvest. The quality of fruit was assessed at the end of storage and after ripening at 20 °C. DCA-stored fruit ripened in 4.6 d compared with 7.2 d for SCA-stored fruit, or 4.8 d for air-stored fruit. In addition, the incidences of stem end rot (SER), body rot (BR) and vascular browning (VB) were lower in DCA-stored fruit (35%, 29% and 29%, respectively) than in SCA-stored fruit (57%, 52% and 49%, respectively), or air-stored fruit (76%, 88% and 95%, respectively). Delaying the establishment of both SCA and DCA for 15 d resulted in significantly more advanced skin colour at the end of storage (average rating score 11.9) compared with other delay periods (4.6–5.1). There was no significant effect of delay on the time to ripen, skin colour when ripe or any ripe fruit disorder incidence. The incidence of diffuse flesh discolouration (DFD) was not only <1% when averaged over all delays but only occurred at >0.5% incidence in the 15 d delay treatment in DCA (4.8%) and not in SCA. The incidence of diffuse flesh discolouration was 62% in air-stored fruit. Inclusion of 5% CO2 in DCA retarded fruit ripening from 4.7 to 6.9 d and increased the incidence of rots at the end of storage from 5% to 14%, and increased the incidence in ripe fruit of SER from 30% to 56% and of BR from 27% to 55%. It is concluded that fruit quality was better after CA storage than after air storage, and that DCA storage was better than SCA. The effect of DCA is to independently reduce the time to ripen after storage and the incidence of rots when ripe. Delaying the application of SCA or DCA did not affect the expression of rots, but may increase the incidence of DFD. Inclusion of CO2 at 5% in CA retarded fruit ripening but stimulated rot expression and should not be used for CA storage of New Zealand grown ‘Hass’ avocados.  相似文献   

15.
In order to distinguish the interactions between low oxygen and fruit developmental stages, preclimacteric and ripening-initiated with propylene avocado fruit were exposed to different low oxygen levels and the steady-state levels of protein and mRNA accumulation of selected hypoxic and ripening genes were investigated. In addition, the patterns of translatable mRNA were studied by 2D IEF/SDS-PAGE analysis in preclimacteric fruit. Analysis of mRNA populations in preclimacteric avocado fruit revealed that low oxygen levels induced new mRNA species possibly implicated in the adaptive mechanism under low oxygen, suppressed de novo synthesized ones, or left unaffected house-keeping and/or pre-existing mRNAs, indicating that the low oxygen response is complex and involves more than a simple adaptation in energy metabolism. The accumulation of cellulase protein and mRNA was irrespective of low oxygen concentrations in preclimacteric fruit and oxygen dependent in ripening-initiated fruit. That is, preclimacteric avocado fruit contained cellulase protein and mRNA which were not suppressed by low oxygen treatment. Low oxygen tensions prevented the accumulation of cellulase protein and mRNA in ripening-initiated with propylene avocado tissues. New ADH isoenzymes were present in preclimacteric and ripening-initiated avocado fruit held in low oxygen atmospheres and correlated with elevated ADH mRNA levels. Low oxygen treatment (0–5%) did not result in increased ADH activity in avocado fruit. Neither the duration of exposure nor the developmental stage of the fruit altered this pattern, suggesting that unknown factor(s) might accumulate which possibly interfere with ADH activity under such conditions.  相似文献   

16.
Watkin Williams 《Euphytica》1979,28(2):481-488
Summary Data on the level and composition of protein and oil in L. albus, L. angustifolius, L. luteus and L. mutabilis are presented. Correlations between a range of physiological characters and seed yield are given and the results of selected hybridisations are discussed.  相似文献   

17.
The purpose of this study was to investigate the effect of tee tree oil (TTO) against the main fungal disease in strawberries and a possible mechanism for the effects. TTO vapor exhibited a higher activity against spore germination and mycelial growth of Botrytis cinerea and Rhizopus stolonifer under in vitro conditions. TTO vapors at 0.9 g/L significantly reduced artificially inoculated gray mold and soft rot in vivo, and treated strawberries maintained a fresher quality than untreated strawberries during storage. In addition, this treatment also enhanced the resistance of strawberries against B. cinerea, which caused a higher hydrogen peroxide (H2O2) level and activities of superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), peroxidase (POD) and β-1,3-glucanase during the first period of incubation. These results indicate that TTO can reduce fruit decay, possibly by inhibiting pathogen growth directly and inducing disease resistance indirectly, and TTO vapor may provide an alternative means of controlling disease in strawberries.  相似文献   

18.
炭疽病是严重影响黄麻纤维产量和品质的主要真菌性病害,明确炭疽病病原菌种类并测定其致病力有助于黄麻抗病育种和优异抗病基因资源挖掘。本研究从福建省福州市、福建省漳州市、河南省信阳市、安徽省六安市、浙江省杭州市、广西省南宁市和湖南省长沙市等7个黄麻生产区采集黄麻炭疽病病原菌样本,分离纯化出92个菌株;rDNA-ITS区域的序列分析表明,其中11个为典型炭疽病病原菌。LSU区域的系统进化树和形态学特征鉴定显示,ZZ4、GX19等10个菌株为胶胞炭疽菌(Colletotrichumgloeosporioides),菌株CS3为黑线炭疽菌(Colletotrichum dematium)。人工接种的致病力测定表明,不同炭疽菌菌株致病力存在显著差异,其中胶胞炭疽菌菌株GX19致病力最强,表现为优势菌株。这些结果为黄麻炭疽病抗性基因位点挖掘和有效防治奠定了基础。  相似文献   

19.
Changes in the protein content and profile of postharvest tomato fruit treated with the hormetic dose (3.7 kJ m?2) of ultraviolet light C (UV-C) at the mature green stage was investigated. In UV-C treated fruits, the total protein content increased until 10 d after treatment and decreased thereafter during a 30 d storage period; whereas in control fruit, protein content decreased constantly throughout the storage period. Using polyacrylamide gel electrophoresis (PAGE) it was shown that UV-C treatment affected the protein profile of tomato fruit in several manners: (1) UV-C repressed the expression of some proteins presumably associated with ripening; (2) it enhanced the expression of several constitutive proteins, of which one was an acidic β-1,3-glucanase, three acidic chitinases and three basic chitinases; and (3) it induced the synthesis of at least 5 new proteins of which four were basic proteins. Among the proteins induced by UV-C, three (a basic β-1,3-glucanase and two acidic chitinases) were apparently pathogenesis-related proteins as they were also induced by inoculation with Botrytis cinerea. The molecular mass (MM) of five of the UV-C induced proteins was determined using SDS-PAGE. Their molecular masses were 45, 39.4, 34.6, 10 and 8.9 kDa. The UV-C induced β-1,3-glucanase had a MM of 33.1 kDa. The MM of two constitutive chitinases were 48.3 and 30.5 kDa, and those of the two UV-C and pathogenesis-induced chitinases were 37.1 and 20.6 kDa. Furthermore, the glucanohydrolase activities induced by UV-C were maintained until the end of the storage period. It is likely that the PR-proteins with glucanohydrolase activities induced by UV-C are an integral part of the long-term resistance observed in UV-C treated tomato fruit.  相似文献   

20.
Mountain or highland papaya (Vasconcellea pubescens) is a climacteric fruit which develops a strong and characteristic aroma during ripening. The dynamics of aroma volatile production during ripening of whole papaya fruit were analysed by headspace-SPME. The main compounds produced by the fruit were esters (aliphatic and branched) and alcohols: the most abundant esters were ethyl acetate, ethyl butanoate, methyl butanoate and butyl acetate, comprising 88% of the volatiles in fully ripe fruit; butanol was the most abundant alcohol. Among the volatiles produced, ethyl butanoate, ethyl acetate, ethyl hexanoate and ethyl 2-methylbutanoate were found to be the most potent odour compounds. During ripening of mountain papaya fruit there was an increase in the total content of both esters and alcohols. In order to clarify the role of ethylene in aroma formation, mature fruit were treated with 0.3 μL L−1 of 1-MCP (16 h at 20 °C) or with 2 g L−1 Ethrel, and then allowed to ripen at 20 °C. The treatment of the fruit with 1-MCP inhibited the rise in ethylene production in the fruit, while Ethrel advanced the development of the climacteric phase. Most esters identified in mountain papaya were dependent on ethylene, showing an increase in production during ripening and in response to Ethrel treatment, and a strong reduction in response to 1-MCP treatment. The data presented provide evidence that most esters produced by mountain papaya are derived from fatty acids and amino acid metabolic pathways, both of them being affected by ethylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号