首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
‘Black Splendor’ (BS) and ‘Royal Rosa’ (RR) plums were treated preharvest with methyl jasmonate (MeJA) at three concentrations (0.5, 1.0 and 2.0 mM) along the on-tree fruit development: 63, 77 and 98 days after full blossom (DAFB). Both control and treated fruit were harvested at the commercial ripening stage and stored in two temperature conditions: 9 days at 20 °C or at 2 °C + 1 day at 20 °C for 50 days. Preharvest MeJA at 2.0 mM significantly accelerated whereas 0.5 mM delayed the postharvest ripening process for both cultivars, since ethylene production, respiration rate and softening were reduced significantly at the two storage conditions for 0.5 mM. In these fruit, total phenolics, total antioxidant activity (hydrophilic fraction, HTAA) and the antioxidant enzymes peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were found at higher levels in treated than control plums during postharvest storage, which could account for the delay of the postharvest ripening process and the extension of shelf-life.  相似文献   

2.
The effects of postharvest application of aminoethoxyvinylglycine (AVG) and 1-methylcyclopropene (1-MCP) on ethylene production and fruit quality, and thus on transportation and shelf-life, were evaluated in melting-flesh peaches. AVG (150 mg L−1) significantly reduced ethylene production, and the effect was enhanced in combination with 1-MCP (1 μL L−1). However, fruit treated with AVG alone softened to untreated control levels 2 d after harvest (DAH). Treatment with 1-MCP significantly reduced the rate of softening until 2 DAH, but the fruit rapidly softened thereafter, and reached untreated control levels by 4 DAH. A combination of AVG and 1-MCP significantly reduced fruit tissue softening throughout ripening. The effect of each chemical on flesh firmness indicated that 1-MCP affected fruit response in the early stages of ripening up to 4 DAH, and AVG significantly reduced softening in the latter stages from 4 to 9 DAH. Peaches treated with AVG and 1-MCP retained their ground color during ripening, but the effect of each chemical on color is unclear. The present study indicates that combined treatment with AVG and 1-MCP significantly delays the ripening of melting-flesh peaches.  相似文献   

3.
Previous reports showed that both gaseous and aqueous 1-methylcyclopropene (1-MCP) delay ripening of avocado (Persea americana Mill.), but there are no reports of the influence of 1-MCP on its sensory attributes. The objective of this study was to evaluate the effects of ethylene pretreatment and/or exposure to gaseous or aqueous 1-MCP on fruit ripening and sensory attributes of ‘Booth 7’ avocado, a Guatemalan-West Indian hybrid. Separate experiments were conducted during two seasons (2008 and 2009) with fruit harvested at preclimacteric stage in October (early season) and in November (late season). Fruit from Season 1 were exposed to ethylene (4.07 μmol L−1) for 12 h at 20 °C, and stored for more 12 h at 20 °C in an ethylene-free (ethylene, <0.1 μL L−1) room prior to treatment with either aqueous (1.39 or 2.77 μmol L−1 a.i.) or gaseous (3.15 or 6.31 nmol L−1 a.i.) 1-MCP. Ripening was monitored and firmness, respiration, ethylene production and weight loss were measured. Texture profile analysis and sensory analysis were performed on ripe fruit only (firmness, 10–15 N). Fruit from Season 2 were not exposed to ethylene pretreatment but treated only with aqueous 1-MCP 24 h after harvest. Fruit were assessed exclusively for sensory analysis when ripe (firmness, 10–15 N). Treatment with either 1-MCP formulation effectively delayed ripening from 4 to 10 d for early-season fruit, and from 4 to 6 d for late-season fruit. Higher concentrations of 1-MCP of either formulation had the greatest effect on selected pulp textural parameters of early-season fruit; the gaseous formulation had greater effect on late-season fruit quality than the aqueous formulation. In general, sensory panelists ratings of overall liking were not affected by 1-MCP treatment. Both aqueous and gaseous 1-MCP formulations delayed ripening of the Guatemalan-West Indian ‘Booth 7’ avocado without significant loss in appearance or in sensory attributes and, therefore, could be considered for use as a postharvest treatment for this hybrid.  相似文献   

4.
Separate experiments were conducted with three major commercial avocado (Persea americana Mill.) cultivars grown in Florida: ‘Simmonds’ (early-season, West Indian race); ‘Booth 7’ (mid-season, Guatemalan-West Indian hybrid); and ‘Monroe’ (late-season, Guatemalan-West Indian hybrid). Fruit were harvested at preclimacteric stage and left untreated (Control) or treated 24 h after harvest with aqueous 1-methylcyclopropene (1-MCP) at 1.39 (treatment M1) or 2.77 μmol L−1 a.i. (treatment M2) (75 or 150 μg L−1) for 1 min at 20 °C. Whole fruit ripening was monitored at 20 °C/92% ± 3% R.H. and based on whole fruit firmness, respiration and ethylene evolution. Fruit volatiles were assessed at preclimacteric (24 h after harvest), mid-ripe (half of initial fruit firmness) and ripe maturity stages, from 100 g of chopped pulp using a purge and trap system. Untreated, firmer fruit ‘Monroe’ (268 N at harvest) ripened within 12 d of harvest while softer fruit ‘Simmonds’ (118 N) ripened within only 6 d. 1-MCP treatment extended ripening time from 33% (M1) to 83% (M2). All fruit softened normally, indicating the potential benefits of aqueous 1-MCP as a postharvest treatment for avocado when applied at these concentrations. Volatile profiles differed among the three cultivars with several compounds detected in only one cultivar, results that may contribute to a potential identification of the origin of the cultivar based on fruit volatile composition. The West Indian cultivar ‘Simmonds’ had much higher emission of hexanal (preclimacteric fruit) and cis-3-hexenal and cis-3-hexen-1-ol (ripe fruit) than the Guatemalan-West Indian hybrids ‘Booth 7’ and ‘Monroe’. On the other hand, these latter hybrids had much higher levels of alkanes than ‘Simmonds’. Treatment with 1-MCP increased emissions of alkanes during ripening of ‘Booth 7’ and ‘Monroe’. Total volatiles of avocado decreased during ripening mainly due to the significant reduction of sesquiterpenes, the main group of volatiles in all cultivars at harvest (‘Simmonds’, 53%; ‘Booth 7’, 78%; ‘Monroe’, 66%). β-Caryophyllene was the major compound at harvest, but decreased to less than 2% in ripe fruit, at which point most sesquiterpenes were not detected. Among the 10 sesquiterpenes commonly found in the avocado cultivars in this study, only α-Copaene had significantly higher emissions in mid-ripe fruit treated with the higher concentration of 1-MCP (2.77 μmol L−1 a.i.), suggesting that ethylene participates in the regulation of this sesquiterpene.  相似文献   

5.
To investigate the effects of postharvest application of 1-MCP on ethylene production and fruit softening, activities of ethylene biosynthesis and fruit softening enzymes were measured during postharvest ripening of plum (Prunus salicina Lindl. cv. Tegan Blue) fruit after being exposed to 1-MCP (0, 0.5, 1.0 or 2.0 μL L−1) at 20 ± 1 °C for 24 h. Following the treatments, fruit were allowed to ripen at ambient temperature (20 ± 1 °C), and ethylene production in fruit, activities of ACS and ACO, ACC content and fruit softening enzymes (PE, EGase, exo-PG and endo-PG) in fruit skin and pulp were recorded at different intervals. Postharvest application of 1-MCP significantly delayed and suppressed the climacteric ethylene production with reduction in the activities of ethylene biosynthesis enzymes (ACS, ACO) and ACC content, and fruit softening enzymes (PE, EGase, exo-PG and endo-PG) in the skin as well as in pulp tissues. The reduction was more pronounced with increased concentrations of 1-MCP. 1-MCP treated fruit showed different rates of fruit softening and activities of ethylene biosynthesis enzymes in the skin and pulp tissues which warrant further investigation on regulation of gene expression related to these enzymes with the inhibitory effect of 1-MCP.  相似文献   

6.
This study aimed to investigate the application of microbubble technology for delaying banana ripening. A preparation of 1-MCP designed for use as a form of aqueous micro bubble (MBs) solutions was formulated. Banana fruit were immersed in 500 nL L−1 of aqueous 1-MCP microbubbles (1-MCP-MBs) or fumigated with 500 nL L−1 1-MCP, then stored at 25 °C for 8 days. 1-MCP-MBs were more effective in delaying postharvest ripening than conventional 1-MCP fumigation. 1-MCP-MBs reduced the respiration rate and ethylene production compared to the control and 1-MCP fumigated fruit. Moreover, 1-MCP-MBs delayed yellowing and maintained firmness of banana fruit during storage. These results indicate that 1-MCP-MBs can be used as an alternative method for delaying the postharvest ripening of banana fruit, and its application for other commodities needs to be further elucidated.  相似文献   

7.
8.
Wooden bin-stored ‘Bartlett’ pears (Pyrus communis L.) were hydrocooled (HC) or forced-air cooled (FAC) and immediately treated or not with 1-methylcyclopropene (1-MCP) for 24 h. 1-MCP gas concentrations used were 0, 0.3 or 0.6 μL L?1 (called 0, 0.3 and 0.6, respectively). Fruit were subsequently kept at 20 °C for 20 d or stored at ?0.5 °C and 95% RH for 60, 90, 120 or 150 d. After cold storage, fruit were kept at 20 °C for up to 16 d for further ripening. In another experiment, pears stored in wooden bins (W) or plastic bins (P) were all hydrocooled, treated or not with 0.5 μL L?1 1-MCP (called 0.5 and 0, respectively), stored at ?0.5 °C and 95% RH for 0, 30, 60, 90 or 120 d, and transferred to 20 °C for further ripening. In FAC pears, increasing 1-MCP concentrations usually resulted in delayed increases in ethylene production and lower ethylene production rates, as well as delayed softening. In contrast, HC-0.3 pear firmness did not differ from that of HC-0 fruit after cold storage. Generally, HC-0.3 pears displayed higher ethylene production and lower firmness values than FAC-0.3 pears after a 7-d exposure to 20 °C, regardless the length of cold storage. FAC-0.6 pears always showed lower ethylene production rates and higher flesh firmness values than HC-0.6 fruit. Soluble solids concentration was not consistently affected by 1-MCP. FAC-0.3 and HC-0.6 fruit showed higher titratable acidity values than HC-0 fruit after 0, 60, 120 and 150 d of cold storage plus 7 d at 20 °C. Effectiveness of 1-MCP treatments on HC pears was influenced by the bin material; P-0.5 pears were firmer than W-0.5 pears after 7 d at 20 °C, regardless the length of the cold storage. HC-0.5 fruit exposed to ?0.5 °C for 90 d reached eating quality (firmness ≤23 N) by day 7 if placed in W, and by day 21 when stored in P. Results and previous evidence suggest that wet wooden bin material may represent a major though unpredictable source of 1-MCP sorption that could bind a significant percentage of the 1-MCP applied. When used at relatively low doses 1-MCP partial removal by wet wooden bins can compromise the application effectiveness for controlling ethylene action.  相似文献   

9.
The influence of 1-MCP on the response of apricots to mechanical injury (impact) and the potential involvement of oxidative stress was investigated. Apricots (Prunus armeniaca L. cv. Marietta) picked at an early ripening (commercial harvest) stage (11–11.5 °Brix) were dropped from 30 cm onto a flat, hard surface to simulate an impact injury; fruit were treated with 500 nl 1−1 1-MCP for 20 h at 20 °C before or after the impact injury. Injured fruit showed a substantial rise in ethylene production after 4 days, while in fruit treated with 1-MCP, this increase started after 6 days, with a production rate lower than that of injured fruit. Increase in the respiration rate was delayed for 1-MCP-treated injured fruit in comparison with untreated injured ones. Tissue softening was reduced by 1-MCP treatment, showing less tissue deformability. Scanning EM analysis of injured tissue revealed healthier cells in 1-MCP treated apricots. 1-MCP-treated the increase of superoxide dismutase activity (SOD) due to mechanical injury in the first 4 days and this behaviour was related to ethylene production. Peroxidase activity (POX) increased in injured tissue immediately but then remained stable; 1-MCP, particularly when applied before the impact, increased POX activity. These results indicate that using 1-MCP can control ripening acceleration of apricots induced by mechanical injury. SOD, POX, and ethylene relationships are discussed.  相似文献   

10.
Gaseous 1-methylcyclopropene (1-MCP) has been widely employed for delaying ripening and senescence of harvested fruit and vegetables; however, details on ingress of gaseous1-MCP in plant tissues, which might contribute to differences in responsiveness of different horticultural commodities to 1-MCP, have not been reported. In this study, we used spinach and bok choi leaves, disks from tomato epidermis, stem-scar and avocado-exocarp tissues, and whole tomato fruit to examine ingress of gaseous 1-MCP. Using a dual-flask system, equilibration of 20 μL L−1 (831 μmol m−3) 1-MCP through leaf tissue was reached within 1–2 h, and paralleled 1-MCP transfer through glass-fiber filter paper. For disks derived from fruit tissues, changes in 1-MCP concentrations in the dual-flask system showed anomalous patterns, declining as much as 70% in source flasks with negligible accumulation in sink flasks. The pattern of 1-MCP distribution was markedly different from that of ethylene, which approached equal distribution with tomato stem-scar and avocado exocarp but not tomato epidermis tissues. 1-MCP ingress was further addressed by exposing whole tomato fruit to 20 μL L−1 1-MCP followed by sampling of internal fruit atmosphere. Tomato fruit accumulated internal gaseous 1-MCP rapidly, reaching approximately 8–9 μL L−1 within 3–6 h at 20 °C. Internal 1-MCP concentration ([1-MCP]) declined around 74 and 94% at 1 and 3 h after exposure, respectively. Ingress was similar at all ripening stages and reduced by 45% in fruit coated with commercial wax. Blocking 1-MCP ingress through stem- and blossom-scar tissues reduced accumulation by around 60%, indicating that ingress also occurs through epidermal tissue. Fruit preloaded with 1-MCP and immersed in water for 2 h retained about 45% of post-exposure gaseous [1-MCP], indicating that 1-MCP is not rapidly sorbed or metabolized by whole tomato fruit. Rapid ingress of gaseous 1-MCP was also observed in tomato fruit exposed to aqueous 1-MCP. Both accumulation and post-exposure decline in internal gaseous [1-MCP] are likely to vary among different fruit and vegetables in accordance with inherent sorption-capacity, surface properties (e.g., waxes, stoma), volume and continuity of gas-filled intercellular spaces, and tissue hydration.  相似文献   

11.
Four cultivars of tomato fruit (‘Cherry’, ‘Daniela’, ‘Patrona’ and ‘Raf’) were harvested at two ripening stages (S1 and S2), treated with 0.5 μl l−1 of 1-methylcyclopropene (1-MCP) for 24 h and stored at 10 °C for 28 days. For all cultivars, control fruit deteriorated very rapidly (due to weight loss, softening, colour changes and decay) with an estimated shelf life of 7 days (‘Cherry’ and ‘Patrona’) and 14 days (‘Daniela’ and ‘Raf’), independently of the ripening stage at harvest. All quality parameters for all cultivars were delayed and/or inhibited in treated fruit, the efficacy of 1-MCP being higher in tomatoes harvested at the S2 ripening stage. At this stage, the organoleptic properties had already developed in fruit on the plant and tomatoes could thus reach consumers with optimal postharvest quality.  相似文献   

12.
The effects of 1-methylcyclopropene (1-MCP) on ripening, superficial scald and concentrations of α-farnesene, conjugated trienols (CTols) and antioxidant enzyme activity of ‘KS6’ Asian pear (Pyrus serotina Rehd.) were studied. 1-MCP treated (2 μL L?1) or untreated control fruit were stored at 1 °C and 90–95% RH for up to 120 days. 1-MCP treated fruit were firmer than untreated fruit. Application of 1-MCP delayed skin color change. Scald appeared after shorter storage duration and was reduced, but not entirely controlled, with 1-MCP. Accumulation of α-farnesene and oxidation were slower in skin of 1-MCP treated fruit compared with controls. Catalase and peroxidase activities in untreated fruit either increased while activities decreased in 1-MCP treated fruit. Superoxide dismutase activity remained stable. The treatment of Asian pears with 1-MCP followed by cold storage maintained textural characteristics with less scald incidence.  相似文献   

13.
The aim of this work was to study the specific effects of low temperature and 1-MCP treatment on ethylene metabolism and oxidative behaviour in plums (Prunus × salicina cv. Larry Ann). Control fruit were stored at 20 °C or 0 °C and the 1-MCP (625 nL L?1) treated fruit at 0 °C. Changes in the kinetics of ethylene production upon removal were related to changes in ACC metabolism (ACC and MACC levels), oxidative behaviour (H2O2 content) and enzymatic antioxidant potential (SOD, CAT and POX enzymes) during cold storage. Low temperature stress inhibited the synthesis of MACC, which appeared to be the basic process that regulated ACC and ethylene production at ambient temperature. Although 1-MCP treatment inhibited ethylene production and ACC accumulation in the cold, it did not inhibit the accumulation of MACC. Neither cold nor 1-MCP treatment induced oxidative stress. Nevertheless, the 1-MCP treatment significantly impaired the increase in POX activity observed during cold storage. Collectively these results showed the underlying role that ACC metabolism plays in the ripening behaviour of cold-stored plums, confirming previous results. The results also indicate that MACC and malonyl transferase activity are the key regulatory factors that control ripening and possibly some ethylene-related disorders such as chilling injury in cold-stored plums.  相似文献   

14.
‘Raf’ tomato fruit were harvested at the mature-green stage and treated with 1-methylcyclopropene (1-MCP) at 0.5 (for 3, 6, 12 or 24 h) or 1 μl l−1 for 3 or 6 h. Fruit were stored at 10 °C for 7 days and a further 4 days at 20 °C for a shelf life period. All 1-MCP treatments reduced both ethylene production and respiration rate and in turn retarded the changes in parameters related to fruit ripening, such as fruit softening, colour (a*) change, and increase in ripening index (TSS/TA ratio). These effects were significantly higher when 1-MCP was applied at 0.5 μl l−1 for 24 h. In order to obtain the maximum benefit from 1-MCP, this treatment would be the most suitable for commercial purposes.  相似文献   

15.
Ethylene action can be counteracted by 1-methylcyclopropene (1-MCP), which has been used during postharvest storage to maintain quality. In this work, we evaluated the effect of 1-MCP treatments on eggplant quality and phenolic metabolism during refrigerated storage. Eggplants (cv. Lucía) were harvested at commercial maturity, treated with 1-MCP (1 μL/L, 12 h at 20 °C), stored at 10 °C for 21 d and subsequently held at 20 °C for 2 d. Corresponding controls were stored at 10 °C and then transferred to 20 °C for 2 d. During storage calyx color, damage and chlorophyll content, fruit weight loss and firmness, pulp sugar content, acidity, browning and total phenolics were measured. In addition, polyphenol oxidase (PPO), pyrogallol peroxidase (POD), and phenylalanine ammonia-lyase (PAL) activities were evaluated. Fruit calyxes showed reduced damage and remained greener in 1-MCP treated than in control fruit. 1-MCP treated eggplants showed lower weight loss. Pulp browning was clearly prevented as a consequence of 1-MCP exposure, and this was associated with delayed senescence, lower accumulation of total phenolics and reduced activity of PAL. The activity of the enzymes PPO and POD involved in the oxidation of phenolics compounds was also decreased in 1-MCP treated fruit. Results suggest that 1-MCP treatments delay senescence, prevent browning and are beneficial to complement low temperature storage and maintain quality of non-climacteric eggplant fruit.  相似文献   

16.
Guava (Psidium guajava L. cv. ‘Allahabad Safeda’) fruit harvested at the mature light-green stage were exposed to 300 and 600 nL L−1 1-methylcyclopropene (1-MCP) for 6, 12 and 24 h at 20 ± 1 °C, and held in either cold storage (10 °C) for 25 days or ambient conditions (25–29 °C) for 9 days. Most of the physiological and biochemical changes during storage and ripening were affected by 1-MCP in a dose dependent manner. Ethylene production and respiratory rates were significantly suppressed during storage as well as ripening under both the storage conditions depending upon 1-MCP concentration and exposure duration. 1-MCP treatment had a pronounced effect on fruit firmness changes during storage under both the conditions. The reduced changes in the soluble solids contents (SSC), titratable acidity (TA) and vitamin C content showed the effectiveness of 1-MCP in retarding fruit ripening. Vitamin C content in 1-MCP-treated fruit was significantly higher than in non-treated fruit, and those treated with 300 nL L−1 1-MCP for 6 h. The development of chilling injury symptoms was ameliorated to a greater extent in 1-MCP-treated fruit during cold storage and ripening. A significant reduction in the decay incidence of 1-MCP-treated fruit was observed under both the storage conditions. 1-MCP at 600 nL L−1 for 12 h, in combination with cold storage (10 °C) seems a promising way to extend the storage life of guava cv. ‘Allahabad Safeda’ while 1-MCP at 300 nL L−1 for 12 and 24 h or 600 nL L−1 for 6 h, may be used to provide 4–5 days extended marketability of fruit under ambient conditions.  相似文献   

17.
The role of putrescine (PUT) in regulating fruit softening, antioxidative enzymes and biochemical changes in fruit quality was investigated during ripening and cold storage of mango (Mangifera indica cv. Samar Bahisht Chaunsa). Fruit were treated with various PUT concentrations (0.0, 0.1, 1.0 and 2.0 mM) and were allowed to ripen at 32 ± 2 °C for 7 days, or stored at 11 ± 1 °C for up to 28 days. Respiration rate and ethylene production were measured daily during ripening and cold storage. Cell wall degrading enzymes such as exo-polygalacturonase (exo-PG), endo-polygalacturonase (endo-PG), pectin esterase (PE), endo-1,4-β-d-glucanase (EGase), antioxidative enzymes including superoxide dismutase (SOD), peroxidase (POX), and catalase (CAT), fruit firmness as well as biochemical fruit quality characteristics were estimated during ripening and cold storage at 2 and 7 day intervals, respectively. PUT treatments reduced respiration rate, ethylene production and maintained higher fruit firmness during ripening as well as cold storage. PUT-treated fruit exhibited significantly suppressed activities of cell wall enzymes (exo-, endo-PG and EGase), but retained higher PE activity during ripening and cold storage. Total phenolic and antioxidant contents were significantly higher in PUT-treated fruit during ripening as well in the cold storage period than in the controls. Activities of antioxidative enzymes (CAT, POX and SOD) were also significantly higher in PUT-treated fruit during ripening as well as cold storage. SSC and SSC:TA were lower in PUT-treated fruit, while TA and ascorbic acid content showed the reverse trend. In conclusion, pre-storage 2.0 mM PUT treatment inhibited ethylene production and suppressed the activities of cell wall enzymes, while resulting in higher activities of antioxidative enzymes and maintaining better fruit quality during ripening and cold storage.  相似文献   

18.
19.
Tomatoes (Lycopersicon esculentum Mill., cv. Rapsodie) were harvested at the mature green stage and treated with 250 nl l−1 1-methylcyclopropene (1-MCP) for 24 h at 20 °C. The fruit were then stored for 24 days at 15, 20 or 25 °C at 90–95% relative humidity. Sampling was carried out at 0, 6, 12, 18 and 24 days after treatment. Treatment with 1-MCP delayed ripening as measured by changes in lycopene, chlorophyll, hue angle, polygalacturonase (PG) activity and tissue firmness. Ripening was delayed by 6 days at 25 °C, by 12 days at 20 °C, and by 18 days at 15 °C in 1-MCP-treated fruit. In general, 1-MCP only delayed the onset of ripening-related changes and did not significantly alter final values for measures of firmness, color (hue angle), PG activity, and lycopene and chlorophyll contents at a particular storage temperature. The results suggest that 1-MCP is most effective at delaying ripening of mature-green tomatoes when they are stored near the currently recommended temperature range of 12.5–15 °C.  相似文献   

20.
The potential of 1-MCP for controlling ripening in ‘Angeleno’ plum fruit under air and controlled atmosphere (CA) storage was explored, and the possibility that 1-MCP can inhibit development of brown rot caused by Monilinia laxa and internal breakdown in ‘Fortune’ and ‘Angeleno’ plums tested. After harvest, fruit were exposed to 300 and 500 nl l−1 (in 2003) and 500 nl l−1 1-MCP (in 2004) at low temperatures (0–3 °C) for 24 h. After treatment the plums were stored in air at 0 °C and ‘Angeleno’ fruit were also stored in CA storage (1.8% O2 + 2.5% CO2). Following storage, fruit were kept at 20 °C. In ‘Angeleno’ fruit, 1-MCP was effective in delaying the loss of firmness and colour changes during holding at 20 °C. 1-MCP reduced brown rot in fruit stored in CA but no significant reduction was found in air storage. Internal breakdown, a major physiological storage disorder in plums, was inhibited by 1-MCP treatment. Furthermore, since 1-MCP applied in air storage showed better results than the control in CA conditions, an application of 1-MCP before air storage could be the best way to reduce the ripening process for short or medium storage periods (40 and 60 days). CA storage plus 1-MCP treatment could be used for long periods (80 days).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号