首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Induced disease resistance against plant pathogens is a promising non-fungicidal decay control strategy. In this study, a potential biocontrol yeast, Rhodosporidium paludigenum, was investigated for its induction of disease resistance against Penicillium digitatum in citrus fruit. The results showed that R. paludigenum is the most effective yeast among three selected yeasts in stimulating the resistance of citrus fruit to green mold. When R. paludigenum was applied 48–72 h before inoculation with P. digitatum, disease incidence and disease severity in citrus fruit significantly decreased. Application of R. paludigenum at concentrations of 1 × 108 and 1 × 109 cells mL−1 respectively resulted in 49.6% and 52.5% reductions in the percentage of infections. Induction of resistance to P. digitatum by R. paludigenum treatment significantly enhanced the activities of defense-related enzymes, including β-1,3-glucanase, phenylalanine ammonia-lyase, peroxidase, and polyphenoloxidase, which may be an important mechanism by which the biocontrol yeast reduces the fungal disease of citrus fruit caused by P. digitatum.  相似文献   

2.
The objective of this study was to evaluate the preventive activity of methyl jasmonate (MeJA) alone and in combination with antagonistic yeast in suppressing green mold decay in citrus fruit, and to explore the mechanisms involved. At 100 μmol/L, MeJA inhibited disease incidence and lesion diameter of mold decay compared with the control (P < 0.05) The preventive application of Cryptococcus laurentii at 1 × 108 cells/mL combined with 100 μmol/L MeJA reduced green mold incidence compared to the control and the other treatment groups (P < 0.05) when tested in wounded citrus fruit inoculated with Penicillium digitatum. MeJA and C. laurentii induced higher activity of polyphenol oxidase, peroxidase and catalase than control. Moreover, treatment with MeJA and C. laurentii induced a rise in the mRNA expression level of PR5 (pathogenesis-related protein family 5), which was stronger than in the single-treatment groups and the control. In addition, 100 μmol/L MeJA improved the rapid proliferation of C. laurentii in citrus fruit wounds. This combined treatment can induce natural resistance and stimulate the proliferation of antagonistic yeast on the fruit surface.  相似文献   

3.
The importance of reactive oxygen species (ROS) in plant defense responses against certain pathogens is well documented. There is some evidence that microbial biocontrol agents also induce a transient production of ROS in a host plant which triggers local and systemic defense responses to pathogens. The ability of biocontrol agents used to control postharvest diseases to induce defense-related oxidative responses in fruits, however, has not been explored. Here we show that the yeast antagonists, Metschnikowia fructicola (strain 277) and Candida oleophila (strain 182) generate greater levels of super oxide anion (O2) on intact fruit surfaces (poor in nutrients) then those applied on a nutrient-poor agar medium. Even though yeast antagonists show a high level of O2 on nutrient-rich media, when applied on fruits around wounds (areas abundant in nutrients) accumulation of O2, as detected by nitro blue tetrazolium staining, occurred much more rapidly on the latter. Using laser scanning confocal microscopy we observed that the application of M. fructicola and C. oleophila into citrus and apple fruit wounds correlated with an increase in H2O2 accumulation in host tissue. In citrus fruit, the level of H2O2 around inoculated wounds increased by 4-fold compared to controls (wounds inoculated with water) as early as 18 h after inoculation. Yeast continued to stimulate H2O2 production in citrus fruit up to 66 h after inoculation and H2O2 levels were still 3-fold above the control. Living yeast cells were detected in fruit wounds at this time point indicating the ability of M. fructicola to tolerate host ROS, which has been reported to be an intrinsic characteristic of efficient yeast antagonists. Similar increase in H2O2 accumulation around yeast-inoculated wounds was observed in apple fruit exocarp. The present data, together with our earlier discovery of the importance of H2O2 production in the defense response of citrus flavedo to postharvest pathogens, indicate that the yeast-induced oxidative response in fruit exocarp may be associated with the ability of specific yeast species to serve as biocontrol agents for the management of postharvest diseases.  相似文献   

4.
The antifungal activities of cinnamon extract (CE), piper extract (PE) and garlic extract (GE) were evaluated on banana crown rot fungi (Colletotrichum musae, Fusarium spp. and Lasiodiplodia theobromae) in vitro. The assay was conducted with extracts of CE, PE and GE with concentrations of 0, 0.1, 0.5, 1.0, 5.0, 10.0 and 0.75 g L−1 of carbendazim (CBZ) on potato dextrose agar at room temperature. CE completely inhibited conidial germination and mycelial growth of all fungi at 5.0 g L−1. PE totally suppressed mycelial growth of all fungi at 5.0 g L−1 and conidial germination at 10.0 g L−1 except for Fusarium spp. GE had no significant effects but low concentrations (0.1 and 0.5 g L−1) enhanced germ tube elongation of the three fungi. The ED50 values were higher for mycelial growth than for conidia except for Fusarium spp. Combined treatments were investigated on crown rot development in banana fruit (Musa AAA group ‘Kluai Hom thong’). Treatments included 5.0 g L−1 CE, 1% (w/v) chitosan solution, hot water treatment (HWT, 45 °C for 20 min), CE plus chitosan, CE plus HWT and 0.75 g L−1 of CBZ, applied before and after inoculation of the fruit. Crown rot development was assessed during storage at 13 °C for 7 weeks. Disease development was least (25%) on CE treated fruit after inoculation compared to CBZ but was higher when CE was applied before inoculation. Chitosan significantly delayed ripening as in terms of peel color, firmness, soluble solids and disease severity. CE showed no negative effects on quality of fruit. CE plus HWT caused unacceptable peel browning.  相似文献   

5.
A strain of Bacillus amyloliquefaciens HF-01, isolated from citrus fruit surfaces, was screened for in vitro antagonism toward Penicillium digitatum and identified, based on Biolog identification and phylogenetic analysis of 16S rDNA sequences. The isolate was further evaluated alone, or in combination with tea saponin (TS) on artificially inoculated ‘Wuzishatangju’ mandarin fruit. The results showed that the isolate performed significantly better than the water control in reducing the incidence of green and blue mold and sour rot, but was not as effective as the fungicide treatment. Biocontrol activity of B. amyloliquefaciens HF-01 was significantly improved by addition of TS, which might influence the formation of a bacterial biofilm and stimulate the antagonist population in wounds. The treatment comprising HF-01 combined with 50 μg mL?1 TS was as effective as the fungicide treatment, which gave more than 90% control of green and blue mold and sour rot. B. amyloliquefaciens HF-01 alone or in combination with a low dosage of TS significantly reduced postharvest decay without impairing any of the other fruit quality parameters. The combination of B. amyloliquefaciens HF-01 and TS could be an alternative to synthetic fungicides for the control of citrus postharvest diseases.  相似文献   

6.
The effect of commercial degreening with ethylene gas on fruit susceptibility and quality and development of postharvest green (GM) and blue (BM) molds on early season citrus fruit was investigated. Each cultivar was harvested with different peel color indexes (CI). Fruit were exposed for 3 d to 2 μL L−1 ethylene at 21 °C and 95–100% RH before or after artificial inoculation with Penicillium digitatum or Penicillium italicum. Control fruit were kept at the same environmental conditions without ethylene. Fruit were stored at either 20 °C for 7 d or 5 °C for 14 d and disease incidence (%) and severity (lesion diameter) were assessed. No significant effect of commercial degreening was observed on fruit susceptibility to both GM and BM on citrus cultivars inoculated after degreening. Likewise, no significant effect was observed on disease incidence on citrus cultivars inoculated before degreening and stored at either 20 °C for 7 d or 5 °C for 14 d. In contrast, in cultivars like ‘Clemenules’ mandarins and ‘Navelina’ oranges, degreening significantly increased the severity on fruit with higher initial CI (−3.6 and 1.7, respectively). GM and BM severity on degreened and control ‘Clemenules’ mandarins incubated at 20 °C for 7 d was 146 and 118 mm and 56 and 46 mm, respectively. In general, commercial degreening did not significantly affect external and internal quality attributes of citrus cultivars. Commercial degreening after inoculation of less green (more mature) fruit showed a trend to increase mold severity, presumably through an aging effect (acceleration of peel senescence).  相似文献   

7.
The effect of blue light exposure on Penicillium digitatum infection of tangerines during postharvest storage was investigated. In citrus, P. digitatum is one of the most important fungi causing diseases that result in postharvest loss. There is increasing interest in development of environmentally sustainable and consumer-friendly strategies of decay control. Strategies based on a plant's immunity can minimize pathogen infection of fruit. Light signalling affects plant-pathogen interactions and blue light may modulate phospholipase activation, a key step in plant immune responses. Exposure of fruit to 410-540 nm blue light at a fluency of 40 μmol m−2 s−1 reduced infection by P. digitatum and induced phospholipase A2 (PLA2) gene expression. Inhibition of PLA2 activity allowed infection, whereas inhibition of phospholipase D (PLD) expression by 580-670 nm red light at the same fluency was correlated with infection. These data strongly suggest that induction of lipid signalling by light reduces fungal colonization by P. digitatum in citrus fruit.  相似文献   

8.
An antagonistic isolate Bacillus amyloliquefaciens HF-01, sodium bicarbonate (SBC) and hot water treatment (HW) were investigated individually and in combination against green and blue mold and sour rot caused by Penicillium digitatum, P. italicum and Geotrichum citri-aurantii respectively, in mandarin fruit. Populations of antagonists were stable in the presence of 1% or 2% SBC treatment, and spore germination of pathogens in potato dextrose broth was greatly controlled by the hot water treatment of 45 °C for 2 min. Individual application of sodium bicarbonate at low rates and hot water treatment, although reducing disease incidence after 8 weeks or 4 weeks of storage at 6 °C or 25 °C respectively, was not as effective as the fungicide treatment. The treatment comprising B. amyloliquefaciens combined with 2% SBC or/and HW (45 °C for 2 min) was as effective as the fungicide treatment and reduced decay to less than 80% compared to the control. B. amyloliquefaciens HF-01 alone or in combination with 2% SBC or/and HW significantly reduced postharvest decay without impairing fruit quality after storage at 25 °C for 4 weeks or at 6 °C for 8 weeks. These results suggest that the combination of B. amyloliquefaciens HF-01, SBC and HW could be a promising method for the control of postharvest decay on citrus while maintaining fruit quality after harvest.  相似文献   

9.
10.
Imazalil (IMZ) is commonly applied in South African citrus packhouses for the control of green mould, caused by Penicillium digitatum, yet the disease still causes significant postharvest losses. The maximum residue limit (MRL) for IMZ on citrus fruit is 5 μg g−1, whereas 2-3 μg g−1 is a biologically effective residue level that should at least inhibit green mould sporulation. Standard compliance auditing of residue levels of citrus fruit, however, indicate that fruit from the majority of packhouses have residues of ≈1 μg g−1. Poor disease control from insufficient residue loading might further be compounded by the presence of IMZ-resistant isolates of P. digitatum in packhouses. This study was conducted to assess the current status of IMZ application in South African packhouses, to determine the adequate residue levels needed to control green mould and inhibit its sporulation using both IMZ sensitive and resistant isolates, to investigate IMZ application methods and resultant residue levels in commercial citrus packhouses, and to study optimisation of modes of IMZ application in citrus packhouses. Factors studied were IMZ concentration, application type (spray vs. dip and drench), exposure time, solution temperature and pH, as well as curative and protective control of P. digitatum. The packhouse survey showed that the majority of packhouses applied IMZ in a sulphate salt formulation through a fungicide dip tank, and loaded an IMZ residue of ≈1 μg g−1. In dip applications, IMZ had excellent curative and protective activity against Penicillium isolates sensitive to IMZ. However, curative control of IMZ resistant isolates was substantially reduced and protective control was lost, even at twice the recommended concentration, nor was sporulation inhibited. The use of sodium bicarbonate (2%) buffered imazalil sulphate solutions at pH ±8, compared with pH ±3 of the unbuffered solutions, markedly increased IMZ residue loading on Navel and Valencia oranges and improved curative and protective control of IMZ resistant isolates. Exposure time did not affect IMZ residue loading in IMZ sulphate solutions at pH 3, although the MRL was exceeded after 45 s exposure in pH 8 solutions. Imazalil applied through spray or drench application improved residue loading, but green mould control was less effective than after dip application.  相似文献   

11.
Early detection of fungal infections in citrus fruit still remains one of the major problems in postharvest technology. The potential of laser-light backscattering imaging was evaluated for detecting decay in citrus fruit after infection with the pathogen Penicillium digitatum, before the appearance of fruiting structures (green mould). Backscattering images of oranges cv. Navelate with and without decay were obtained using diode lasers emitting at five different wavelengths in the visible and near infrared range for addressing the absorption of fruit carotenoids, chlorophylls and water/carbohydrates. The apparent region of backscattered photons captured by a camera had radial symmetry with respect to the incident point of the light, being reduced to a one-dimensional profile after radial averaging. The Gaussian–Lorentzian cross product (GL) distribution function with five independent parameters described radial profiles accurately with average R2 values higher or equal to 0.998, pointing to differences in the parameters at the five wavelengths between sound and decaying oranges. The GL parameters at each wavelength were used as input vectors for classifying samples into sound and decaying oranges using a supervised classifier based on linear discriminant analysis. Ranking and combination of the laser wavelengths in terms of their contribution to the detection of decay resulted in the minimum detection average success rate of 80.4%, which was obtained using laser light at 532 nm that addresses differences in scattering properties of the infected tissue and carotenoid contents. However, the best results were achieved using the five laser wavelengths, increasing the classifier average success rate up to 96.1%. The results highlight the potential of laser-light backscattering imaging for advanced citrus grading.  相似文献   

12.
Ethylene is related to senescence but also induces protective mechanisms against stress in plants. The citrus industry only applies the hormone to induce fruit degreening. The aim of this work was to determine the effect of ethylene on the quality of colored citrus fruit stored under commercial conditions to extend postharvest life, since it protects them from stress causing postharvest disorders such as chilling injury (CI) and non-chilling peel pitting (NCPP). The effect of conditioning mature Navelate and Lane Late sweet oranges (Citrus sinensis L. Osbeck) for 4 days with 2 μL L−1 ethylene at 12 °C, rather than at higher temperatures used for degreening, on the quality of fruit stored at 2 or 12 °C, was examined. The ethylene conditioning (EC) treatment did not increase color but reduced calyx abscission and NCPP in fruit of both cultivars stored at 12 °C, and also CI in Navelate fruit at 2 °C. Lane Late fruit did not develop CI but showed a new disorder in EC fruit held at 2 °C. This disorder began as scalded areas around the fruit stem end and extended over the fruit surface during storage. EC had no deleterious effect on the quality of Navelate oranges stored at either 2 or 12 °C. Similar results were found in Lane Late fruit although EC slightly increased off-flavor perception at 2 °C and the maturity index at 2 and 12 °C. Moreover, EC slightly increased the content of bioactive flavonoids in the pulp of Navelate fruit but significant differences between control and EC fruit were only found after prolonged storage at 2 °C. In Lane Late fruit, EC avoided the initial decrease in flavonoid content found in control samples. Results show, therefore, that EC at 12 °C may be a tool to extend postharvest life of NCPP and CI-sensitive oranges, and that the tolerance of citrus cultivars to the combined effect of EC and non-freezing low temperature (2 °C) should be tested to select the proper storage temperature.  相似文献   

13.
A new approach to the control of postharvest pathogens, while maintaining fruit quality, has been implemented by the application of essential oil amended coatings to citrus. This approach eliminates the need for synthetic fungicides, thereby complying with consumer preferences, organic requirements and reducing environmental pollution. In vitro studies indicated that the essential oils and some of the terpenoid components tested were active against Penicillium digitatum. In a series of subsequent semi-commercial and commercial trials, Mentha spicata and Lippia scaberrima essential oils, as well as pure (d)-limonene and R-(−)-carvone were incorporated into a variety of commercial citrus coatings. These amended coatings were applied postharvest to ‘Tomango’ oranges in the absence of the standard fungicide dip. Excellent disease control was achieved with the amended coatings, while measured quality parameters indicated that overall fruit quality was maintained. Moreover, moisture loss was decreased significantly in fruit treated with essential oil enriched coatings. The efficacy of amended coatings as a viable alternative or supplement to existing fruit protection strategies was demonstrated in a commercial trial.  相似文献   

14.
This study determined the minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) of water and ethanol Satureja hortensis (SH) extract, as well as the antimicrobial activity of pullulan films with an addition of the extracts against test strains. The pullulan coating with an addition of water SH extract was also applied pepper and apple fruit. The concentration of bioactive compounds in the extracts was assessed using HPLC. The analysis included the effect of pullulan coating with water SH extract on weight loss and color change in peppers during storage at 16 °C/14 days, and 16 °C/28 days, and apples at 16 °C/14 days, and 2 °C/28 days. A microscopic image of the coating on materials was evaluated and sensory analysis performed. Polyphenolic compounds from phenolic acid and flavone families were identified in the extracts, and higher levels of phenolic compounds (p < 0.05) were found in the water extract. The activity of pullulan films with SH extracts increased significantly (p < 0.05) with the increase in SH extract concentration (5%, 10% and 20%). Pullulan films with water SH extract inhibited the growth of Gram-positive and Gram-negative bacteria and Penicillium expansum more strongly than was the case with those films with an ethanol SH extract. Moreover, coating application resulted in a decrease in weight loss and an extension of storage time, and also protected the material against excessive wilting and wrinkling on the surface, maintaining freshness and consumer appeal.  相似文献   

15.
The use of plant extracts could be a useful alternative to synthetic fungicides in the management of rot fungi during postharvest handling of fruit and vegetables. The aim of this study was to assess the in vitro and in vivo activity of extracts obtained from nine wild edible herbaceous species (Borago officinalis, Orobanche crenata, Plantago coronopus, P. lanceolata, Sanguisorba minor, Silene vulgaris, Sonchus asper, Sonchus oleraceus, and Taraxacum officinale) against some important postharvest pathogens, i.e. Botrytis cinerea, Monilinia laxa, Penicillium digitatum, P. expansum, P. italicum, Aspergillus carbonarius, and A. niger. Phenolic composition of all extracts was evaluated by HPLC. Several derivatives of caffeic acid, of the flavones apigenin and luteolin, and of the flavonols kaempferol and quercetin, were identified. Extracts from S. minor and O. crenata showed the highest efficacy in all the trials. In particular, S. minor completely inhibited in vitro the conidial germination of M. laxa, P. digitatum, P. italicum, and A. niger and strongly reduced those of B. cinerea; O. crenata extract showed a lower but still significant reduction of conidial germination on all the tested fungi. Moreover, the extracts from both species were effective in reducing the germ tube elongation also when a slight inhibition of conidial germination was observed. In many cases, a dose effect was observed, with an increase of antifungal activity as the phenolic concentration increased. In trials performed on wounded fruit, S. minor extract completely inhibited brown rot on apricots and nectarines; O. crenata extract strongly reduced grey mould, brown rot, and green mould on table grapes, apricots and nectarines, and oranges, respectively. The inhibition efficacy of extracts was ascribed to the presence of some caffeic acid derivatives and/or flavonoids. HPLC phenolic analyses provided useful information to identify the possible active compounds.  相似文献   

16.
Potassium sorbate (PS) is a well-known and widely used food preservative. Among other applications, it is used as a GRAS fungistatic postharvest treatment for citrus, although its use is not free of significant adverse effects. In this paper, we study in detail the efficacy of wax containing increasing concentrations of PS to control Penicillium digitatum decay in citrus fruit, and its effect on fruit weight loss. Decay control and weight loss increased with the concentration of PS in the wax. Wax with typical amounts of 2–5% PS showed poor decay reduction indices (DRI), between 26% and 32%, whereas fruit weight loss increased compared with non-waxed controls. Waxing of fruit reduced weight loss by up to 40%, depending on wax formulation, but the addition of just 2% PS to the wax caused an increase in fruit weight loss of up to 65% compared with the waxed fruit. Similar results were observed for all the types of wax formulations tested. The hygroscopic effects of PS are even more damaging for citrus fruit with leaves. The leaves lose weight very rapidly when PS is added to the wax and they become desiccated in 24 h.We also present the results of a similar study where PS was applied to citrus as an aqueous treatment. When applied in water, PS was far more effective for decay control than when applied in wax, but there was also a considerable increase in fruit weight loss. A treatment combining aqueous PS with Fortisol® Ca Plus biostimulant completely solved the problem of weight loss, these mixtures being commercially feasible treatments.  相似文献   

17.
The aim of this study was to investigate the ability of two salts, sodium carbonate and bicarbonate, to activate defence mechanisms in citrus fruit against postharvest green mould caused by Penicillium digitatum. In particular, once there was confirmed salt antifungal activity in the absence of direct contact with the pathogen, changes in enzyme activity and expression levels of chitinase, β-1,3-glucanase, peroxidase and phenylalanine ammonia lyase (PAL), and phytoalexin (scoparone, scopoletin, umbelliferone) and sugar (glucose, fructose, sucrose) contents in treated oranges were analyzed. Overall, sodium carbonate and bicarbonate increases the activity of β-1,3-glucanase, peroxidase, and PAL enzymes in orange tissues. Gene expression analyses confirmed PAL up-regulation particularly 12 h after treatment application. HPLC analyses of peel extracts showed increased amounts of the sugars and phytoalexins, compared to control tissues, with sucrose and scoparone being the most represented. The results suggest that, although salts exert a direct antifungal effect on P. digitatum, they are also able to induce citrus fruit defence mechanisms to postharvest decay. The defence response seems correlated with the up-regulation of the phenylpropanoid pathway, which has a role in the adaptation to various stresses. This response could result in natural reaction to wounding and pathogen attack in citrus, enhancing its protective effect. As a consequence, the fruit might have a better chance of successful defence against the decay.  相似文献   

18.
Physical and chemical changes in sapote mamey (Pouteria sapota (Jacq.) H.E. Moore and Stearn) fruit during ripening and storage at various temperatures were evaluated. Ripening was associated with flesh softening, an increase in soluble solids content (SSC), and a change in flesh color from yellow or pale pink to a dark pink or red. No changes in fruit skin color or in flesh acidity were observed as ripening progressed. Ripe fruit had 30% or higher SSC, orange or red flesh (hue angle=52; chroma=45; L=60), acidity of 6–8 mM H+, and flesh firmness (compression force) ≤50 N. Flesh turned brown (L* value declined) in overripe fruit. Fruit held at 27, 25, or 20°C ripened in 3.5, 5 or 7 days after harvest, respectively. Fruit kept at 10°C showed minor changes in color and firmness and a slow rate of SSC increase. Fruit stored at 10 or 15°C and then ripened at 20°C had portions of the flesh with a much higher firmness and poorer development of red color compared to other parts of the fruit. This uneven ripening was probably a result of chilling injury. The number of fruit with injury was higher at 10°C than at 15°C, and increased with storage time. The rates of fruit weight loss relative to the initial fruit weight were 0.58, 0.98 and 1.83% d−1 at 10, 20 and 27°C, respectively.  相似文献   

19.
《Agricultural Wastes》1985,12(3):225-233
Chlorella pyrenoidosa and Scenedesmus quadricauda were cultivated in aqueous extracts of refuse compost and soy-bean wastes, with Bristol medium as a control medium. The compost extract had a lower inorganic nutrient content (total nitrogen, PO4−3, K+) and a higher heavy metal concentration (Cu, Zn, Pb and Mn) than the soy-bean extract. C. pyrenoidosa had excellent growth in 2% soy-bean extract and 1% compost extract whereas S. quadricauda required 4% soy-bean extract and 2% compost extract. Compared with the Bristol medium, the waste materials produced, in general, higher total growth and rates of growth with both algae, especially the soy-bean waste.The contents of chlorophyll, protein, carbohydrate, phosphate and heavy metals in the algal products were determined. Because of the higher algal yield and protein content, and lower level of heavy metals in the algae harvested from the soy-bean extracts, it is recommended that this waste be used for producing feed-grade protein.  相似文献   

20.
为了探讨野生茄托鲁巴姆(Solanum torvum)叶片提取物(粗提物)用于防治园艺作物病害的可能性,分别采用生长速率法和悬滴法,研究托鲁巴姆叶片提取物对8种园艺作物病原真菌菌丝生长和孢子萌发的室内抑菌活性。结果表明,野生茄托鲁巴姆叶片提取物对供试病原真菌菌丝生长和孢子萌发(大葱菌核病菌未测孢子萌发)均有一定的抑制作用。随着提取物浓度的提高,抑菌作用增强。当供试质量浓度为5 g/L时,提取物对各供试菌种菌丝生长和孢子萌发均表现出一定的抑制作用(抑制率均高于8.8%);当供试质量浓度为40 g/L时,提取物对各供试菌种菌丝生长和孢子萌发抑制率均高于60%。同一浓度提取物对不同病原真菌的抑制作用强度差异较大。毒力分析表明,提取物对大葱菌核病菌和茄子黄萎病菌菌丝生长的EC50均低于10 g/L,分别为5.7577和7.6089 g/L。总体看,提取物对茄子黄萎病菌和辣椒炭疽病菌菌丝生长和孢子萌发的抑制作用均较强,对大葱菌核病菌菌丝生长的抑制效果尤为突出。托鲁巴姆叶片提取物对几种园艺作物病原真菌具有较好的抑制效果,具有作为植物源杀菌剂进一步研究和开发的价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号