首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 309 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The effect of exogenous oxalic acid treatment on ripening attributes of banana fruit during storage was investigated. Banana fruit were dipped into solutions of 0 (control) or 20 mM oxalic acid for 10 min and then stored at room temperature (23 ± 2 °C) and 75–90% relative humidity. The application of oxalic acid reduced fruit deterioration during storage. The oxalic acid treatment also reduced the rates of respiration and ethylene production, and delayed the decreases in firmness, hue angle, and maximal chlorophyll fluorescence (Fv/Fm) of banana fruit during storage. Furthermore, fruit treated with oxalic acid exhibited higher superoxide dismutase activity and antioxidant capability with a lower production of reactive oxygen species at the late storage period compared with non-oxalic acid-treated fruit. Overall, the oxalic acid treatment was effective in inhibiting postharvest ripening of banana fruit and exhibited the potential for commercial application to store the bananas at room temperature. It can be concluded that the delay in banana fruit ripening associated with oxalic acid treatment could be due to inhibition of respiration and ethylene production rates, and reduction of oxidative injury caused by reactive oxygen species through increased antioxidant activity.  相似文献   

9.
Apricots are climacteric fruits with a high susceptibility to flesh softening and loss of flavor during postharvest storage, and most of the ripening processes are regulated by ethylene, which also has an effect on its own biosynthesis. To understand this process in apricot, inhibition of ethylene biosynthesis and perception was performed for studying key genes involved in the ethylene biosynthetic pathway. Apricots, cv. “Patterson”, were harvested with yellow-green ground color and immediately treated with either the ethylene perception inhibitor 1-methyl cyclopropene (1-MCP) at 10 μL L−1 or the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) at 1 g L−1. After treatment, quality and physiological attributes such as firmness, color, total soluble solids, acidity, fruit weight, ethylene production and respiration rates were evaluated every 2 d until they ripened at 20 °C. Gene expression analysis was performed by quantitative polymerase chain reaction (qPCR). Both ethylene inhibitors were effective in reducing ethylene production, respiration rate and fruit softening. Three 1-aminocyclopropane-1-carboxylic-acid synthase (ACS) genes were characterized, but only the expression of ACS2 was highly reduced by ethylene inhibition, suggesting a key role in ethylene synthesis at ripening. Contrarily, ACS1 and ACS3 showed a higher expression under ethylene inhibition suggesting that the corresponding genes are individually regulated in a specific mode as observed in other climacteric fruits. Finally, changes in 1-aminocyclopropane-1-carboxylic-acid oxidase genes did not show a consistent pattern of ethylene modulation.  相似文献   

10.
11.
Novel mutant alleles of an ethylene receptor Solanum lycopersicum ETHYLENE RESPONSE1 (SlETR1) gene, Sletr1-1 and Sletr1-2, were isolated from the Micro-Tom mutant library by TILLING in our previous study. They displayed different levels of impaired fruit ripening phenotype, suggesting that these alleles could be a valuable breeding material for improving shelf life of tomato fruit. To conduct practical use of the Sletr1 alleles in tomato breeding, genetic complementation analysis by transformation of genes carrying each allele is required. In this study, we generated and characterized transgenic lines over-expressing Sletr1-1 and Sletr1-2. All transgenic lines displayed ethylene insensitive phenotype and ripening inhibition, indicating that Sletr1-1 and Sletr1-2 associate with the ethylene insensitive phenotype. The level of ethylene sensitivity in the seedling was different between Sletr1-1 and Sletr1-2 transgenic lines, whereas no apparent difference was observed in fruit ripening phenotype. These results suggested that it is difficult to fine-tune the extent of ripening by transgenic approach even if the weaker allele (Sletr1-2) was used. Our present and previous studies indicate that the Micro-Tom mutant library combined with TILLING could be an efficient tool for exploring genetic variations of important agronomic traits in tomato breeding.  相似文献   

12.
Ethylene biosynthesis in kiwifruit, Actinidia chinensis ‘Sanuki Gold’ was characterized using propylene, an ethylene analog, and 1-methylcyclopropene (1-MCP), an inhibitor of ethylene perception. In fruit harvested between a young stage (66 days after pollination) (DAP) and an early commercial harvesting stage (143 DAP), 2 days of exposure to propylene were sufficient to initiate ethylene biosynthesis while in fruit harvested at commercial harvesting stage (154 DAP), 4 days of propylene treatment were required. This observation suggests that response of ethylene biosynthesis to propylene treatment in kiwifruit declined with fruit maturity. Propylene treatment resulted in up-regulated expression of AC-ACO1, AC-ACO2, AC-SAM1 and AC-SAM2, prior to the induction of AC-ACS1 and ethylene production, confirming that AC-ACS1 is the rate limiting step in ethylene biosynthesis in kiwifruit. Treatment of fruit with more than 5 μL L?1 of 1-MCP after the induction of ethylene production subsequently suppressed ethylene production and expression of ethylene biosynthesis genes. Treatment of fruit with 1-MCP at harvest followed with propylene treatment delayed the induction of ethylene production and AC-ACS1 expression for 5 days. These observations suggest that in ripening kiwifruit, ethylene biosynthesis is regulated by positive feedback mechanism and that 1-MCP treatment at harvest effectively delays ethylene production by 5 days.  相似文献   

13.
Mature green banana (Musa sapientum L. cv. Cavendish) fruit were stored in 0.5%, 2%, or 21% O2 for 7 days at 20 °C before ripening was initiated by ethylene. Residual effects of low O2 storage in mature green fruit on ripening and ester biosynthesis in fruit were investigated during ripening for up to 6 d at 20 °C. Concentrations of ethanol in mature green fruit did not change during storage in both 21% and 2% O2 atmospheres, but increased in fruit stored in 0.5% O2. The activities of alcohol dehydrogenase (ADH) in 2% and 21% O2 atmospheres remained very low throughout the storage period, but significantly increased with 0.5% O2. After transferring fruit to regular air and trigging ripening with ethylene, yellowing of peel, fruit softening and hydrolysis of starch in fruit stored in low O2 atmospheres were slower than in the control. Fruit stored in low O2 also showed a delayed onset of the climacteric peak. The activities of ADH were lower in the low O2 stored fruit than in the control fruit. Productions of ethyl acetate, isoamyl acetate, and isobutyl acetate were remarkably suppressed by low O2 storage. Alcohol acetyltransferase activity increased gradually with storage time in all treatments, being significantly lower in fruit with low O2 pretreatments. The results indicate that low O2 plus room temperature storage can extend storage life of bananas with the sacrifice of a low production of ester volatiles.  相似文献   

14.
This study aimed to investigate the application of microbubble technology for delaying banana ripening. A preparation of 1-MCP designed for use as a form of aqueous micro bubble (MBs) solutions was formulated. Banana fruit were immersed in 500 nL L−1 of aqueous 1-MCP microbubbles (1-MCP-MBs) or fumigated with 500 nL L−1 1-MCP, then stored at 25 °C for 8 days. 1-MCP-MBs were more effective in delaying postharvest ripening than conventional 1-MCP fumigation. 1-MCP-MBs reduced the respiration rate and ethylene production compared to the control and 1-MCP fumigated fruit. Moreover, 1-MCP-MBs delayed yellowing and maintained firmness of banana fruit during storage. These results indicate that 1-MCP-MBs can be used as an alternative method for delaying the postharvest ripening of banana fruit, and its application for other commodities needs to be further elucidated.  相似文献   

15.
The mode of action of nitric oxide (NO) in inhibiting ethylene biosynthesis and fruit softening during ripening and cool storage of mango fruit was investigated. Hard mature green mango (Mangifera indica L. cv. ‘Kensington Pride’) fruit were fumigated with 20 μL L−1 NO for 2 h at 21 °C and allowed to ripen at 21 ± 1 °C for 10 d, or stored at 13 ± 1 °C for 21 d. During ripening and cool storage, ethylene production and respiration rate from whole fruit were determined daily. The 1-aminocyclopropane-1-carboxylic acid (ACC) content, activities of ACC synthase (ACS), ACC oxidase (ACO), and fruit softening enzymes such as pectin esterase (PE), endo-1,4-β-d-glucanase (EGase), exo- and endo-polygalacturonase (exo-PG, endo-PG) as well as firmness and rheological properties of pulp were determined at two- and seven-day intervals during ripening and cool storage, respectively. NO fumigation inhibited ethylene biosynthesis and respiration rate, and maintained higher pulp firmness, springiness, cohesiveness, chewiness, adhesiveness, and stiffness. NO-fumigated fruit during cool storage and ripening had lower ACC contents through inhibiting the activities of both ACS and ACO in the fruit pulp. NO-fumigated fruit showed decreased activities of exo-PG, endo-PG, EGase, but maintained higher PE activity in pulp tissues during ripening and cool storage. In conclusion, NO fumigation inhibited ethylene biosynthesis through inhibition of ACS and ACO activities leading to reduced ACC content in the fruit pulp which consequently, reduced the activities of fruit softening enzymes during ripening and cool storage.  相似文献   

16.
A continuing challenge for commercializing 1-methylcyclopropene (1-MCP) to extend the storage life and control superficial scald of ‘d’Anjou’ pear (Pyrus communis L.) is how to initiate ripening in 1-MCP treated fruit. ‘D’Anjou’ pears harvested at commercial and late maturity were treated with 1-MCP at 0.15 μL L−1 and stored either at the commercial storage temperature −1.1 °C (1-MCP@−1.1 °C), or at 1.1 °C (1-MCP@1.1 °C) or 2.2 °C (1-MCP@2.2 °C) for 8 months. Control fruit stored at −1.1 °C ripened and developed significant scald within 7 d at 20 °C following 3–5 months of storage. While 1-MCP@−1.1 °C fruit did not develop ripening capacity due to extremely low internal ethylene concentration (IEC) and ethylene production rate for 8 months, 1-MCP@1.1 °C fruit produced significant amounts of IEC during storage and developed ripening capacity with relatively low levels of scald within 7 d at 20 °C following 6–8 months of storage. 1-MCP@2.2 °C fruit lost quality quickly during storage. Compared to the control, the expression of ethylene synthesis (PcACS1, PcACO1) and signal (PcETR1, PcETR2) genes was stable at extremely low levels in 1-MCP@−1.1 °C fruit. In contrast, they increased expression after 4 or 5 months of storage in 1-MCP@1.1 °C fruit. Other genes (PcCTR1, PcACS2, PcACS4 and PcACS5) remained at very low expression regardless of fruit capacity to ripen. A storage temperature of 1.1 °C can facilitate initiation of ripening capacity in 1-MCP treated ‘d’Anjou’ pears with relatively low scald incidence following 6–8 months storage through recovering the expression of certain ethylene synthesis and signal genes.  相似文献   

17.
18.
19.
20.
The role of putrescine (PUT) in regulating fruit softening, antioxidative enzymes and biochemical changes in fruit quality was investigated during ripening and cold storage of mango (Mangifera indica cv. Samar Bahisht Chaunsa). Fruit were treated with various PUT concentrations (0.0, 0.1, 1.0 and 2.0 mM) and were allowed to ripen at 32 ± 2 °C for 7 days, or stored at 11 ± 1 °C for up to 28 days. Respiration rate and ethylene production were measured daily during ripening and cold storage. Cell wall degrading enzymes such as exo-polygalacturonase (exo-PG), endo-polygalacturonase (endo-PG), pectin esterase (PE), endo-1,4-β-d-glucanase (EGase), antioxidative enzymes including superoxide dismutase (SOD), peroxidase (POX), and catalase (CAT), fruit firmness as well as biochemical fruit quality characteristics were estimated during ripening and cold storage at 2 and 7 day intervals, respectively. PUT treatments reduced respiration rate, ethylene production and maintained higher fruit firmness during ripening as well as cold storage. PUT-treated fruit exhibited significantly suppressed activities of cell wall enzymes (exo-, endo-PG and EGase), but retained higher PE activity during ripening and cold storage. Total phenolic and antioxidant contents were significantly higher in PUT-treated fruit during ripening as well in the cold storage period than in the controls. Activities of antioxidative enzymes (CAT, POX and SOD) were also significantly higher in PUT-treated fruit during ripening as well as cold storage. SSC and SSC:TA were lower in PUT-treated fruit, while TA and ascorbic acid content showed the reverse trend. In conclusion, pre-storage 2.0 mM PUT treatment inhibited ethylene production and suppressed the activities of cell wall enzymes, while resulting in higher activities of antioxidative enzymes and maintaining better fruit quality during ripening and cold storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号