共查询到17条相似文献,搜索用时 62 毫秒
1.
《灌溉排水学报》2019,(3)
【目的】实现小麦农田土壤含水率大面积快速监测。【方法】以冬小麦冠层高光谱数据为基础,计算得到8种植被指数,通过对关键生育时期(拔节期、抽穗期、灌浆期)不同水分处理下冬小麦不同土层(0~20、20~40、40~60 cm)土壤含水率与植被指数拟合状况进行分析和筛选,分别构建了基于植被指数的不同土层土壤含水率反演模型,并对模型进行检验。【结果】①各时期植被指数拟合效果有所差异,拔节期0~20 cm土层以植被指数VOG1拟合效果较好,相关系数为0.88,20~40 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.75,40~60 cm土层以植被指数VOG3拟合效果较好,相关系数为0.59;抽穗期0~20 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.70,20~40 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.72,40~60 cm土层以植被指数mSR705拟合效果较好,相关系数为0.57;灌浆期0~20 cm土层以植被指数mNDVI705拟合效果较好,相关系数为0.88,20~40 cm土层以植被指数SARVI拟合效果较好,相关系数为0.68,40~60 cm土层以植被指数SARVI拟合效果较好,相关系数为0.71;②各土层土壤含水率与植被指数拟合效果有所差异,其中利用VOG1和mNDVI705组合构建的模型反演0~20 cm土层,决定系数R2为0.743,利用mNDVI705和SARVI组合构建的模型反演20~40 cm土层,决定系数R2为0.707,利用VOG3、mSR705和SARVI组合构建的模型反演40~60 cm土层,决定系数R2为0.484;③通过建立植被指数对土壤含水率的反演模型,0~20 cm土层含水率反演效果好于20~40 cm和40~60 cm。【结论】高光谱植被指数反演模型中,以0~20 cm土层的估算模型最佳,植被指数组合为VOG1和mNDVI705。综上可知,该研究方法进行土壤含水率的反演是可行的。 相似文献
2.
在中国季节性冻融区如何高效快速地监测冻结土壤的含水率至关重要。以内蒙古河套灌区典型灌域土壤为对象,在实验室分梯度配置不同含水率的土样,通过地物光谱仪测定土壤冻结与未冻结状态下的高光谱数据,处理得到原始光谱反射率(Raw Spectral Reflectance,REF)、一阶微分反射率(First-order Differential Reflectance,FDR)和二阶微分反射率(Second-order Differential Reflectance, SDR)、标准正态变量变换(Standard Normal Variable Reflectance,SNV)和倒数之对数变换(Logarithm of Reciprocal,LR) 5种光谱指标,采用偏最小二乘回归法(Partial Least Squares Regression,PLSR)、多元逐步回归法(Multiple Stepwise Regression,MSR)、支持向量机法(Support Vecor Machine,SVM)和一元线性回归法(Unary Linear Regression,ULR),构建基于不... 相似文献
3.
基于光谱指数的绿洲农田土壤含水率无人机高光谱检测 总被引:1,自引:0,他引:1
土壤含水率(Soil moisture content,SMC)是发展精细灌溉农业的重要参数,因此对其进行精确估测十分必要。选取新疆阜康绿洲小块农田为研究对象,基于无人机(Unmanned aerial vehicle,UAV)平台搭载的高光谱传感器获取的影像数据,基于Savitzky-Golay(SG)平滑后的一阶微分(First derivative,FD)、吸光度(Absorbance,Abs),连续统去除(Continuum removal,CR)3种不同预处理方法,共获取了SG、SG-FD、CR、Abs及Abs-FD共计5种预处理后的高光谱影像,探索不同预处理下的差值指数(Difference index,DI)、比值指数(Ratio index,RI)、归一化指数(Normalization index,NDI)及垂直植被指数(Perpendicular vegetation index,PVI)与SMC的关系,并在遴选出最优指数及预处理方案的基础上构建干旱区绿洲农田SMC高光谱定量估算模型。结果表明:预处理在不同程度上提高了光谱指数与SMC的相关性,其中基于Abs-SG预处理的PVI_((R644,R651))表现最优,相关系数为0.788,据此构建的三次拟合函数表现最优。基于不同预处理方案下多变量SMC估算模型效果在消噪的基础上,更为深度地挖掘了光谱信息,减少了单一光谱指数造成的误差,提升了模型的定量估测效果。Abs模型预测精度亦最为突出,其建模集R_c~2和RMSE为0.80、2.42%,验证集R_p~2与RMSE为0.91、1.71%,RPD为2.41。本研究构建的SMC估算模型减少了单一变量模型的误差;在规避过拟合现象的同时,提升了模型的定量估测效果,为土壤水分状况天地空一体化遥感监测提供了崭新的视角和方案。 相似文献
4.
基于无人机高光谱影像的冬小麦全蚀病监测模型研究 总被引:2,自引:0,他引:2
冬小麦全蚀病是导致小麦大幅减产甚至绝收的土传检疫性病害。快速、无损地监测冬小麦全蚀病空间分布对其防治具有重要意义。以无人机搭载成像高光谱仪为遥感平台,利用成像高光谱影像结合地面病害调查数据,在田块尺度对冬小麦全蚀病病情指数分布进行空间填图。利用地物光谱仪(ASD)同步获取的高光谱数据评价UHD185光谱数据质量,综合运用统计分析以及遥感反演填图技术,计算光谱指数(Difference spectral index,DSI)、比值光谱指数(Ratio spectral index,RSI)及归一化差值光谱指数(Normalized difference spectral index,NDSI)与病情指数(DI)构建决定系数等势图,筛选最优光谱指数与DI构建线性回归模型,并利用3个光谱指数构建偏最小二乘回归预测模型,以对比模型预测精度与稳健性。最后用独立数据对模型进行检验。结果表明,冬小麦冠层的ASD光谱数据与UHD185光谱数据相关性显著,决定系数R~2达0.97以上,3类光谱指数与DI构建偏最小二乘回归模型,得到模型验证结果(R~2=0.629 2,R_(MSE)=10.2%,M_(AE)=16.6%),其中DSI(R_(818),R_(534))对模型贡献度最高,利用DSI(R_(818),R_(534))与DI构建线性回归模型为y=-6.490 1x+1.461 3(R~2=0.860 5,R_(MSE)=7.3%,M_(AE)=19.1%),且通过独立样本的模型验证精度(R~2=0.76,R_(MSE)=14.9%,M_(AE)=11.7%,n=20)。最后使用该模型对冬小麦进行病情指数反演,制作了冬小麦全蚀病病害空间分布图,本研究结果为无人机高光谱遥感在冬小麦全蚀病的精准监测方面提供了技术支撑,并对未来卫星遥感探索冬小麦全蚀病大面积监测提供了理论基础。 相似文献
5.
基于岭回归的土壤含水率高光谱反演研究 总被引:6,自引:0,他引:6
以以色列南部Seder Boker地区采集的粘壤土样品为研究对象。在室内利用ASD Field Spec 3型高光谱仪获取土壤的原始光谱,在进行数据预处理和不同数学变换后,共获取了4种光谱指标:光谱反射率(REF)、倒数之对数(LR)、一阶微分(FDR)和去包络线(CR)。采用偏最小二乘回归法(PLSR)、逐步回归法(SR)和岭回归法(RR)构建了基于不同指标的土壤含水率高光谱反演模型,并对反演结果进行精度验证与比较。结果表明:REF-PLSR模型在所有回归模型中的反演与预测效果均为最优(R2c=0.990,R2p=0.987),在逐步回归模型和岭回归模型中,LR-SR(R2c=0.981,R2p=0.971)、LR-RR(R2c=0.975,R2p=0.979)均为最佳模型。对于其他3种指标,虽然逐步回归法和岭回归法的建模效果较偏最小二乘回归法略有下降,但R2c均大于0.9,R2p均大于0.8,RPD均大于2.5,RMSE均小于0.03,模型仍具有较好的反演效果;逐步回归法和岭回归法均实现了模型的简化,但岭回归法采用有偏估计从而提高了模型的稳健性,且实现了波段的优选(用于建模的波段数仅为全光谱的0.3%)。粘壤土土壤含水率LR-RR高光谱反演模型的建立为高光谱模型的优化、土壤含水率的快速测定提供了途径。 相似文献
6.
干旱区绿洲植被高光谱与浅层土壤含水率拟合研究 总被引:2,自引:0,他引:2
水资源一直是制约我国西北干旱区农业发展的关键因素。以新疆渭库绿洲为研究区域,选取41个土壤含水率与干旱区绿洲植被实测高光谱样本,以植被指数为桥梁,采用支持向量机回归(SVR)方法,建立干旱区绿洲土壤含水率与植被指数之间的拟合方程模型,并与多元回归(MLSR)、偏最小二乘回归(PLS)2种模型进行对比。实验结果表明:不同模型的精度各异,拟合效果由优到劣为:改进的SVR模型、PLS模型、MLSR模型,其中基于干旱区绿洲实测的植被光谱数据改进的SVR模型对土壤含水率具有较好的拟合效果,通过最优参数的定值与最优测试集的抽取,R2高达0.891 6,RMSE仅为2.004,在干旱区绿洲的土壤含水率拟合中获得比较高的预测精度。而MLSR模型与PLS模型,R~2分别为0.630 0、0.654 9,RMSE分别为3.001与2.749。研究结果表明,因地制宜开展合理的土壤含水率反演模型规则制定是提高干旱区绿洲土壤浅层含水率监测精度的有效手段,也可为干旱区农业作物生长提供更精准的数据积累。 相似文献
7.
土壤盐渍化是限制黄河三角洲地区农业经济发展的重要因素,进一步阻碍了农业生产。为了探索无人机影像在地表无植被覆盖条件下的土壤盐分含量反演状况,以黄河三角洲典型区域为研究区,获取地物高光谱和无人机多光谱两种数据源与样点土壤盐分含量,通过优选敏感光谱参量,使用偏最小二乘回归(Partial Least Squares Regression,PLSR)和随机森林(Random Forest,RF)两种机器学习算法建立土壤盐分含量反演模型,实现研究区的土壤盐分含量反演。结果表明:(1)高光谱1972 nm波段与土壤盐分含量间的敏感性最高,相关系数为-0.31。(2)两种不同数据源优化后的RF模型均优于PLSR,且稳定性更好。(3)基于地物高光谱的RF模型(R2 =0.54,RMSEv=3.30 g/kg)优于基于无人机多光谱的RF模型(R2 =0.54,验证RMSRv=3.35 g/kg)。(4)结合无人机影像采用多光谱RF模型对研究区耕地的土壤盐分含量进行反演,研究区总体以轻、中度盐渍化土壤为主,对作物的耕种具有一定程度的限制。本研究构建并对比了两种不同源数据的黄河三角洲土壤盐分反演模型,并结合各自数据源的优势进行优化,探索了地表无植被覆盖情况下的土壤盐分含量反演方法,对更精准反演土地盐渍化程度提供了参考。 相似文献
8.
9.
为研究三维光谱指数预测土壤含水率的效果,以期能为精准农业地表土壤含水率的快速精确测定提供参考.以浙江永康地区采集的不同含水率土壤样本为研究对象,利用ASD FieldSpec 3光谱仪在室内对土样进行光谱反射率测量,并基于原始光谱反射率(R)及其对应的一阶微分光谱(FD)、二阶微分光谱(SD)进行一维二维及三维光谱指数的提取.再通过偏最小二乘回归模型(PLSR)对不同光谱指数建模,并对比分析不同模型的反演精度.结果表明:三维光谱指数相比于一维二维光谱指数对土壤含水率更加敏感;基于三维光谱指数(TBI2)偏最小二乘回归模型具有最佳的预测效果,其Rv2=0.92,RPD可达3.32;对于土壤含水率反演而言,三维指数(R-TBI1)相比于其他的光谱指数更具重要性,其变量投影重要性(VIP)达1.04.该研究表明利用三维光谱指数建模为高光谱遥感对表层土壤含水率的快速有效监测提供了一条新途径. 相似文献
10.
11.
基于无人机高光谱长势指标的冬小麦长势监测 总被引:5,自引:0,他引:5
为快速准确监测作物长势,以冬小麦为研究对象,获取了不同生育期的无人机高光谱影像。利用无人机高光谱数据构建光谱指数,并分析4个生育期的指数与生物量、叶面积指数以及由生物量和叶面积2个生理参数构建的长势监测指标(Growth monitoring indicator,GMI)的相关性;建立与GMI相关性较强的4个光谱指数的单指数回归模型,利用多元线性回归、偏最小二乘和随机森林3种机器学习方法分别建立冬小麦各生育期的GMI反演模型;将最佳模型应用于无人机高光谱影像,得到冬小麦长势监测图。结果表明:各生育期光谱指数与冬小麦GMI相关性较高,大部分指数都达到了显著水平,其中NDVI、SR、MSR和NDVI×SR与GMI的相关性高于生物量、叶面积指数与GMI的相关性;拔节期、挑旗期、开花期、灌浆期、全生育期,表现最好的回归模型对应光谱指数分别是NDVI×SR、NDVI、SR、NDVI和NDVI×SR;对比3种方法构建的GMI反演模型,开花期模型MLR-GMI效果最佳,此时期的模型建模R~2、RMSE和NRMSE分别是0. 716 4、0. 096 3、15. 90%。 相似文献
12.
定量测定小麦叶片叶绿素含量在小麦估产、农情监测等方面具有重要意义.本研究验证高光谱成像技术结合偏最小二乘-最小二乘支持向量机(PLS-LS-SVM)建模方法预测大田冬小麦叶绿素含量的可行性.首先利用所搭建高光谱成像系统以线扫描方式获取大田冬小麦叶片反射光谱,进而得到其立方体图像数据,并在小麦叶片光谱图像上选择感兴趣区域计算出光谱平均反射率值.为保证PLS-LS-SVM模型的鲁棒性和预测稳定性,首先通过PLS方法解决多重共线性问题并将输入变量维数减至4维,然后利用LS-SVM进行训练建模.所建叶绿素含量预测模型的决定系数达R2=0.8459,预测均方根误差RMSEV=0.4370.研究结果表明,基于高光谱成像系统,采用PLS-LS-SVM建立模型用来预测大田冬小麦叶绿素含量是完全可行的. 相似文献
13.
为利用多源数据构建毛乌素沙地腹部土壤含水率建模指示因子,通过微波后向散射系数、地表温度、缨帽变换要素、波段反射率、干旱指数和地形要素等17个变量为建模因子,分别以偏最小二乘(Partial least squares regression, PLSR)、极限学习机(Extreme learning machine, ELM)和随机森林(Random forest, RF)3种方法构建土壤含水率反演模型,对模型进行验证和对比,并对研究区的土壤水分分布进行制图。结果表明:温度植被干旱指数是土壤水分空间变异性的最重要的预测因子(决定系数为0.64),其次是地表温度(0.6)、σVV(0.38)、植被指数(0.38)、波段7反射率(0.35)、σVH(0.32)、波段6反射率(0.3)和反照率(0.26)。相比于未筛选变量所构建的模型,利用最优子集筛选(Best subset selection, BSS)变量所构建的模型精度均有所提升。其中PLSR在处理共线性方面表现最优,ELM回归模型最稳定。RF模型具有最高的精确度,4月,决定系数为0.74,均... 相似文献
14.
为快速、准确地估测小麦产量,有效提高育种工作效率,本文以小麦品系为研究对象,收集小麦灌浆期无人机高光谱数据和产量数据。首先基于递归特征消除法筛选出特征波长作为模型输入变量,然后利用岭回归(Ridge regression,RR)、偏最小二乘回归(Partial least squares regression,PLS)、多元线性回归(Multiple linear regression,MLR)3种线性算法和随机森林(Random forest,RF)、梯度提升回归(Gradient boosting regression,GBR)、极限梯度提升(eXtreme gradient boosting,XGB)、高斯过程回归(Gaussian process regression,GPR)、支持向量回归(Support vector regression,SVR)、K最邻近算法(K-nearest neighbor,KNN)6种非线性算法构建单一算法产量估测模型并进行精度比较,最后基于Stacking算法构建多模型集成组合,筛选最佳集成模型。结果表明,基于不同算法的产量估测模型精度差异显著,非线性模型优于线性模型,基于GBR的产量估测模型在单一模型中表现最优,训练集R2为0.72,RMSE为534.49kg/hm2,NRMSE为11.10%,测试集R2为0.60,RMSE为628.73kg/hm2,NRMSE为13.88%。基于Stacking算法构建的集成模型性能与初级模型和次级模型的选择密切相关,以KNN、RR、SVR为初级模型组合,GBR为次级模型的集成模型有效提高了估测精度,相比单一模型GBR,训练集R2提高1.39%,测试集R2提高3.33%。本研究可为基于高光谱技术的小麦品系产量估测提供应用参考。 相似文献
15.
以大田冬小麦叶绿素含量为研究对象,首先利用高光谱成像系统以线扫描方式获取其反射光谱图像,选择感兴趣区域(ROI)并计算出光谱平均反射率值;然后分别针对其原始光谱和一阶差分光谱,通过相关分析和逐步回归分析,得到能反映叶绿素含量变化的7个最佳优化波长;进而基于该优化波长采用多元线性回归(MLR)方法组建模型,通过假设检验剔除对模型贡献不显著的3个波长变量。选用剩余的4个波长即710.85、767.42、650和520nm作为自变量重新建立模型,基于校正集和预测集模型的决定系数R2分别为0.8434和0.7093。研究结果表明,利用高光谱技术检测大田冬小麦叶绿素含量的方法是可行的。 相似文献
16.
不同生育时期冬小麦FPAR高光谱遥感监测模型研究 总被引:1,自引:0,他引:1
通过连续5年定位研究不同氮磷耦合水平下,不同生育时期冬小麦群体FPAR与冠层光谱反射率,建立基于不同植被指数的不同生育时期FPAR分段监测模型。结果表明:随着氮磷水平增加FPAR呈递增趋势,不同品种间存在差异;冬小麦群体FPAR与670、850、960 nm具有较高的相关性,在可见光和近红外波段处均有敏感波段;在拔节期、孕穗期、抽穗期、灌浆期和成熟期FPAR与SAVI、NDVI705、EVI、DVI、RVI均达极显著相关,相关系数r范围为0.818~0.942;在不同生育时期,分别基于SAVI、NDVI705、EVI、RVI、RVI能建立较好的FPAR分段监测模型,决定系数R2分别为0.854、0.888、0.811、0.844、0.911;标准误差SE分别为0.054、0.032、0.044、0.047、0.044;以不同年份独立数据对模型进行验证,田间实测值与模型预测值之间相对误差RE分别为14.1%、17.4%、12.8%、18.8%、10.7%;均方根误差RMSE分别为0.139、0.146、0.136、0.158、0.130。该结果较拔节期至成熟期FPAR统一监测模型监测精度及验证效果均有所改善。因此,在拔节期、孕穗期、抽穗期、灌浆期和成熟期可分别用SAVI、NDVI705、EVI、RVI、RVI预测冬小麦群体FPAR,具有较好的年度间重演性和品种间适用性。不同生育时期FPAR分段监测模型较统一监测模型有较好的监测效果。 相似文献
17.
为探讨数据挖掘技术中LM(Levenberg-Marquardt)算法在土壤表层(约1 cm)含水率遥感监测中的应用,选取黄绵土、粘黄土、红土为试验材料,配制含水率分别为0、6%、10%、14%、18%、22%的土壤样本,在09:00—10:00和15:00—16:00时间段进行可见光采样,并对图像亮度进行梯度处理,以此模拟全天光线变化。采用样本实测含水率及图像RGB三阶颜色矩数据作为数据集,对上午、下午样本和两时间段混合样本采用LM算法建立含水率回归模型,并与BP(Back propagation)算法和分类回归树(Classification and regression trees,CART)算法进行比较。结果表明,基于土壤表层RGB颜色矩的LM算法具有较好的应用效果,混合样本不同土样回归模型决定系数R~2分别为0. 958、0. 943、0. 949,均方根误差(RMSE)分别为1. 6%、2. 0%、1. 9%,相对分析误差(RPD)分别为4. 873、4. 183、4. 440。不同光照时的混合样品分析结果表明,LM算法适用于不同光线采集样品的土壤含水率监测,适用于土壤表层(约1 cm)含水率的监测。 相似文献