首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acacia longifolia is one of the main plant species invading Portuguese dune ecosystems. Areas invaded by this exotic tree have reduced plant diversity and altered soil microbial processes and nutrient pools, but the impacts on microbial functional diversity in the soil have been little explored. Soil samples were collected in areas invaded by A. longifolia for more than 20 years, in areas invaded after 1995 and in non-invaded areas. Respiration responses to 20 different substrates were analysed, in order to assess the catabolic response profile (CRP) as a measure of microbial functional diversity. Five substrate groups were tested: amino acids, carbohydrates, carboxylic acids, plant litters, and plant polymers. CRP clearly discriminated between the three different areas. Respiratory responses to the individual substrates α-ketoglutaric acid, oxalic acid, starch, citric acid, and xylose and to the groups of amino acids and plant polymers were similar in both invaded areas and different in the non-invaded. The responses to tartaric acid, gallic acid, fumaric acid, Cistus litter, and Acacia litter were the same in long- and non-invaded areas, but different from recently invaded areas. The duration of invasion, carbon (C) content, nitrogen (N) content, C/N ratio, pH, and litter quantity explained 39.6% of the variance of catabolic responses. It is concluded that invasion by A. longifolia has substantial effects on the catabolic diversity of the soil microbial communities. These effects may have wider implications for nutrient cycling and ecosystem-level processes and for the invasibility of the system.  相似文献   

2.
Several strains of Bradyrhizobium, Mesorhizobium and Sinorhizobium strains were tested for their compatibility with an Australian acacia: Acacia holosericea. All bacterial strains induced some nodule formation on roots. However, the rhizobia which greatly increased the development of seedlings belonged to the Bradyrhizobium genus. The root-knot nematode Meloidogyne javanica, strongly inhibited the symbiosis with most of the rhizobial strains. The rhizobia had no effect on nematode multiplication except for bacterial strain ORS 1020 where the final nematode population was higher than in the control treatment. The hypothesis concerning the interactions between nematodes and the nitrogen fixative process are discussed. Moreover, this investigation underlines the decreasing effect of nematodes on the potential benefits that may result from growing A. holosericea inoculated with selected rhizobial strains.  相似文献   

3.
Acacia dealbata Link is an Australian woody legume that has become a serious environmental problem in Northwest Spain where it forms dense monospecific patches modifying the structure of different native ecosystems and threatening native aboveground biodiversity. In spite of the dramatic changes observed in the vegetation of invaded sites little is known about the consequences of invasion for soil microorganisms. To investigate the effect of A. dealbata invasion on the structure of soil fungi and bacteria communities, samples were taken from invaded and non-invaded areas from three different ecosystems in Northwest Spain: pine forest, shrubland and grassland. In each ecosystem type, soil samples were taken in areas of native vegetation, areas invaded by A. dealbata and in the transition zone between native and invaded vegetation. Soil microorganisms were analyzed in the different samples by PCR-DGGE using general primers for eubacteria and fungi. Soil analyses were also performed to evaluate the effect of A. dealbata invasion on soil fertility.The invasion by A. dealbata consistently increased soil N, C, organic matter and exchangeable P content in the three studied ecosystems. A clear effect of the invasion on the overall structure of microorganism communities was only observed in the shrubland where soil fungal communities in the invaded and transition areas clustered together and apart from the native soil. Significant differences in soil microorganisms richness and diversity between invaded and not invaded soils were only found in the grassland. Grassland invasion by A. dealbata lead to a significant increase of bacterial richness and to a significant reduction in fungal richness and diversity. Our results show that although the changes on soil chemistry due to A. dealbata invasion are consistent among the studied ecosystems, the effect on soil microorganisms depends on the ecosystem type affected by the invasion.  相似文献   

4.
Exotic invasion is a key threat to native biological diversity, second only to habitat degradation. Melilotus officinalis is an exotic species that thrives in areas of anthropogenic disturbances and low nutrient availability. Typically, natural disturbance facilitates native species establishment and maintains species diversity; however, anthropogenic disturbance facilitates exotic species establishment. M. officinalis functions as a competitor in the montane communities because of its symbiosis with Rhizobium bacteria, a symbiosis that allows the plant to acquire nitrogen. Although the ability to fix nitrogen permits M. officinalis to grow in nitrogen depleted soils, the soil must have a microclimate that is favorable to symbiosis and nodulation. We analyzed abiotic soil characteristics in Rocky Mountain National Park to determine if nodulation was related to soil texture, as well as in the mid-range level of soil and temperatures. We found that nodules on plant specimens showed a positive correlation with soil moisture and temperature, and occurred in a specific range of moderate moisture and temperature. Soil texture was not correlated to nodule formation.  相似文献   

5.
Bacteria were isolated from root-nodules collected from indigenous legumes at 38 separate locations in the Gascoyne and Pilbara regions of Western Australia. Authentication of cultures resulted in 31 being ascribed status as root-nodule bacteria based upon their nodulation of at least one of eight indigenous legume species. The authenticated isolates originated from eight legume genera from 19 sites. Isolates were characterised on the basis of their growth and physiology; 20 isolates were fast-growing and 11 were slow-growing (visible growth within 3 and 7 d, respectively). Fast-growers were isolated from Acacia, Isotropis, Lotus and Swainsona, whilst slow-growers were from Muelleranthus, Rhynchosia and Tephrosia. Indigofera produced one fast-growing isolate and seven slow-growing isolates. Three indigenous legumes (Swainsona formosa, Swainsona maccullochiana and Swainsona pterostylis) nodulated with fast-growing isolates and four species (Acacia saligna, Indigofera brevidens, Kennedia coccinea and Kennedia prorepens) nodulated with both fast- and slow-growing isolates. Swainsona kingii did not form nodules with any isolates. Fast-growing isolates were predominantly acid-sensitive, alkaline- and salt-tolerant. All slow-growing isolates grew well at pH 9.0 whilst more than half grew at pH 5.0, but all were salt-sensitive. All isolates were able to grow at 37 °C. The fast-growing isolates utilised disaccharides, whereas the slow-growing isolates did not. Symbiotic interactions of the isolates were assessed on three annual, one biennial and nine perennial exotic legume species that have agricultural use, or potential use, in southern Australia. Argyrolobium uniflorum, Chamaecytisus proliferus, Macroptilium atropurpureum, Ononis natrix, Phaseolus vulgaris and Sutherlandia microphylla nodulated with one or more of the authenticated isolates. Hedysarum coronarium, Medicago sativa, Ornithopus sativus, Ornithopus compressus, Trifolium burchellianum, Trifolium polymorphum and Trifolium uniflorum did not form nodules. Investigation of the 31 authenticated isolates by polymerase chain reaction with three primers resulted in the RPO1 primer distinguishing 20 separate banding patterns, while ERIC and PucFor primers distinguished 26 separate banding patterns. Sequencing the 16S rRNA gene for four fast- and two slow-growing isolates produced the following phylogenetic associations; WSM1701 and WSM1715 (isolated from Lotus cruentus and S. pterostylis, respectively) displayed 99% homology with Sinorhizobium meliloti, WSM1707 and WSM1721 (isolated from Sinorhizobium leeana and Indigofera sp., respectively) displayed 99% homology with Sinorhizobium terangae, WSM1704 (isolated from Tephrosia gardneri) shared 99% sequence homology with Bradyrhizobium elkanii, and WSM1743 (isolated from Indigofera sp.) displayed 99% homology with Bradyrhizobium japonicum.  相似文献   

6.
Acacia mangium grown in aeroponic culture was co-inoculated with selected strains of Bradyrhizobium sp. and Glomus intraradices. A single-step technique using alginate as an embedding and sticking agent for an inoculum composed of arbuscular mycorrhiza (AM)-infected sheared roots was used to infect plants. This method resulted in the successful establishment of AM in 100% of the inoculated plants after 7 weeks. The results indicated that dual microbial inoculation with Glomus intraradices strain S-043 and Bradyrhizobium strain AUST 13C stimulated the growth of A. mangium in aeroponic culture. The effects of single and dual microbial inoculations were also evaluated at two levels of P in the nutrient medium. A concentration of 5 mg P kg–1 stimulated the development of AM without affecting plant development or establishment of Bradyrhizobium symbiosis. In contrast, saplings supplemented with a higher concentration of P (25 mg kg–1) alone or co-inoculated with Bradyrhizobium had lower AM frequencies.  相似文献   

7.
The symbiosis between the soil bacteria Rhizobium, Sinorhizobium, Azorhizobium, Mesorhizobium or Bradyrhizobium and leguminous plants is characterised by a specific multistep signal exchange. Only when a compatible rhizobial strain encounters its leguminous host, nodules will be formed on the roots of the host. During infection of this nodule, the microsymbiont evolves into a bacteroid form which, when provided with plant-derived carbon sources, is able to convert atmospheric nitrogen to ammonia that subsequently is supplied to the plant. The developmental programme underlying nodule organogenesis and functioning has been studied intensively for several decades. In this review, several observed plant phenotypes resulting from an ineffective symbiosis between plants and mutant rhizobial strains are represented. Besides the influence of the bacterial nodulation, nitrogen fixation and surface polysaccharide genes on symbiosis, the role of other genes important for the formation of effective nitrogen fixing nodules will be explained.  相似文献   

8.
为了研究紫茎泽兰(Ageratina adenophora)入侵对土壤菌根真菌(mycorrhizal fungi, MF)群落的影响,采用嵌套PCR 技术分析了外来植物紫茎泽兰入侵生境内土著植物群落、土著植物与紫茎泽兰混生群落、紫茎泽兰单优群落中, 侵染紫茎泽兰及土著植物的MF 群落结构, 及紫茎泽兰与土著植物根围土壤中MF 群落结构。结果表明, 紫茎泽兰不同入侵进程MF 群落结构存在差异, 其中, 从土著植物群落的植物根内检测到内养球囊霉(Glomus intraradices)型克隆; 从土著植物与紫茎泽兰混生群落的紫茎泽兰根内也检测到内养球囊霉型克隆, 而在土著植物根内检测到1 个球囊霉属(Glomus sp 2)型克隆; 从紫茎泽兰单优群落的紫茎泽兰根内未检测到MF, 但从其根围土壤中检测到2 个球囊霉属(Glomus sp 1 和Glomus sp 2)型克隆。在土著植物与紫茎泽兰混生群落中, 从紫茎泽兰根围土壤中检测到4 个克隆型, 分别为毛舌菌阔孢(Trichoglossum hirsutum)、皂味口磨(Tricholoma saponaceum)、亚盖趋本菌(Xylobolus subpileatus)和翘鳞肉齿菌(Sarcodon imbricatus), 从土著植物根围土壤中也检测到4 个克隆型, 分别为小皮伞(Camarophyllopsis hymenocephala)、肉色香蘑(Lepista irina)、皂味口磨及亚侧耳(Panellus serotinus)型克隆; 在土著植物群落中, 从根围土壤只检测到皂味口磨型克隆。紫茎泽兰入侵改变了土著MF 群落结构, 其中在土著植物占据的土壤中以外生菌根真菌为主, 而外来植物紫茎泽兰则更多地积累了丛枝菌根真菌。文中讨论了紫茎泽兰改变入侵地土壤菌根菌群落及其可能对紫茎泽兰入侵的反馈。  相似文献   

9.
North American beavers (Castor canadensis) were introduced into southern South America in 1946. Since that time, their populations have greatly expanded. In their native range, beavers shape riparian ecosystems by selectively feeding on particular plant species, increasing herbaceous richness and creating a distinct plant community. To test their effects as exotic engineers on sub-Antarctic vegetation, we quantified beaver impacts on tree canopy cover and seedling abundance and composition, as well as their impacts on herbaceous species richness, abundance and composition on Navarino Island, Cape Horn County, Chile (55°S). Beavers significantly reduced forest canopy up to 30 m away from streams, essentially eliminating riparian forests. The tree seedling bank was greatly reduced and seedling species composition was changed by suppressing Nothofagus betuloides and Nothofagus pumilio, but allowing Nothofagus antarctica. Herbaceous richness and abundance almost doubled in meadows. However, unlike beaver effects on North American herbaceous plant communities, much of this richness was due to invasion by exotic plants, and beaver modifications of the meadow vegetation assemblage did not result in a significantly different community, compared to forests. Overall, 42% of plant species were shared between both habitat types. Our results indicate that, as predicted from North American studies, beaver-engineering increased local herbaceous richness. Unlike in their native range, though, they did not create a unique plant community in sub-Antarctic landscapes. Plus, the elimination of Nothofagus forests and their seedling bank and the creation of invasion pathways for exotic plants together threaten one of the world’s most pristine temperate forest ecosystems.  相似文献   

10.
This investigation was carried out to assess the potential suitability of certain Australian plants for use in the phytoremediation of derelict mine sites. The plant species studied were native to the area surrounding a silver mine at Yerranderie in NSW, Australia, which has been derelict now for over 70 years. The contamination on this site is typical of that caused by acid mine drainage, with very low soil and water pH, and large areas devoid of topsoil and vegetation. Soil metal concentrations exceeded the Australian and New Zealand Environment and Conservation Council (ANZECC) 1992 guidelines for soil quality in several locations. Corresponding topsoil and upper plant samples were collected along three transects crossing the path of drainage from the mine wastes. Six plant species were dominant on the site, including Juncus usitatus (common rush), Lomandra longifolia (spiny-headed mat rush), Cynodon dactylon (couch), Pteridium esculentum (bracken fern), Acacia decurrens (black wattle) and Melaleuca alternifolia (teatree). Of these species, C. dactylon, J. usitatus and L. longifolia were identified as of potential use in phytostabilisation programs, due to tolerance of acid soils and tolerance and/or accumulation of significantly higher concentrations of Pb and Cd than other plant species present on the site.  相似文献   

11.
Management of plant invaders causes disturbance and the compounding effects of both invasion and management on biodiversity merit rigorous assessment. We explored the impacts of both plant invasion and management disturbance in coastal dune communities of Australia invaded by the introduced shrub bitou bush (Chrysanthemoides monilifera ssp. rotundata). We compared the effects of intensive, manually based invader control with those of extensive control (mainly herbicide spraying from aircraft) across fore dune communities. We examined one management regime, which was typically intensive, in hind dune communities. Our main aim was to test the prediction that intensive methods would achieve better biodiversity outcomes than extensive approaches in fore dune communities. We found that extensive management created native species complements that diverged from non-invaded sites while intensive management approached non-invaded site conditions. However, intensively managed sites were also richer in other exotic species than extensively managed sites. Thus, while biodiversity outcomes were better under intensive management, the risk profile of such sites was increased by the greater array of exotics that could potentially replace the original invader. The positive effects of management evident on some fore dunes were not found in hind dunes, where managed sites had the highest exotic species richness and similar bitou bush seedling abundance as both non-invaded and bitou-invaded sites. Hind dune managed sites were also compositionally distinct from non-invaded sites. Thus fore and hind dune communities exhibited different responses to bitou management regimes.  相似文献   

12.
《Soil biology & biochemistry》2001,33(4-5):457-463
The potential enhancement of root growth and nodulation in vegetable soybean (AGS190) was studied with application of Azospirillum brasilense (Sp7) and A. lipoferum (CCM3863) co-inoculated with two Bradyrhizobium japonicum strains (TAL102 and UPMR48). Significant root growth stimulation and nodulation were observed in Azospirillum as well as during its co-inoculation with Bradyrhizobium. Nodule formation is linked with the initiation of new roots; nodules were almost absent even in Bradyrhizobium inoculated plant due to the absence of new roots development in clipped rooted seedlings. Total root length, root number, specific root length, root dry matter, root hair development and shoot dry matter were significantly increased by Azospirillum alone and its co-inoculum. Co-inoculated plants significantly influenced the number of nodules and its fresh weight. A. brasilense seemed to perform better in root growth and nodule development compared to A. lipoferum.  相似文献   

13.
The 15N natural abundance technique is one of those most easily applied ‘on farm’ to evaluate the contribution of biological N2 fixation (BNF) to legume crops. When proportional BNF inputs are high, the accuracy of this technique is highly dependent on an accurate estimate of the 15N abundance of the N derived from N2 fixation (the ‘B’ value). The objective of this study was to determine the influence of soybean variety on ‘B’ value. Plants of five soybean varieties were inoculated separately with two Bradyrhizobium strains (one Bradyrhizobium japonicum and one Bradyrhizobium elkanii) grown in pots of soil virtually free of bradyrhizobia capable of nodulating soybean. The proportion of N derived from BNF (%Ndfa) was estimated in separate pots where a small quantity of enriched 15N ammonium sulphate was added. The %Ndfa was then used with the 15N natural abundance data of the nodulated soybean and non-N2-fixing reference plants, to determine the ‘B’ value for each soybean variety/Bradyrhizobium association. The varieties nodulated by the B. japonicum strain showed significantly greater N content and %Ndfa than those nodulated by the B. elkanii strain, and in all cases the ‘B’ value of the shoot tissue (‘Bs’) was higher. The differences in ‘Bs’ values between varieties nodulated by the same Bradyrhizobium strain were insignificant, indicating that this parameter is influenced much more by the Bradyrhizobium strain than by the variety of the host plant.  相似文献   

14.
Allfalfa and soybean are the most important leguminous plants in the agricultural system of the semiarid pampas of Argentina. The possible action of phosphate solubilizing bacteria on the leguminous-rhizobia symbiosis was studied since in this region the available phosphorus distribution is not uniform. The strains used were Sinorhizobium meliloti 3DOh13, a good solubilizer of iron and phosphorus for alfalfa, Bradyrhizobium japonicum TIIIB for soybean and two phosphorus-solubilizing strains of Pseudomonas putida (SP21 and SP22) for growth promotion treatments. Modification of shoot and root system dry weights occured in soybean but not in alfalfa in presence of Pseudomonas strains.  相似文献   

15.
Vegetation change and anthropogenic development are altering ecosystems and decreasing biodiversity. Successful management of ecosystems threatened by multiple stressors requires development of ecosystem conservation plans rather than single species plans. We selected the big sagebrush (Artemisia tridentata Nutt.) ecosystem to demonstrate this approach. The area occupied by the sagebrush ecosystem is declining and becoming increasingly fragmented at an alarming rate because of conifer encroachment, exotic annual grass invasion, and anthropogenic development. This is causing range-wide declines and localized extirpations of sagebrush associated fauna and flora. To develop an ecosystem conservation plan, a synthesis of existing knowledge is needed to prioritize and direct management and research. Based on the synthesis, we concluded that efforts to restore higher elevation conifer-encroached, sagebrush communities were frequently successful, while restoration of exotic annual grass-invaded, lower elevation, sagebrush communities often failed. Overcoming exotic annual grass invasion is challenging and needs additional research to improve the probability of restoration and identify areas where success would be more probable. Management of fire regimes will be paramount to conserving sagebrush communities, as infrequent fires facilitate conifer encroachment and too frequent fires promote exotic annual grasses. Anthropogenic development needs to be mitigated and reduced to protect sagebrush communities and this probably includes more conservation easements and other incentives to landowners to not develop their properties. Threats to the sustainability of sagebrush ecosystem are daunting, but a coordinated ecosystem conservation plan that focuses on applying successful practices and research to overcome limitations to conservation is most likely to yield success.  相似文献   

16.
The impact of exotic plant invasions on soil communities and nutrient cycling processes has received an increasing attention in recent years. To test whether the exotic plant invasions affect nematode communities through altering litter quality, we compared mass loss and nematode colonization during the stem litter decomposition of invasive Spartina alterniflora and native Phragmites australis in salt marshes of the Yangtze River estuary, China. Plastic drinking straws were synchronously used as controls. The addition of plant residues was found stimulating the growth of nematodes, particularly bacterial feeders on day 16 after burial. A top-down control of bacterivous nematodes by carnivores existed in nematode succession during the litter decomposition. With higher nitrogen content and lower C:N ratio, stem litter of the invasive S. alterniflora decayed faster and supported more abundant nematodes than the native P. australis. The greater nematode abundance in S. alterniflora was mainly due to two dominant genera of bacterial nematodes, namely Diplolaimelloides and Diplolaimella. Lower values of maturity index and structure index in S. alterniflora than in P. australis litter indicate that a more degraded food web condition resulted from the faster litter decay. A considerable difference in nematode community structures between two litter types only occurred in a certain period of the decomposition (from 8 to 32 days after burial), suggesting that the changes in faunal community structure are time dependent. In summary, this study confirmed the hypothesis that the invasion of S. alterniflora stimulates the growth of bacterial nematodes by producing higher quality of litter than the native P. australis. The results obtained here suggest that the invasion of exotic plant is likely to alter ecosystem functions indirectly through exerting its effect on soil decomposer communities such as nematodes.  相似文献   

17.
The demographic response of indigenous plants to the invasion of exotic woody plants has rarely been quantified, however, could be beneficial to restoration efforts. We determined which life history stages of three indigenous plants: Correa alba var. alba (Rutaceae), Monotoca elliptica (Epacridaceae) and Lomandra longifolia (Lomandraceae), were most affected by the invasion of Chrysanthemoides monilifera spp. rotundata (bitou bush) on the eastern Australian coast. We also assessed whether various morphological and physiological parameters of the mature stage of these species were affected by the presence of bitou bush. Populations of all three indigenous species in bitou bush invaded habitats had significantly fewer small individuals and lower population density than those in non-invaded habitats. The mean flower production, number of vegetative buds, and physiological stress of the mature stage of each of these species in bitou bush invaded habitat did not differ from those present in the non-invaded habitat. We therefore propose that bitou bush affects indigenous plant populations primarily by preventing recruitment through the germination or seedling growth stages. The reduction in indigenous plant recruitment creates spaces that are likely to facilitate bitou bush monoculture formation in the new host environment. Planting of established juvenile plants is suggested to assist in the restoration of bitou bush invaded areas.  相似文献   

18.
Fragmented and degraded vegetation characterises agricultural landscapes across southern Australian. Remnant vegetation within these regions performs a number of vital ecological and hydrological roles, but little is known about whether or how fragmentation is affecting the long-term persistence of these critical landscape elements. Acacias are a significant component of many remnant vegetation communities across Australia, forming numerous integral faunal and floral relationships. Here, reproductive output of 11 fragmented Acacia dealbata (Mimosaceae) populations from across the southern tablelands of New South Wales was assessed over 2 years to identify reproductive constraints associated with increasing vegetation fragmentation. Fertilization success is the major reproductive constraint, particularly in small populations, and probably reflects a self-incompatible reproductive strategy. During 2002 larger and more dense populations produced more legumes (p = 0.014 and <0.001, respectively) while in 2003 these two variables were associated with increased fertilization success (p = 0.004 and 0.017, respectively). There was also some suggestion that populations with fewer exotic species also experienced increased fertilization success (p = 0.055). Assessment of plant performance within populations suggests that consistent reproductive output of particular individuals within small populations may limit reproductive compatibility within these populations over time. The long-term persistence of many small A. dealbata populations may be jeopardised by low seed set, and limited recruitment and aging stands. Immediate steps are now required to ensure that these populations continue contributing to landscape function by augmenting populations, improving connectivity, and allowing disturbance events that will stimulate recruitment.  相似文献   

19.
Headwater rivers are the predominant kind of aquatic ecosystem in South Africa’s Cape Floristic Region. Invasion by alien woody taxa (especially Acacia longifolia and Acacia mearnsii) have altered these rivers in recent decades, replacing indigenous vegetation and altering ecosystem functioning. Aliens have been systematically cleared in watercourses since 1995 as part of a national program (“Working for Water”) to increase water production and improve water quality. Cleared sites are mostly left to recover to their pre-invasion state without additional intervention. We compared the vegetation of seven rivers that vary in their extent of invasion and clearing to identify factors limiting recolonization. Dense invasions cleared 3-6 years before the survey differ in vegetation structure and composition from uninvaded or lightly invaded/cleared riparian reaches in the following ways: (1) diminished extent of indigenous trees in the canopy and increased importance of shrubs or reinvading alien trees, (2) reduced species richness, (3) reduced likelihood of occupancy for more than one-third of common, indigenous species, and (4) reduced incidence of indigenous tree regeneration. Overall, indigenous tree regeneration is very low and not disturbance-triggered which will likely result in slow recovery without additional intervention. We recommend focusing active revegetation on common riparian scrub trees (i.e., Metrosideros angustifolia, Brachylaena neriifolia, Brabejum stellatifolium, and Erica caffra). These species tolerate open habitats favored by alien trees, eventually forming closed canopies required by shade-tolerant species. Accelerating establishment of these small trees is likely critical for shifting cleared riparian corridors from a state that favors alien reinvasion. Effective establishment strategies will need to be developed in the context of hydrologic impairment, since alien-invaded rivers in this region typically have reduced flow.  相似文献   

20.
Exotic annual brome invasion has been well studied in western North American rangelands, particularly for Bromus tectorum L. invasion in sagebrush (Artemisia tridentata) grasslands. We examined both aboveground and belowground properties in native sagebrush grassland and adjacent areas dominated by exotic annual bromes (B. tectorum L. and Bromus japonicus Thunb.) to better understand the fundamental ecological differences between native and invaded areas. Field sites were located in north central Wyoming, USA, and plots were established in areas that had been historically subject to wildfire and either (1) recolonized by native sagebrush grassland vegetation or (2) invaded by exotic annual bromes. We employed measures of vegetation community structure as well as soil physical, chemical, and microbiological properties. Plots with greater than 20 % exotic annual brome cover had significantly less cover of all native vegetation functional groups resulting in lower richness and evenness than native plots. Invaded plots also had low diversity plant communities that were continuous and uniform across space. Soils beneath invaded plant communities had higher infiltration rates, higher levels of total nitrogen, and a lower C/N ratio than the native soils. Invaded soils also had 90–96 % lower abundance of all soil microbial groups measured by phospholipid fatty acid. We conclude that areas dominated by exotic annual bromes display different aboveground and belowground properties compared to the native community, and these changes possibly include spatial and temporal shifts in soil resources and organic matter processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号