首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
‘Black Splendor’ (BS) and ‘Royal Rosa’ (RR) plums were treated preharvest with methyl jasmonate (MeJA) at three concentrations (0.5, 1.0 and 2.0 mM) along the on-tree fruit development: 63, 77 and 98 days after full blossom (DAFB). Both control and treated fruit were harvested at the commercial ripening stage and stored in two temperature conditions: 9 days at 20 °C or at 2 °C + 1 day at 20 °C for 50 days. Preharvest MeJA at 2.0 mM significantly accelerated whereas 0.5 mM delayed the postharvest ripening process for both cultivars, since ethylene production, respiration rate and softening were reduced significantly at the two storage conditions for 0.5 mM. In these fruit, total phenolics, total antioxidant activity (hydrophilic fraction, HTAA) and the antioxidant enzymes peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were found at higher levels in treated than control plums during postharvest storage, which could account for the delay of the postharvest ripening process and the extension of shelf-life.  相似文献   

2.
Four plum (Prunus salicina Lindl.) cultivars (“Blackamber”, “Larry Ann”, “Golden Globe” and “Songold”), were treated with 1 or 3% alginate as an edible coating before storage. Analytical determinations were made after 7, 14, 21, 28 and 35 days at 2 °C and after a 3 day period at 20 °C (shelf-life). Both treatments were effective in inhibiting ethylene production for all cultivars, especially when 3% alginate was used. The changes in fruit quality parameters related to plum postharvest ripening, such as weight and acidity losses, softening and colour changes, were significantly delayed by the use of both edible coatings. The delay of the ripening process was also related to lower anthocyanin and carotenoid accumulation. Overall results suggest that these treatments could increase the plum storage period with optimum quality, 2 weeks for “Larry Ann” and “Songold” and 3 weeks for “Blackamber” and “Golden Globe” more than controls.  相似文献   

3.
The effect of exogenous oxalic acid treatment on ripening attributes of banana fruit during storage was investigated. Banana fruit were dipped into solutions of 0 (control) or 20 mM oxalic acid for 10 min and then stored at room temperature (23 ± 2 °C) and 75–90% relative humidity. The application of oxalic acid reduced fruit deterioration during storage. The oxalic acid treatment also reduced the rates of respiration and ethylene production, and delayed the decreases in firmness, hue angle, and maximal chlorophyll fluorescence (Fv/Fm) of banana fruit during storage. Furthermore, fruit treated with oxalic acid exhibited higher superoxide dismutase activity and antioxidant capability with a lower production of reactive oxygen species at the late storage period compared with non-oxalic acid-treated fruit. Overall, the oxalic acid treatment was effective in inhibiting postharvest ripening of banana fruit and exhibited the potential for commercial application to store the bananas at room temperature. It can be concluded that the delay in banana fruit ripening associated with oxalic acid treatment could be due to inhibition of respiration and ethylene production rates, and reduction of oxidative injury caused by reactive oxygen species through increased antioxidant activity.  相似文献   

4.
Edible composite coatings based on hydroxypropyl methylcellulose (HPMC), beeswax (BW), and food preservatives with antifungal properties, were evaluated on cherry tomatoes during cold storage. Food preservatives selected from previous research work included sodium propionate (SP), potassium carbonate (PC), ammonium phosphate (APh) and ammonium carbonate (AC). Cherry tomatoes artificially inoculated with Botrytis cinerea were coated and stored up to 15 d at 5 °C followed by 7 d of shelf-life at 20 °C. All antifungal HPMC-BW coatings significantly reduced gray mold development on inoculated and cold-stored cherry tomatoes, the SP-based coating being the most effective. Analytical and sensory fruit quality was also evaluated after cold storage and shelf-life. The AC-based coating was the most effective to control weight loss and maintain the firmness of coated cherry tomatoes. Respiration rate, firmness, color, sensory flavor, off-flavor, and fruit appearance were not adversely affected by the application of the antifungal coatings. Overall, the application of HPMC-BW edible composite coatings containing AC could be a promising treatment to extend the postharvest life of cherry tomatoes. Further studies should focus on the modification of some physical characteristics of the coatings in order to enhance the general performance and provide higher peel gloss.  相似文献   

5.
Tomatoes (Lycopersicon esculentum Mill., cv. Rapsodie) were harvested at the mature green stage and treated with 250 nl l−1 1-methylcyclopropene (1-MCP) for 24 h at 20 °C. The fruit were then stored for 24 days at 15, 20 or 25 °C at 90–95% relative humidity. Sampling was carried out at 0, 6, 12, 18 and 24 days after treatment. Treatment with 1-MCP delayed ripening as measured by changes in lycopene, chlorophyll, hue angle, polygalacturonase (PG) activity and tissue firmness. Ripening was delayed by 6 days at 25 °C, by 12 days at 20 °C, and by 18 days at 15 °C in 1-MCP-treated fruit. In general, 1-MCP only delayed the onset of ripening-related changes and did not significantly alter final values for measures of firmness, color (hue angle), PG activity, and lycopene and chlorophyll contents at a particular storage temperature. The results suggest that 1-MCP is most effective at delaying ripening of mature-green tomatoes when they are stored near the currently recommended temperature range of 12.5–15 °C.  相似文献   

6.
Preclimacteric avocado (Persea americana Mill. cv. Booth 7) fruit were treated with aqueous 1-methylcyclopropene (1-MCP) at 0.93 and 9.3 mmol m−3 and then stored at 20 °C to investigate the effect of 1-MCP on antioxidant systems of mesocarp tissue during ripening. Exposure to 1-MCP concentrations significantly delayed softening and peak ethylene production. 1-MCP significantly delayed accumulation of total soluble phenolics, flavonoids, and total antioxidant capacity although levels eventually reached control fruit maxima. The influence of 1-MCP was more pronounced at the higher concentration. Activities of peroxidase [POD (EC 1.11.1.7)], superoxide dismutase [SOD (EC 1.15.1.1)], catalase [CAT (1.11.1.6)] and l-ascorbate peroxidase [APX (EC 1.11.1.11)] increased during early ripening of control fruit followed by slight (CAT) or significant (POD, APX) declines with further ripening. Increases in activities of all enzymes were delayed in proportion to 1-MCP concentration, and maximum activities attained during ripening were largely unaffected by 1-MCP. Postclimacteric declines in POD and APX were not observed at the higher 1-MCP concentration, possibly reflecting incomplete ripening. The results indicate that changes in antioxidant parameters of avocado fruit are not markedly influenced by 1-MCP but are delayed or altered in proportion to the general suppression of ripening as indicated by ethylene production and fruit softening trends. Together with previously published reports, the data also indicate that the effects of ethylene-action suppression on antioxidant parameters during ripening vary considerably among different fruits. Relationships between antioxidant systems, ethylene and ripening are discussed.  相似文献   

7.
The effect of carvacrol and methyl cinnamate vapors incorporated into strawberry puree edible films on the postharvest quality of strawberry fruit (Fragaria × ananassa) was investigated. Fresh strawberries were packed in clamshells and kept at 10 °C for 10 days with 90% RH. Strawberry puree edible films, applied in the clamshell, served as carriers for the controlled release of natural antimicrobial compounds without direct contact with the fruit. Changes in weight loss, visible decay, firmness, surface color, total soluble solids content, total soluble phenolics content and antioxidant capacity of strawberries during storage were evaluated. A significant delay and reduction in the severity of visible decay was observed in fruit exposed to antimicrobial vapors. Carvacrol and methyl cinnamate vapors released from the films helped to maintain firmness and brightness of strawberries as compare to the untreated strawberries. The natural antimicrobial vapors also increased the total soluble phenolics content and antioxidant activity of fruit at the end of the storage period.  相似文献   

8.
We investigated the effects of nitric oxide (NO) fumigation on fruit ripening, chilling injury, and quality of Japanese plums cv. ‘Amber Jewel’. Commercially mature fruit were fumigated with 0, 5, 10, and 20 μL L−1 NO gas at 20 °C for 2 h. Post-fumigation, fruit were either allowed to ripen at 21 ± 1 °C or were stored at 0 °C for 5, 6, and 7 weeks followed by ripening for 5 d at 21 ± 1 °C. NO-fumigation, irrespective of concentration applied, significantly (P  0.5) suppressed respiration and ethylene production rates during ripening at 21 ± 1 °C. At 21 ± 1 °C, the delay in ripening caused by NO-fumigation was evident from the restricted skin colour changes and retarded softening in fumigated fruit. NO treatments (10 and 20 μL L−1) delayed the decrease in titratable acidity (TA) without a significant (P  0.5) effect on soluble solids concentration (SSC) during ripening. During 5, 6, and 7 weeks of storage at 0 °C, NO-fumigation was effective towards restricting changes in the ripening related parameters, skin colour, firmness, and TA. The individual sugar (fructose, glucose, sucrose, and sorbitol) profiles of NO-fumigated fruit were significantly different from those of non-fumigated fruit after cold storage and ripening at 21 ± 1 °C. CI symptoms, manifest in the form of flesh browning and translucency, were significantly lower in NO-fumigated fruit than in non-fumigated fruit after 5, 6, and 7 weeks storage followed by ripening for 5 d at 21 ± 1 °C. NO-fumigation was effective in reducing decay incidence in plums during ripening without storage and after cold storage at 0 °C for 5, 6, and 7 weeks. In conclusion, the postharvest exposure of ‘Amber Jewel’ plums to NO gas (10 μL L−1) delayed ripening by 3–4 d at 21 ± 1 °C, and also alleviated chilling injury symptoms during cold storage at 0 °C for 6 weeks.  相似文献   

9.
In this work Aloe vera gel (AV) alone or with the addition of 10 or 2% rosehip oil was used as fruit edible coatings in a wide range of Prunus species and cultivars: peaches (‘Roma’ and ‘B-424-16’ flat type), plums (‘Red Beauty’ and ‘Songria’), nectarine (‘Garofa’) and sweet cherry (‘Brooks’). Following treatments, fruit were stored at 20 °C for 6 days and analysed for the effect of treatments on fruit ripening and quality parameters compared with uncoated fruit (control). The addition of the rosehip oil to AV gel reduced respiration rate in all fruit, and ethylene production in the climacteric ones (peaches, plums and nectarine). In addition, all the parameters related with fruit ripening and quality, such as weight loss, softening, colour change and ripening index, were also delayed in treated compared with control fruit, the effect being generally higher when rosehip oil was added to AV, and especially in those fruit that exhibited the highest ethylene production rates (‘Roma’ and flat type peaches). Although the highest effect was obtained with AV + rosehip oil at 10%, the sensory panel detected an excess of gloss and oiliness on the fruit surface, which was considered as a negative attribute. Thus, 2% rosehip oil added to AV could be used as an innovative postharvest tool to increase the beneficial effect of AV as an edible coating, especially in climacteric fruit showing high ethylene production rates.  相似文献   

10.
A continuing challenge for commercializing 1-methylcyclopropene (1-MCP) to extend the storage life and control superficial scald of ‘d’Anjou’ pear (Pyrus communis L.) is how to initiate ripening in 1-MCP treated fruit. ‘D’Anjou’ pears harvested at commercial and late maturity were treated with 1-MCP at 0.15 μL L−1 and stored either at the commercial storage temperature −1.1 °C (1-MCP@−1.1 °C), or at 1.1 °C (1-MCP@1.1 °C) or 2.2 °C (1-MCP@2.2 °C) for 8 months. Control fruit stored at −1.1 °C ripened and developed significant scald within 7 d at 20 °C following 3–5 months of storage. While 1-MCP@−1.1 °C fruit did not develop ripening capacity due to extremely low internal ethylene concentration (IEC) and ethylene production rate for 8 months, 1-MCP@1.1 °C fruit produced significant amounts of IEC during storage and developed ripening capacity with relatively low levels of scald within 7 d at 20 °C following 6–8 months of storage. 1-MCP@2.2 °C fruit lost quality quickly during storage. Compared to the control, the expression of ethylene synthesis (PcACS1, PcACO1) and signal (PcETR1, PcETR2) genes was stable at extremely low levels in 1-MCP@−1.1 °C fruit. In contrast, they increased expression after 4 or 5 months of storage in 1-MCP@1.1 °C fruit. Other genes (PcCTR1, PcACS2, PcACS4 and PcACS5) remained at very low expression regardless of fruit capacity to ripen. A storage temperature of 1.1 °C can facilitate initiation of ripening capacity in 1-MCP treated ‘d’Anjou’ pears with relatively low scald incidence following 6–8 months storage through recovering the expression of certain ethylene synthesis and signal genes.  相似文献   

11.
The physical qualities and antioxidant components of ‘Jewel’ strawberry fruit stored in 75, 85 or 95% relative humidity (RH) at 0.5, 10 and 20 °C for 4 days were studied. Overall fruit quality declined more rapidly at 20 °C, especially at 95% RH. Weight loss of fruit was negligible for 2 days at all temperatures but it increased at 10 °C in the lowest RH and increased rapidly from day 3 at 20 °C especially with lower RH. Firmness was maintained, or even increased, at 0.5 or 10 °C, while soluble solids concentrations (SSC) decreased at higher storage temperatures. Red color, assessed using chroma, hue and lightness, and anthocyanin concentrations were relatively unchanged at 0.5 or 10 °C but increased rapidly at 20 °C as fruit ripened. Firmness, SSC and color were not affected by RH. Total phenolic compounds were slightly higher at 20 °C than at other temperatures at all RHs. Total ascorbic acid concentrations of the fruit remained similar for the first 2 days of storage, then declined in fruit stored at 0.5 and 20 °C, but remained unchanged at 10 °C at all RHs. Total flavonoid content of fruit did not change over time at all temperatures. The total antioxidant activity of fruit was higher at 10 °C than at 0.5 and 20 °C on day 3, and no effect of RH was detected. In conclusion, while the best temperature for long-term storage is 0.5 °C, quality could be maintained at 10 °C for acceptable periods of time for marketing and may be associated with better nutritional quality.  相似文献   

12.
Four cultivars of tomato fruit (‘Cherry’, ‘Daniela’, ‘Patrona’ and ‘Raf’) were harvested at two ripening stages (S1 and S2), treated with 0.5 μl l−1 of 1-methylcyclopropene (1-MCP) for 24 h and stored at 10 °C for 28 days. For all cultivars, control fruit deteriorated very rapidly (due to weight loss, softening, colour changes and decay) with an estimated shelf life of 7 days (‘Cherry’ and ‘Patrona’) and 14 days (‘Daniela’ and ‘Raf’), independently of the ripening stage at harvest. All quality parameters for all cultivars were delayed and/or inhibited in treated fruit, the efficacy of 1-MCP being higher in tomatoes harvested at the S2 ripening stage. At this stage, the organoleptic properties had already developed in fruit on the plant and tomatoes could thus reach consumers with optimal postharvest quality.  相似文献   

13.
Low temperature storage alters tomato textural properties, resulting in unusual changes in firmness, while ripening during cool storage can confound these chilling-induced textural changes. Inconsistent results have been reported related to chilling-induced alteration in tomato texture. The effects of chilling on tomato texture were investigated using fruit stored at 2.5 or 6 °C (chilled) or 20 °C (non-chilled) for 27 d before transfer to 20 °C. Given that many factors influence the firmness of chilling-injured tomato and different measurement methods indicate different characteristics of tomato texture, the present study employed a range of textural measurement techniques in order to interpret chilling-induced textural changes in tomatoes during long term storage. Analysis of data from a range of textural methods indicated that storage at 6 °C mainly induced loss of turgor whereas 2.5 °C induced loss of tissue integrity along with turgor loss. Plotting textural changes against colour as an indicator of ripening allowed a clearer definition of chilling-induced textural change.  相似文献   

14.
Fruit maturity stage at harvest influences the response to postharvest storage conditions and bioactive compounds content. In this work fruit from two purple eggplant cultivars (Monarca and Perla Negra) were harvested at 12, 15, 18, 20 and 23 d after fruit set (designated as stages I through V) and changes in size, dry weight, calyx area, cell wall material (AIR, alcohol insoluble residue), firmness, respiration, and antioxidants (peel anthocyanins and pulp carotenoids, ascorbic acid, phenolics and chlorogenic acid) were determined. In a second set of experiments the postharvest performance of fruit harvested at stages I (“baby” eggplants), III and IV (traditional harvest stages) during storage at 0 or 10 °C was assessed. Fruit growth continued until late ripening in contrast to calyx expansion and peel anthocyanin accumulation, which were relatively earlier events. Fruit dry weight decreased between stages I and III, remaining constant afterwards. “Baby” eggplants had higher antioxidant capacity, chlorogenic acid (ChA), carotenoids and ascorbic acid contents than late-harvested fruit. ChA predominated in pulp placental tissues at stage I, spreading throughout the fruit core at as ripening progressed. No marked differences in dry mass, antioxidant capacity or responses to postharvest storage regimes were found between fruit harvested at stages III and IV. Late pickings increased yields and led to less dense fruit, which had lower respiration rates. Within this harvest window, storage at 10 °C maximized quality maintenance. In contrast “baby” eggplants stored better at 0 °C. Understanding the developmental changes in bioactive compounds and postharvest performance may help in the maximization of fruit antioxidant properties as well as in the selection of the optimal handling conditions for each ontogenic stage.  相似文献   

15.
Previous work with hyperbaric treatment of tomato focused on application at lower temperature (13 °C). In this work, hyperbaric treatment at varying pressure levels (i.e., 0.1, 0.3, 0.5, 0.7 and 0.9 MPa) at ambient temperature (20 °C) was tested as a potential alternative to conventional refrigerated storage (0.1 MPa at 13 °C) to preserve tomato quality. The experiments were divided into 3 phases: (1) 4 day of hyperbaric treatment, (2) 5 day of post-treatment ripening, and (3) 10 day of post-treatment ripening. Respiration rate (RR) of the tomatoes was continuously monitored during the course of the hyperbaric treatments. Quality attributes were assessed immediately after removal from the hyperbaric treatments and after 5 and 10 day ripening at 20 °C after removal from the treatments. Hyperbaric treatments at ≥0.3 MPa resulted in RR equal or higher than the RR in control fruit (0.1 MPa at 20 °C). The lowest RR was obtained from tomato stored at 0.1 MPa at 13 °C. Hyperbaric treatment at 0.5, 0.7 and 0.9 MPa significantly reduced weight loss, retained color, firmness, total soluble solid (TSS), titratable acidity (TA) and TSS:TA ratio at similar levels as the tomato treated at 13 °C and 0.1 MPa. Firmness after treatment was highest for fruit from 0.1 MPa at 13 °C and from 0.5, 0.7 and 0.9 MPa at 20 °C. The higher firmness advantage declined by 5 day of ripening after treatment, with higher firmness only being retained for fruit from the 0.9 MPa at 20 °C and the 0.1 MPa at 13 °C treatments. After 10 day ripening, firmness was similar for all treatments. Lightness (L*) and hue angle were greater for all treatments compared with the 0.1 MPa at 20 °C treatment. However, only the greater hue angle difference was maintained after 5 day of ripening. After 10 day ripening, no significant differences were found in color attributes. Only 0.1 MPa at 13 °C retained higher soluble solids, lower titratable acidity and higher TSS:TA ratios after treatment and after 5 day ripening. At 10 day of ripening none of the quality attribute differences noted were retained for any of the treatments. These results show that the only consistent effect of hyperbaric treatment at 0.5, 0.7 and 0.9 MPa was to reduce weight loss and enhance firmness retention up to 5 day ripening after treatment.  相似文献   

16.
Methods were tested for rapid induction of ripening capacity in ‘Packham's Triumph’ and ‘Gebhard Red D’Anjou’ pears in order to facilitate early marketing. Fruit of each cultivar were harvested at the onset of maturity and conditioned to develop ripening capacity by exposure to 100 μL L−1 ethylene at 20 °C for 0, 24, 48, or 72 h, followed by varying durations of temperature conditioning at −0.5 or 10 °C. Ripening capacity was tested by measuring fruit firmness after 7 d at 20 °C after completion of conditioning treatments. Fruit firmness was also measured after conditioning but before ripening, and was designated “shipping firmness,” indicative of the potential for the fruit to withstand transport conditions without physical injury. With temperature conditioning at −0.5 °C only, ‘Packham's Triumph’ pears needed 45 d to develop ripening capacity, while ‘Gebhard Red D’Anjou’ pears were not capable of fully ripening after 60 d, the longest duration tested. Using ethylene only, 72 h exposure was necessary to develop full ripening capacity in both cultivars, and adequate shipping firmness was maintained. Using temperature conditioning at 10 °C, ripening capacity in ‘Packham's Triumph’ and ‘Gebhard Red D’Anjou’ developed within 10 and 20 d, respectively, but shipping firmness in ‘Gebhard Red D’Anjou’ was compromised at 20 d. In both cultivars, 24 or 48 h in ethylene followed by 5 d at 10 °C induced ripening capacity while maintaining adequate shipping firmness.  相似文献   

17.
Recently harvested peaches and plums were coated with either Aloe vera or Aloe arborescens gels and allowed to ripen at 20 °C for six days. Both coatings significantly delayed ethylene production, the effect being higher in plum which had the highest ethylene production rates. Changes in quality parameters related to peach and plum postharvest ripening, such as colour changes, reduction of acidity and increasing in ripening index (total soluble solids/total acidity ratio), were significantly delayed in coated fruit. In addition, both coatings significantly reduced weight loss, especially the A. arborescens gel. Thus, A. arborescens gel could be even more effective than A. vera gel for use as an edible coating for preserving the quality of climacteric fruit.  相似文献   

18.
The potential of 1-MCP for controlling ripening in ‘Angeleno’ plum fruit under air and controlled atmosphere (CA) storage was explored, and the possibility that 1-MCP can inhibit development of brown rot caused by Monilinia laxa and internal breakdown in ‘Fortune’ and ‘Angeleno’ plums tested. After harvest, fruit were exposed to 300 and 500 nl l−1 (in 2003) and 500 nl l−1 1-MCP (in 2004) at low temperatures (0–3 °C) for 24 h. After treatment the plums were stored in air at 0 °C and ‘Angeleno’ fruit were also stored in CA storage (1.8% O2 + 2.5% CO2). Following storage, fruit were kept at 20 °C. In ‘Angeleno’ fruit, 1-MCP was effective in delaying the loss of firmness and colour changes during holding at 20 °C. 1-MCP reduced brown rot in fruit stored in CA but no significant reduction was found in air storage. Internal breakdown, a major physiological storage disorder in plums, was inhibited by 1-MCP treatment. Furthermore, since 1-MCP applied in air storage showed better results than the control in CA conditions, an application of 1-MCP before air storage could be the best way to reduce the ripening process for short or medium storage periods (40 and 60 days). CA storage plus 1-MCP treatment could be used for long periods (80 days).  相似文献   

19.
This study was undertaken to optimize ethanol vapor application as a ripening inhibitor on whole mangoes to extend fresh-cut mango shelf life. Freshly harvested mangoes were first subjected to hot water (+HW) at 46 °C for 60 or 90 min to simulate quarantine heat treatments, or remained untreated (−HW). Fruit of each batch (+ or −HW) were then held at 20–25 °C for 4 or 7 d (D4 and D7) after the hot water treatment before being exposed to ethanol vapors [0 h (E0), 10 h (E10), or 20 h (E20)]. Fruit were then peeled and cut into slices, packed in plastic clamshells, and stored at 7 °C for 15 d. Only slices from +HW-D4-E20-treated fruit maintained higher firmness, hue angle, and titratable acidity (TA) in storage. The +HW-D7-E10- or E20-treated fruit had higher hue angle than E0, but firmness, total soluble solids, TA, pH, and respiration rate did not differ. Internal ethanol and acetaldehyde were very high in slices from +HW, D4 and D7, E20 and −HW-D7-E20-treated fruit. A sensory panel could perceive higher firmness and acidity in slices from fruit treated with ethanol. However, E20 induced off-flavor, and these fruit were least preferred.Ethanol exposure on fruit was repeated with purchased mangoes that had been subjected to a commercial quarantine heat treatment. A second heat treatment of 18 h at 38 °C and 98% relative humidity was added to one batch of fruit in this experiment. Ethanol vapors did not result in delayed ripening in those mangoes. However, this treatment inhibited microbial growth. The second heat treatment did not improve fresh-cut mango shelf life, and further, microbial growth increased compared to other treatments. It is concluded that, due to inconsistent results, ethanol vapor applied for 20 h to whole mangoes prior to processing for fresh-cut is not a practical approach to delay ripening; however, at lower doses (10 h), it could be used as a safe microbial control in a fresh-cut production sanitation system.  相似文献   

20.
The relationship between fruit maturity at harvest and the duration of postharvest exposure to ?1 °C required to induce ripening capacity was studied in ‘Comice’ and ‘Bosc’ pears. As fruit of both cultivars were harvested progressively later, shorter durations of exposure to ?1 °C were required to induce ripening capacity. The relationship between the duration of conditioning at ?1 °C and the fruit flesh firmness after 7 d at 20 °C was well-described by second-order polynomial equations. These equations were used to determine the number of days at ?1 °C required to induce ripening capacity for each harvest date. A linear relationship was observed between the number of days after fruit in the orchard reached maturity that fruit were harvested and the number of days of low-temperature conditioning needed to induce ripening capacity. This relationship may be used to predictively estimate the duration of low-temperature conditioning required to induce ripening based on harvest date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号