首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Postharvest diseases limit the storage period and marketing life of figs. The efficacy of chlorine dioxide by fogging was tested for the control of postharvest diseases of black fig (Ficus carica L. cv. Bursa Siyahi). Fruit were fogged with various concentrations of chlorine dioxide in a cold storage unit for 60 min at room temperature. Treated fruit were stored either in air or modified atmosphere bags for 7 d at 1 °C followed by 2 d shelf-life at 20 °C. Fogging at 300–1000 μL L−1 significantly reduced natural incidence of decay, most of which was gray mold. The efficacies of fogging at 500 and 1000 μL L−1 were at the same level and fogging at 1000 μL L−1 was superior to that at 300 μL L−1 in fruit stored in air. Modified atmosphere packaging did not improve the efficacy of fogging in reducing decay incidence. The epiphytic population on the fruit surface was similarly reduced by chlorine dioxide fogging. All treatments significantly reduced total microorganisms, fungal and bacterial populations in fruit. In addition, microorganisms in the storage atmosphere were significantly reduced. None of the treatments affected the visual quality and taste of fruit.  相似文献   

2.
Our previous studies demonstrated that tomato fruit (breaker or pink) exposed at the midclimacteric stage to hypobaric hypoxia for 6 h exhibited transient increased sensitivity to subsaturating levels of 1-methylcyclopene (1-MCP). In the present study, we examined the effect of gaseous 1-MCP (500 nL L−1, 20.8 μmol m−3) applied to mid-climacteric (>60% peak ethylene production) tomato fruit under hypobaric hypoxia (10 kPa, 2.1 kPa O2,) for 1 h. Application of 500 nL L−1 1-MCP under atmospheric conditions had little effect on softening and timing and magnitude of peak ethylene production, and moderate effects on respiration and lycopene and PG accumulation. By contrast, midclimacteric fruit exposed to 500 nL L−1 gaseous 1-MCP under hypobaric hypoxia for 1 h showed acute disturbance of ripening. Firmness and hue angle declines were delayed for ten days and peak ethylene production for eleven days compared with trends for the other treatments. Maximum ethylene production did not exceed 50% of maxima for the other treatments and a definitive respiratory climacteric was not observed. Accumulation of internal gaseous 1-MCP was enhanced under hypobaric hypoxia. Internal 1-MCP in fruit exposed to 20 μL L−1 1-MCP (831 μmol m−3) under hypobaric hypoxia for 2 or 10 min averaged 7.5 ± 0.5 and 8.7 ± 1.4 μL L−1, respectively, compared with 0.8 ± 0.3 and 3.9 ± 0.7 μL L−1 in fruit exposed under atmospheric conditions. After 1 h exposure, internal 1-MCP averaged 10.8 ± 2.2 μL L−1 under hypobaric hypoxia compared with 5.3 ± 1.4 μL L−1 under atmospheric conditions. The results indicate that high efficacy of 1-MCP applied under hypobaric hypoxia is due to rapid ingress and accumulation of internal gaseous 1-MCP.  相似文献   

3.
Factors that affect the efficacy of 1-methycyclopropene (1-MCP) treatment of apples [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] include cultivar and maturity. In this study, ‘McIntosh’, ‘Cortland’ and ‘Empire’ apples were categorized by internal ethylene concentrations (IECs) at harvest, treated with 1 μL L−1 1-MCP, and the IECs of individual fruit followed at 30 d intervals during air storage at 0.5 °C for 90 d. IECs at harvest ranged from <0.5 μL L−1 to ≥100 μL L−1, 51 < 100 μL L−1, and 10 < 50 μL L−1 for ‘McIntosh’, ‘Cortland’ and ‘Empire’, respectively. 1-MCP treatment resulted in a decrease of IECs in fruit of all cultivars by day 30 after harvest. During subsequent storage IECs remained low in fruit with <1 μL L−1 at harvest, but in ‘McIntosh’, ‘Cortland’ increased in proportion to IECs at harvest, but not in ‘Empire’. The importance of initial IECs in fruit on the persistence of 1-MCP inhibition of ethylene production was confirmed in a further experiment, in which IECs in untreated and 1-MCP treated ‘McIntosh’ and ‘Empire’ apples were measured for up to 194 d. 1-MCP also decreased 1-aminocyclopropene-1-carboxylic acid (ACC) concentrations in fruit. The results of our study are consistent with the hypothesis that IEC modulates the sensitivity of climacteric fruit to 1-MCP.  相似文献   

4.
Previous reports showed that both gaseous and aqueous 1-methylcyclopropene (1-MCP) delay ripening of avocado (Persea americana Mill.), but there are no reports of the influence of 1-MCP on its sensory attributes. The objective of this study was to evaluate the effects of ethylene pretreatment and/or exposure to gaseous or aqueous 1-MCP on fruit ripening and sensory attributes of ‘Booth 7’ avocado, a Guatemalan-West Indian hybrid. Separate experiments were conducted during two seasons (2008 and 2009) with fruit harvested at preclimacteric stage in October (early season) and in November (late season). Fruit from Season 1 were exposed to ethylene (4.07 μmol L−1) for 12 h at 20 °C, and stored for more 12 h at 20 °C in an ethylene-free (ethylene, <0.1 μL L−1) room prior to treatment with either aqueous (1.39 or 2.77 μmol L−1 a.i.) or gaseous (3.15 or 6.31 nmol L−1 a.i.) 1-MCP. Ripening was monitored and firmness, respiration, ethylene production and weight loss were measured. Texture profile analysis and sensory analysis were performed on ripe fruit only (firmness, 10–15 N). Fruit from Season 2 were not exposed to ethylene pretreatment but treated only with aqueous 1-MCP 24 h after harvest. Fruit were assessed exclusively for sensory analysis when ripe (firmness, 10–15 N). Treatment with either 1-MCP formulation effectively delayed ripening from 4 to 10 d for early-season fruit, and from 4 to 6 d for late-season fruit. Higher concentrations of 1-MCP of either formulation had the greatest effect on selected pulp textural parameters of early-season fruit; the gaseous formulation had greater effect on late-season fruit quality than the aqueous formulation. In general, sensory panelists ratings of overall liking were not affected by 1-MCP treatment. Both aqueous and gaseous 1-MCP formulations delayed ripening of the Guatemalan-West Indian ‘Booth 7’ avocado without significant loss in appearance or in sensory attributes and, therefore, could be considered for use as a postharvest treatment for this hybrid.  相似文献   

5.
Separate experiments were conducted with three major commercial avocado (Persea americana Mill.) cultivars grown in Florida: ‘Simmonds’ (early-season, West Indian race); ‘Booth 7’ (mid-season, Guatemalan-West Indian hybrid); and ‘Monroe’ (late-season, Guatemalan-West Indian hybrid). Fruit were harvested at preclimacteric stage and left untreated (Control) or treated 24 h after harvest with aqueous 1-methylcyclopropene (1-MCP) at 1.39 (treatment M1) or 2.77 μmol L−1 a.i. (treatment M2) (75 or 150 μg L−1) for 1 min at 20 °C. Whole fruit ripening was monitored at 20 °C/92% ± 3% R.H. and based on whole fruit firmness, respiration and ethylene evolution. Fruit volatiles were assessed at preclimacteric (24 h after harvest), mid-ripe (half of initial fruit firmness) and ripe maturity stages, from 100 g of chopped pulp using a purge and trap system. Untreated, firmer fruit ‘Monroe’ (268 N at harvest) ripened within 12 d of harvest while softer fruit ‘Simmonds’ (118 N) ripened within only 6 d. 1-MCP treatment extended ripening time from 33% (M1) to 83% (M2). All fruit softened normally, indicating the potential benefits of aqueous 1-MCP as a postharvest treatment for avocado when applied at these concentrations. Volatile profiles differed among the three cultivars with several compounds detected in only one cultivar, results that may contribute to a potential identification of the origin of the cultivar based on fruit volatile composition. The West Indian cultivar ‘Simmonds’ had much higher emission of hexanal (preclimacteric fruit) and cis-3-hexenal and cis-3-hexen-1-ol (ripe fruit) than the Guatemalan-West Indian hybrids ‘Booth 7’ and ‘Monroe’. On the other hand, these latter hybrids had much higher levels of alkanes than ‘Simmonds’. Treatment with 1-MCP increased emissions of alkanes during ripening of ‘Booth 7’ and ‘Monroe’. Total volatiles of avocado decreased during ripening mainly due to the significant reduction of sesquiterpenes, the main group of volatiles in all cultivars at harvest (‘Simmonds’, 53%; ‘Booth 7’, 78%; ‘Monroe’, 66%). β-Caryophyllene was the major compound at harvest, but decreased to less than 2% in ripe fruit, at which point most sesquiterpenes were not detected. Among the 10 sesquiterpenes commonly found in the avocado cultivars in this study, only α-Copaene had significantly higher emissions in mid-ripe fruit treated with the higher concentration of 1-MCP (2.77 μmol L−1 a.i.), suggesting that ethylene participates in the regulation of this sesquiterpene.  相似文献   

6.
Green mould (caused by Penicillium digitatum) is a major cause of postharvest losses in citrus. Residue loading of thiabendazole (TBZ) with application methods typically used in South African packhouses and green mould control was studied. TBZ was applied curatively and protectively in dip, drench and wax coating treatments and fruit were inoculated with a TBZ-sensitive or a TBZ-resistant isolate of P. digitatum. The dip treatments consisted of TBZ concentrations of 0–2000 μg mL−1; fruit were dipped for 60 s at 22 °C at a pH of 7. Residues differed between fruit batches and ranged from 0.5 to 1.7 μg g−1 at 1000 μg mL−1 TBZ. Curative dip treatments almost completely controlled green mould (>96% at 1000 μg mL−1 TBZ). The residue level needed for 75% curative control ranged from 0.06 to 0.22 μg g−1, depending on citrus type. Protective treatments were unreliable and control varied from 17% to 97.9% at 1000 μg mL−1 TBZ between fruit batches. Drench treatments consisted of exposure times of 30, 60 and 90 s with 1000 or 2000 μg mL−1 TBZ. Average TBZ residues were 2.14 μg g−1 for Clementine mandarin fruit and 3.50 μg g−1 for navel orange fruit. Green mould control on navel orange fruit resulted in 66–92%, 34–90% and 9–38% control for curative treatments after 6 and 24 h and protective treatments, respectively, depending on fruit batch. Wax with 4000 μg mL−1 TBZ was applied at 0.6, 1.2 and 1.8 L wax ton−1 fruit. Chilling injury was evaluated after fruit storage at −0.5 °C for 40 days. Average TBZ residues loaded was 1.3, 1.3 and 2.7 μg g−1 at the recommended 1.2 L ton−1 for Satsuma mandarin, Clementine mandarin and Valencia orange fruit, respectively. Protective treatments showed lower infection levels (14–20%) than curative treatments (27–40%) for Valencia orange fruit. The same trend was observed with Satsuma (92–95% curative; 87–90% protective) and Clementine mandarin fruit (82–90% curative; 59–88% protective), but control was relatively poor. TBZ application in wax exceeded 5 μg g−1 at higher wax loads (1.2 and 1.8 L ton−1). Wax treatments showed a significant reduction in chilling injury; TBZ had an additive effect. TBZ resistant isolates could not be controlled.  相似文献   

7.
Anthracnose caused by Colletotrichum gloeosporioides is a major postharvest disease in avocados that causes significant losses during transportation and storage. Complete inhibition of the radial mycelia growth of C. gloeosporioides in vitro was observed with citronella or peppermint oils at 8 μL plate−1 and thyme oil at 5 μL plate−1. Thyme oil at 66.7 μL L−1 significantly reduced anthracnose from 100% (untreated control) to 8.3% after 4 days, and to 13.9% after 6 days in artificially wounded and inoculated ‘Fuerte’ and ‘Hass’ fruit with C. gloeosporioides. GC/MS analysis revealed thymol (53.19% RA), menthol (41.62% RA) and citronellal (23.54% RA) as the dominant compounds in thyme, peppermint and citronella oils respectively. The activities of defence enzymes including chitinase, 1, 3-β-glucanase, phenylalanine ammonia-lyase and peroxidase were enhanced by thyme oil (66.7 μL L−1) treatment and the level of total phenolics in thyme oil treated fruit was higher than that in untreated (control) fruit. In addition, the thyme oil (66.7 μL L−1) treatment enhanced the antioxidant enzymes such as superoxide dismutase and catalase. These observations suggest that the effects of thyme oil on anthracnose in the avocado fruit are due to the elicitation of biochemical defence responses in the fruit and inducing the activities of antioxidant enzymes. Thus postharvest thyme oil treatment has positive effects on reducing anthracnose in avocados.  相似文献   

8.
‘Crimson Seedless’ is a popular table grape cultivar, but in warm-climates, its fruits often fail to develop adequate red color, even after they have been treated with ethephon. Application of abscisic acid (ABA) may improve color more effectively than ethephon, but its potential effects on postharvest quality must be considered before recommending its use on table grapes. Therefore, we compared the postharvest quality attributes of grapes treated preharvest with 250 μL L−1 ethephon, the current industry standard, to that of grapes treated with 150 or 300 μL L−1 ABA, or nontreated. Treatment with either ethephon or 150 μL L−1 ABA allowed grapes to be harvested 10 d before nontreated fruit, and fruits treated with 300 μL L−1 ABA attained marketable quality 30 d before nontreated fruit. Early harvest was possible because the treatments induced more rapid coloring of the grapes, and though total yield was not affected by any plant growth regulator (PGR), all PGRs doubled packable yields by improving the color of the grapes. ABA-treated grapes were characterized by superior appearance both in berries and clusters’ rachises compared to ethephon-treated and control grapes. Other quality attributes such as firmness, berry weight, decay incidence, and shatter remained unaffected among treatments. Therefore, ABA is an effective alternative to ethephon for enhancing the color and maintaining postharvest quality of ‘Crimson Seedless’ grapes.  相似文献   

9.
Tomato fruit (Lycopersicon esculentum L. cv. Carousel) were exposed to ozone concentrations ranging between 0.005 (controls) and 1.0 μmol mol−1 at 13 °C and 95% RH. Quality-related attributes and organoleptic characteristics were examined during and following ozone treatment. Levels of soluble sugars (glucose, fructose) were maintained in ozone-treated fruit following transfer to ‘clean air’, and a transient increase in β-carotene, lutein and lycopene content was observed in ozone-treated fruit, though the effect was not sustained. Ozone-enrichment also maintained fruit firmness in comparison with fruit stored in ‘clean air’. Ozone-treatment did not affect fruit weight loss, antioxidant status, CO2/H2O exchange, ethylene production or organic acid, vitamin C (pulp and seed) and total phenolic content. Panel trials (employing choice tests, based on both appearance and sensory evaluation) revealed an overwhelming preference for fruit subject to low-level ozone-enrichment (0.15 μmol mol−1), with the effect persisting following packaging.  相似文献   

10.
Controlled atmosphere (CA) treatments with ultralow oxygen (ULO) alone and in combinations with 50% carbon dioxide were studied to control grape mealybug, Pseudococcus maritimus (Ehrhorn) on harvested table grapes. Two ultralow oxygen levels, 30 and <0.01 μL L−1, were tested in both ULO and ULO + 50% CO2 treatments. The ULO treatments with the lower oxygen level were more effective than the ULO treatments at the higher oxygen level. The ULO + 50% CO2 treatments were more effective than the ULO treatments. Grape mealybug eggs were significantly more tolerant of ULO and ULO + CO2 treatments than nymphs and adults. A 14 day ULO treatment with 30 μL L−1 O2 at 2 °C did not achieve 100% mortalities of any life stage. In the presence of 50% CO2, the 14 d treatment achieved complete mortality of all life stages of the grape mealybug. A 3 d ULO treatment with <0.01 μL L−1 O2 at 2 °C resulted in 93.3% mortality of nymphs and adults. The 3 d ULO treatment in combination with 50% CO2 treatments, however, achieved complete control of grape mealybug nymphs and adults and caused 70.5% relative egg mortality. Complete egg mortality was achieved in a 10 d ULO + 50% CO2 treatment with <0.01 μL L−1 O2 at 2 °C. Both the 14 d CA treatment with 30 μL L−1 O2 and 50% CO2 and the 10 d CA treatment with <0.01 μL L−1 O2 and 50% CO2 were tested on table grapes and grape quality was evaluated after two weeks of post-treatment storage. The CA treatments did not have a significant negative impact on grape quality and were safe for table grapes. The study indicated that CA treatments have potential to be developed for postharvest control of grape mealybug on harvested table grapes.  相似文献   

11.
Gaseous 1-methylcyclopropene (1-MCP) has been widely employed for delaying ripening and senescence of harvested fruit and vegetables; however, details on ingress of gaseous1-MCP in plant tissues, which might contribute to differences in responsiveness of different horticultural commodities to 1-MCP, have not been reported. In this study, we used spinach and bok choi leaves, disks from tomato epidermis, stem-scar and avocado-exocarp tissues, and whole tomato fruit to examine ingress of gaseous 1-MCP. Using a dual-flask system, equilibration of 20 μL L−1 (831 μmol m−3) 1-MCP through leaf tissue was reached within 1–2 h, and paralleled 1-MCP transfer through glass-fiber filter paper. For disks derived from fruit tissues, changes in 1-MCP concentrations in the dual-flask system showed anomalous patterns, declining as much as 70% in source flasks with negligible accumulation in sink flasks. The pattern of 1-MCP distribution was markedly different from that of ethylene, which approached equal distribution with tomato stem-scar and avocado exocarp but not tomato epidermis tissues. 1-MCP ingress was further addressed by exposing whole tomato fruit to 20 μL L−1 1-MCP followed by sampling of internal fruit atmosphere. Tomato fruit accumulated internal gaseous 1-MCP rapidly, reaching approximately 8–9 μL L−1 within 3–6 h at 20 °C. Internal 1-MCP concentration ([1-MCP]) declined around 74 and 94% at 1 and 3 h after exposure, respectively. Ingress was similar at all ripening stages and reduced by 45% in fruit coated with commercial wax. Blocking 1-MCP ingress through stem- and blossom-scar tissues reduced accumulation by around 60%, indicating that ingress also occurs through epidermal tissue. Fruit preloaded with 1-MCP and immersed in water for 2 h retained about 45% of post-exposure gaseous [1-MCP], indicating that 1-MCP is not rapidly sorbed or metabolized by whole tomato fruit. Rapid ingress of gaseous 1-MCP was also observed in tomato fruit exposed to aqueous 1-MCP. Both accumulation and post-exposure decline in internal gaseous [1-MCP] are likely to vary among different fruit and vegetables in accordance with inherent sorption-capacity, surface properties (e.g., waxes, stoma), volume and continuity of gas-filled intercellular spaces, and tissue hydration.  相似文献   

12.
Exposure of mature ‘Fallglo’ tangerine fruit to blue light with a photon fluence rate 40 μmol m−2 s−1 reduced symptom development of blue mold (Penicillium italicum), green mold (Penicillium digitatum), and stem end rot (Phomopsis citri) postharvest decays. Direct exposure to blue light was required to reduce decay caused by Penicillium. Blue light (40 μmol m−2 s−1) reduced in vitro fungal growth of P. italicum and P. citri. The growth of P. digitatum was more tolerant to blue light, however, the activity of fungal polygalacturonase was reduced by blue light at the intensity of 40 μmol m−2 s−1. Gas chromatography–mass spectrometry analysis identified 29 chemical constituents in flavedo oil; blue light induced only octanal accumulation. Application of octanal suppressed growth of P. italicum, P. digitatum, and P. citri in vitro. Treatment of fruit with octanal at 5 mM or 50 mM suppressed symptom development caused by Penicillium and P. citri, but discolored the peel. Inhibition of postharvest decays by blue light may be due to a combination of inhibition of fungal growth and induction of defensive responses in the host.  相似文献   

13.
The accumulation of bacteria in vase water is often associated with premature senescence in many cut flower species. In the present study, we tested the efficacy of aqueous chlorine dioxide (ClO2) to extend flower display life by preventing the build-up of bacteria in vase solutions. The addition of 2 or 10 μL L−1 ClO2 to clean deionized water extended the vase life of Alstroemeria peruviana ‘Senna’, Antirrhinum majus ‘Potomic Pink’, Dianthus caryophyllus ‘Pasha’, Gerbera jamesonii ‘Monarch’, Gypsophila paniculata ‘Crystal’ and ‘Perfecta’, Lilium asiaticum ‘Vermeer’, Matthiola incana ‘Ruby Red’ and Rosa hybrida ‘Charlotte’ flowers by 0.9–13.4 d (7–77%) relative to control (i.e. 0 μL L−1 ClO2) stems. The beneficial effects of ClO2 treatment were associated with a reduction in the accumulation of aerobic bacteria in vase water and on cut surfaces of flower stems. ClO2 treatment was also effective in maintaining or extending the vase life of A. majus ‘Potomic Pink’, Dendrathema × grandiflorum ‘Albatron’, G. paniculata ‘Perfecta’ and M. incana ‘Ruby Red’ flowers even when stems were placed into water containing 1011 CFU L−1 bacteria. The efficacy of 10 μL L−1 ClO2 in vase water containing 0.2 g L−1 citric acid and 10 g L−1 sucrose to extend the display life of G. jamesonii ‘Lorca’ and ‘Vilassar’ flowers was equal to or greater than other tested biocides (i.e. aluminum sulfate, dichloroisocyanuric acid, 8-hydroxyquinoline sulfate, Physan 20™, sodium hypochlorite). Taken collectively, the results of the present study highlight the potential of aqueous ClO2 for use as an alternative antibacterial agent in flower vase solutions.  相似文献   

14.
Fresh basil (Ocimum basilicum L.) is a highly perishable leafy green vegetable with a storage life of 4–5 d at room temperature. Exposure of basil leaves to temperatures below 12 °C during storage results in chilling injury; therefore, refrigeration cannot be used to extend postharvest life of basil. Typically, leafy vegetables are stored in darkness or extremely low irradiance. Darkness is known to induce senescence, and the initial phase of senescence is reversible by exposure to light. In this work, we studied the effects of low-intensity white light pulses at room temperature on postharvest senescence of basil leaves. Daily exposure for 2 h to 30–37 μmol m−2 s−1 of light was effective to delay postharvest senescence of basil leaves. Chlorophyll and protein levels decreased, ammonium accumulated and leaves developed visual symptoms of deterioration (darkening) during storage in darkness. Light pulses reduced the intensity of these senescence symptoms. The photosynthesis light compensation point of basil leaves was 50 μmol m−2 s−1 i.e., higher than the intensity used in this study, and the effect of treatment with red light was the same as with white light, while far red light was ineffective. Light pulses exerted a local effect on chlorophyll loss, but the effect on protein degradation was systemic (i.e., spreading beyond the illuminated parts of the leaf blade). The results of this study indicate that daily treatment for 2 h with low intensity light (30–37 μmol m−2 s−1 every day) during storage at 20 °C is an effective treatment to delay postharvest senescence of basil leaves. The delay of postharvest senescence by low intensity light pulses seems to be mediated by phytochromes, and it is systemic for protein, and partially systemic for chlorophyll degradation.  相似文献   

15.
The effects of distilled, ozonated (12 mg L−1) and chlorinated (100 mg L−1) water treatments on inactivation of Escherichia coli and Listeria innocua inoculated on lettuce, spinach, and parsley and on some chemical characteristics (chlorophyll a, chlorophyll b, ascorbic acid, and total phenolic contents and antioxidant activity) of these vegetables were investigated. Chlorine and ozone washes resulted in average log reductions (±standard error) of 2.9 ± 0.1 and 2.0 ± 0.3 for E. coli in the vegetables tested, respectively, while the efficiency of ozone (2.2 ± 0.1 log) was very close to that of chlorine (2.3 ± 0.1 log) on L. innocua. Aqueous ozone did not cause any detrimental effects on the chemical characteristics of the vegetables. The effect of gaseous ozone treatment (950 μL L−1, 20 min) on microbial inactivation and the chemical characteristics of parsley were also determined. This treatment resulted in 1.0–1.5 log reductions in the numbers of both microorganisms but caused significant losses in important bioactive compounds of parsley. Ascorbic acid and total phenolic contents and antioxidant activity in ozone-treated samples were 40.1, 14.4, and 41.0%, respectively, less than the control samples.  相似文献   

16.
With the aim of extending vase life of cut dahlia flowers, we investigated the postharvest characteristics of the flowers. Our focus was on the role of ethylene on senescence and on treatments that have extended vase life of other flowers. Continuous exposure to ethylene at 2 or 10 μL L−1 significantly accelerated petal abscission in cut flowers. Flowers continuously immersed in 1 or 10 μL L−1 2-chloroethylphosphonic acid (CEPA) solution wilted earlier than those treated with distilled water (DW) or 0.15 g L−1 citric acid. Ethylene production from the ovary and ray petal was relatively high (4.5 and 0.9 nL g−1 fresh weight h−1, respectively) at harvest, but decreased gradually over 5 days. No remarkable increase in ethylene production was observed during senescence. Silver thiosulfate complex (STS), an inhibitor of ethylene action, did not extend the vase life of cut flowers, although a high silver concentration was detected in flower organs. In contrast, pulse treatment with 1-methylcyclopropene (1-MCP) and dip treatment with 6-benzylaminopurine (BA) extended the vase life of florets, and BA was more effective than 1-MCP when the flowers were held in both DW and CEPA. BA spray treatment extended vase life of cut ‘Kokucho,’ ‘Kamakura’ and ‘Michan’ flowers. These results suggest that dahlia flower senescence is partially regulated by ethylene, and BA is more effective in delaying the senescence of cut dahlia flowers than ethylene action inhibitors.  相似文献   

17.
Imazalil (IMZ) is widely used in citrus packhouses to manage green mould, caused by Penicillium digitatum. The aim of this study was to investigate green mould control efficacy of IMZ applied in a wax coating, and the combination of aqueous dip and coating IMZ applications. Single application of IMZ at 3000 μg mL−1 in carnauba wax coating at rates of 0.6, 1.2 and 1.8 L tonne−1 of fruit gave better protective (mean 13% infection) than curative (mean 70% infection) control of the sensitive isolate. Imazalil residue levels increased (0.85 to 1.75 μg g−1) with increasing coating load. However, the resistant isolate could not be controlled (>74% infection). Dip only treatment (IMZ sulphate at 500 μg mL−1 for 45 s and 90 s) gave good curative control (≈77%) of the sensitive isolate at residue loading of 0.12–0.73 μg g−1. Wax coating only treatment (IMZ at 3000 μg mL−1 at 1.8 L wax tonne−1) gave good protective control and improved sporulation inhibition (≈80%) at residue loading of 1.32–7.09 μg g−1. The MRL of 5 μg g−1 was exceeded at higher wax loads on navels and clementines. Double application with dip (45 s in IMZ sulphate at 500 μg mL−1) followed by 2000 μg mL−1 IMZ in wax coating at 0.6, 1.2 and 1.8 L wax tonne−1 resulted in residue loading of 1.42 to 2.83 μg g−1, increased protective control (≈69%) as well as curative control (≈83%). In all treatments, poor curative and protective control of the resistant isolate was observed (<46% and <55%, respectively). Double application demonstrated superior green mould control by giving good curative and protective control and sporulation inhibition.  相似文献   

18.
Exogenous ethylene is commonly used as a commercial sprouting inhibitor of potato tubers. The role of ethylene in the control of sprouting of sweetpotato roots, however, is not known. The aim of this study was to investigate the role of ethylene in control of sprouting in sweetpotato roots by observing the effect of an ethylene synthesis inhibitor, aminoethoxyvinylglycine (AVG), and the ethylene antagonist, 1-methylcyclopropene (1-MCP), in the presence and absence of exogenous ethylene on root sprouting and associated sugar accumulation. Continuous exposure to 10 μl L−1 ethylene, 24 h exposure to 625 nl L−1 1-MCP or dipping in 100 μl L−1 AVG all inhibited sprout growth in sweetpotato roots of two varieties over 4 weeks of storage at 25 °C. The observations that both ethylene on its own and 1-MCP, which inhibits ethylene action, inhibit sprout growth indicate that while continuous exposure to exogenous ethylene leads to sprout growth inhibition, ethylene is also required for sprouting. In potato tubers ethylene is required to break dormancy, while continuous exposure inhibits sprout growth.Monosaccharide concentrations in ethylene, 1-MCP or AVG treated roots were lower than in untreated roots, and for ethylene treated roots this was associated with higher respiration rates. This is consistent with the activation of some additional process by ethylene which uses energy through sugar metabolism. 1-MCP and AVG both inhibited this increase in respiration rate and counteracted the decrease in monosaccharide concentrations. 1-MCP presumably counteracts the ethylene stimulation of this process, while the effect of AVG is attributed to its possible inhibitory effects on protein synthesis.  相似文献   

19.
Gerbera flowers (Gerbera jamesonii) often show stem bending. In four cultivars (Tamara, Liesbeth, Cora, and Mickey), we tested the effects on bending of antimicrobial compounds (chlorine bleach, a slow release chlorine compound, 8-hydroxyquinoline citrate [HQC], silver nitrate, carvacrol and thymol), some combined with sugars. At concentrations used for other cut flowers, inclusion in the vase solution of several of the antimicrobial compounds delayed bending, had no effect, or hastened bending. Hastening of bending was found at higher concentrations. It was accompanied with visible damage on the stem ends. Results with HQC indicated high toxicity as it did not delay bending at any of the concentration tested (100–400 mg L−1). At 200 mg L−1 HQC induced growth of bacteria that were not found in the controls. The number of bacteria in the vase water showed a low correlation with bending. Visible toxicity on the stem surface was often associated with a high bacteria count. However, at relatively high concentrations of the antimicrobial compounds stem bending was associated with a low count. This indicated an effect other than bacteria. Water uptake was low in stems that bent early. It is hypothesized that material from dead stem cells resulted in a xylem blockage which led to early bending. Sucrose at 15 g L−1 in combination with an antimicrobial compound (slow release chlorine, HQC) resulted in the absence of stem damage and produced much less bending than the same concentration of the antimicrobial compounds alone. Sucrose apparently counteracted the toxic effects of the antimicrobial chemicals.  相似文献   

20.
Fresh carrots were treated with or without 1.0 μL L−1 1-methylcyclopropene (1-MCP) at 10 °C for 16 h, and then exposed to 300 or 1000 nL L−1 ozone at 10 °C for 0, 1, 2, or 4 days. The carrots were stored at 0 °C for up to 24 weeks and evaluated every 4 weeks for resistance to challenge inoculations of Botrytis cinerea and Sclerotinia sclerotiorum. Quality attributes and stress and flavor volatiles were also quantified. Decay resistance to B. cinerea was induced by treatments with 1000 nL L−1 ozone for 2 or 4 days, however no lasting resistance to S. sclerotiorum was induced. Firmness was reduced in carrots treated with either 300 or 1000 nL L−1 ozone for 4 days. Treatment with ozone for 1, 2, or 4 days resulted in 60–90% greater respiration rates than controls, but this effect diminished within 4 weeks of storage. Ozone treatments stimulated the production of the stress volatiles ethanol and hexanal, which were, respectively, 43- and 11-times greater than the controls immediately after a 4-day exposure to 1000 nL L−1, but this effect diminished with storage time. Sucrose concentrations were reduced, but terpene concentrations were increased. Treatment with 1-MCP reduced B. cinerea resistance induced by the ozone treatments. Respiration rates, loss of sucrose, and increase in glucose and fructose during storage were also reduced by 1-MCP treatment. Treatment with 1-MCP had no effect on weight loss or firmness. In general, the concentrations of pre-storage ozone that induced resistance to B. cinerea also reduced carrot quality and therefore are not likely of commercial value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号