首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We used a null-balance porometer to measure leaf conductance of mature and primary leaves of natural seedlings, saplings, and trees ofPinus roxburghii (chir) during autumn at four sites at 1,320–1,930 m elevation in the central Himalaya of India. Our hypothesis that primary leaves had higher leaf conductance than mature leaves (needles in fascicles), based on measurements in other pines, was rejected. Comparisons on the same saplings and seedlings showed lower leaf conductance for primary leaves than for mature leaves. Primary leaves on seedlings and saplings also did not consistently have higher leaf conductance than mature leaves on near-by trees. Mature leaves on seedlings, however, did often have higher conductance than mature leaves on nearby trees. Mean values for leaf conductance (mmol m−2 s−1, based on total leaf surface area) ranged from 42–82 for mature leaves on trees, 60–121 for mature leaves on seedlings, and 28–67 for primary leaves on seedlings. Compared to published values for other pine species, conductance of mature leaves ofP. roxburghii is relatively low. Funding for this study was provided by grants from the United States National Science Foundation, INT-9312052 and INT-9404043. We appreciate the review of an early draft by Barbara Bond.  相似文献   

2.
Herbivore damage can induce the host plant to alter the chemical and physical qualities of its leaves, which is thought to be a plant strategy—termed “induced response”—for avoiding further herbivory. In woody plants, many studies have considered variation in induced response with resource availability, but few studies have examined this variation in relation to growth patterns of woody plants. We studied the phenotypic variability of induced response within successively flushing Quercus serrata seedlings. Q. serrata seedlings were grown under controlled conditions. The controlled factors were herbivore damage (herbivore-damaged and -undamaged) and soil fertility (low and high). At each flush stage, the concentrations of condensed tannin (CT), total phenolics (TP), and nitrogen (N) in leaves were analyzed, and the leaf mass per area (LMA) was measured. CT and TP concentrations in leaves and LMA were higher in herbivore-damaged seedlings. Leaves of the first flushes showed greater sensitivity to herbivore damage and had a higher CT concentration than leaves of the later flushes. Furthermore, seedlings growing in low-fertility soil showed a greater induced response. The results suggest that the induced response of Q. serrata seedlings was related to the contributions of the tissue to current productivity. Leaves of the first flush showed a greater induced response, possibly because they play an important role in subsequent growth. The potential of Q. serrata seedlings to adjust the properties of leaves depending on herbivory and soil fertility in relation to growth patterns may be advantageous on the forest floor, where seedlings grow in soil of heterogeneous fertility and are constantly exposed to herbivory.  相似文献   

3.
We performed biosafety assessments of transgenic poplars prior to field trials. Constitutive expression of the Aspergillus aculeatus xyloglucanase in Populus alba increased the cellulose content and specific gravity of its stem, the leaves of which were visibly greener, thicker, and smaller than those of the wild-type plant. Although the young transgenic poplars grew faster than the wild type in a growth chamber, there was no distinguishable difference in growth between the poplars when they were placed in a special screened greenhouse. Allelopathic tests showed that the transgenic poplars do not produce harmful substances. Based on all the biosafety assessments and the scientific literature on poplar species, we came to the conclusion that transgenic poplars probably do not disturb the biological diversity of the surrounding environment, even when they are submitted to field trials.  相似文献   

4.
西南桦和光皮桦幼苗外形特征十分相似,在种源不明确的情况下,苗木调运时很难在现场快速鉴别与区分。由于两个树种各自适宜栽培的海拔和气候条件不尽相同,为避免混淆造成不良影响,对两个树种的幼苗叶片表型特征进行调查对比研究。结果表明,光皮桦与西南桦幼苗的叶柄区别显著,前者明显长于后者;光皮桦与西南桦幼苗叶片长宽比区别显著,前者长宽比小,叶形团圆,后者长宽比大,叶形细长;西南桦与光皮桦幼苗叶片基尖比无明显差别。幼苗叶片表型特征的差异性可作为现场快速鉴别区分西南桦与光皮桦幼苗的依据。  相似文献   

5.
NaCl胁迫下沙枣幼苗的离子代谢特性   总被引:2,自引:1,他引:2       下载免费PDF全文
[Objective]To further understand the ion metabolism characteristics of Elaeagnus angustifolia L. under NaCl stress.[Method]The seedlings of two E. angustifolia L. provenances, which were Alaer (salt tolerance provenance) and Yinchuan (salt sensitive provenance), were treated by three NaCl concentrations (0,150,300 mmol·L-1) and sampled at the 7th day and the 30th day to measure the Na+ , K+, Ca2+, and Mg2+ contents, K+/Na+ ratio and selective absorption and transportation of K+ in tissues (roots, stems and leaves). [Result]The results showed that the Na+ content in the organizations of E. angustifolia L. sharply increased with the increase of NaCl concentration. With prolonging of stress time, the Na+ content increased in roots, and decreased in stems and leaves. After seedlings of the two provenances were treated with 150 mmol·L-1 NaCl for 7 days, the Na+ content was 2.10 times and 2.23 times in leaves, respectively, compared with the control groups, and was 1.79 times and 1.57 times in root. Meanwhile, the difference between two provenances showed a expanding trend with the increase of NaCl concentration and stress time. With the increase of NaCl concentration and extension of stress time, the K+ content, Ca2+ content and K+/Na+ ratio in organizations decreased gradually. Meanwhile, the Alaer provenance seedlings accumulated more Na+ in roots and less Na+ in leaves than that of Yinchuan provenance, and the K+ content, Ca2+ content and K+/Na+ ratio decreased less in the Alaer provenance seedlings than those of Yinchuan provenance. With the increase of NaCl concentration, the Mg2+ content in leaf gradually decrease, but the Mg2+ content in root increased 22.8~64.4% after salt stress for 7 days, and Alaer provenance seedlings increased more than Yinchuan provenance. After 30 days, there was non-significant difference with the control group on the Mg2+ content of root. K+ selective absorption of E. angustifolia L. seedlings significantly increased with increasing salt concentration of the media at the 7th days, whereas not obvious at the 30th days. When the concentration of NaCl in the media increased, the change of K+ selective transportation was not significant. [Conclusion]E. angustifolia L. seedlings increase Mg2+ content and K+ selective absorption in the roots at the early stage of salt stress to adapt saline environment. The salt-tolerance E. angustifolia L. provenance can cut off more Na+ in roots and reduce Na+ content in leaves, which cause less K+, Ca2+ and Mg2+ contents loss, especially the roots and leaves, so as to ensure that all kinds of metabolisms can go well.  相似文献   

6.
To reveal the relationship between tolerance to submergence and the distribution ranges of riparian tree species in the floodplains of the warm-temperate regions in Japan, we assessed the response and tolerance of current-year seedlings of two Salix and three Ulmaceae species to submergence treatments for 1, 2, 4, and 8 weeks. We investigated shoot elongation, number of leaves, and survival rate of seedlings during the experiment, and biomass allocation was determined at the end of the experiment. Shoot elongation and leaf production of seedlings were suppressed in all the species during the submergence treatments. However, the seedlings of Salix chaenomeloides and S. pierotii elongated shoots rapidly and produced leaves after the treatments. All the underground biomass in these two species was larger than aboveground biomass. These results are considered as typical responses of flood-tolerant species. In contrast, the underground biomass of Ulmaceae seedlings (Celtis sinensis var. japonica, Aphananthe aspera, and Ulmus parvifolia) decreased more rapidly than aboveground biomass during prolonged submergence. Furthermore, A. aspera seedlings also showed suppression of shoot elongation and leaf production after the treatments. Our results indicate that the three Ulmaceae species are less tolerant to submergence than the two Salix species. In conclusion, we suggest that submergence stress is one of the important factors determining the distribution of tree species in the floodplains of lowlands in the warm-temperate regions of Japan.  相似文献   

7.
[目的]为探究西伯利亚白刺盐适应机制。[方法]以1年生西伯利亚白刺水培幼苗为材料,研究不同浓度NaCl(0、200、300 mmol·L-1)胁迫24 h后根系Na~+、K~+离子流的动态变化(利用扫描离子选择微电极技术,SIET)及植株各器官中Na~+、K~+含量的静态变化(利用电感耦合等离子体光谱仪,ICP-OES)。[结果]表明:(1)短期NaCl胁迫显著提高了西伯利亚白刺根、茎、叶中Na~+含量,其中,叶中Na~+含量是根中的3倍以上;西伯利亚白刺根、茎、叶中K~+含量保持稳定或上升;(2)盐胁迫下,西伯利亚白刺根、茎、叶中K~+/Na~+呈下降趋势,其中,在200、300 mmol·L-1NaCl胁迫下,根中K~+/Na~+差异不显著;(3)离子流结果显示,NaCl胁迫显著提高了西伯利亚白刺根系Na~+的外流;对照和200 mmol·L-1NaCl胁迫下,K~+净流量分别为156、159 pmol·cm-2·s-1,差异不显著;300 mmol·L-1NaCl胁迫显著提高了K~+的内流,净流量为-370 pmol·cm-2·s-1。[结论]综合分析认为,西伯利亚白刺通过叶片对Na~+区隔,加强根系对Na~+的外排和K~+内流,进而维持植株根系K~+/Na~+的相对平衡,以此适应盐渍环境。  相似文献   

8.
Nitrate reductase activity (NRA) in different plant organs and leaves in different positions of Camptotheca acuminata seedlings was determined by an In vivo assay, the diurnal variation rhythm of NRA in leaves of different positions was observed,and the correlations between leaf NRA, leaf area and lamina mass per unit area (LMA) were also examined. The results showed that NRA in the leaf was significantly highest, compared with that in other organs such as roots, stems and leaves. In this experiment, the 10 leaves were selected from the apex to the base of the seedlings in order. The different NRA occurred obviously in leaves of different positions of C. acuminata seedlings from the apex to the base, and NRA was higher in the 4th-6th leaves.The diurnal change rhythm of leaf NRA showed a one peak curve, and maximum NRA value appeared at about midday (at 12:30 or so). No obvious correlations between NRA and leaf area or lamina mass per unit area were observed. This study offered scientific foundation for the further research on nitrogen metabolism of C. acuminata.  相似文献   

9.
Natural regeneration was registered on 97 clear‐felled and scarified sites in northeastern Sweden ten growing seasons after planting. On each site, three fix plots were laid out at planting and the planted seedlings were mapped. Ten years later all healthy non‐planted seedlings were registered in an anulus of size 15.7 m2. Non‐planted seedlings were also observed in four 4 m2 squares on each fix‐plot to estimate the zero‐square frequency. Species were classified as Pinus sylvestris, L., Picea abies (L) Karst. and deciduous species (Betula pendulajpubescens Roth./Ehrh., Populus tremula L., Alnus incana (L) Moench.). On average, 7 133 non‐planted seedlings ha‐1 were found, of which 29% were conifers. Among the conifers, 71% were P. abies. More than 2 500 conifer non‐planted seedlings ha‐1 were found on 27% of the plots. The number of non‐planted seedlings was correlated to the presence of neighbouring seed‐producing stands within 100 m and decreased with rising altitude. Pinus sylvestris seedlings were more frequent on dry soils while the deciduous seedlings were more frequent on wet sites. In the 4 m2 squares, the zero‐square frequency was 29% if both conifers were and deciduous seedlings were considered and 63% if only conifers were considered. Mean height of the tallest seedling per species and square was 62 cm for P. sylvestris, 42 cm for P. abies and 107 cm for the deciduous seedlings. Key words: Alnus incana, Betula, broad‐leaves, deciduous, Norway spruce, Picea abies, Pinus sylvestris, Populus tremula, reforestation, Scots pine.  相似文献   

10.
The transgenic expression of Aspergillus xyloglucanase cDNA (AaXEG2) with 35S promoter in the leaves of open field-grown poplars was studied. The level of xyloglucan in the transgenic poplars was decreased to 15–16% in the non-fertile soil (forest-field soil) and to 21–22% in the fertile soil (farming-field soil) compared with that of the wild-type poplars. The leaves exhibited a smaller surface area with more rounded teeth than those of the wild-type plants, similar to the sun leaf variety that was grown in the incubation room and subsequently greenhoused. The majority of total veins with water-conducting vascular bundles were shorter in the leaves of the transgenic poplars than those of the wild type. This decrease in vein length may result from a decrease in xyloglucan during leaf development, from which large numbers of proteins were markedly downregulated in the leaves of the transgenic plants via proteomic analysis. It seems likely that the leaves of the transgenic poplars came to relax the edges of their tooth rather than extend their veins as a result of the loosening of the xyloglucan cellulose networks in the leaves.  相似文献   

11.
Regeneration of beech (Fagus crenata) forests depends on the formation of canopy gaps. However, in Japan Sea-type beech forests, a dwarf bamboo (Sasa kurilensis) conspicuously occupies sunny gaps. Therefore,F. crenata seedlings must escape the severe interference ofS. kurilensis in the gaps and persist beneath a closed canopy of the beech forest. We hypothesized that the growth ofF. crenata seedlings in the understory would be favored by their being more plastic thanS. kurilensis in photosynthetic and morphological traits, which would support the matter production ofF. crenata seedlings in a wide range of light availabilities. To examine this hypothesis, the photosynthetic-light response of individual leaves and the biomass allocation in aboveground parts (i.e., the culm/foliage ratio) were surveyed at sites with contrasting light availabilities in a Japan Sea-type beech forest in central Japan. InF. crenata, photosynthetic light utilization efficiency at relatively low light was greater, and the dark respiration rate was smaller in the leaves of seedlings (10 cm in height) beneath the closed canopy than in the leaves of saplings at the sunny forest edge. The culm/foliage (C/F) ratio of theF. crenata seedlings at the shady site was small, suggesting effective matter-production beneath the beech canopy. On the other hand,S. kurilensis both in the gap and beneath the beech canopy showed low plasticity in photosynthesis and the culm/foliage ratio. Because the shoot density ofS. kurilensis was smaller beneath the beech canopy than in the gap, the light availability at the bottom of theS. kurilensis layer was greater beneath the beech canopy. These results suggest that the photosynthetic productivity of theF. crenata seedlings would be enough for the seedlings to survive in the understory with a low density ofS. kurilensis shoots beneath the closed beech canopy.  相似文献   

12.
In our experiments, one-year-old Larix olgensis seedlings were cultivated in sand, and supplied with solutions with different concentrations of nitrate or phosphate. The effects of nitrogen and phosphorus supply on chlorophyll biosynthesis, total nitrogen content, and photosynthetic rate were studied. The experimental results are listed below: 1) 5-aminolevulinic acid (ALA) synthetic rate increased as nitrate concentrations supplied to larch seedlings increased from 1 to 8 mmol/L. But the rate decreased by 17% when nitrate concentration increased to 16 mmol/L, in contrast to the control. Under phosphate treatments, ALA synthetic rates were similar to those under nitrate treatments. The activities of porphobilinogen (PBG) synthase reached a maximum when larch seedlings were supplied with 8 mmol/L of nitrate or 1 mmol/L of phosphate. 2) when larch seedlings were supplied with 8 mmol/L of nitrate and 0.5 mmol/L of phosphate, the contents of chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids reached a maximum. The total nitrogen contents in leaves increased as nitrate concentrations increased. 3) When phosphate concentrations increased from 0.125 to 1 mmol/L, the total nitrogen contents in leaves slightly increased; however, continuous increase of phosphate concentrations resulted in the decrease in total nitrogen contents in leaves. When nitrate concentrations increased from 1 to 8 mmol/L, soluble protein contents in leaves increased in general, and continuous increase of nitrate concentrations induced a decrease in soluble protein contents in leaves. Under treatment of 0.25 mmol/L of phosphate, the soluble protein contents reached a maximum. 4) In general, F v/F m increased as nitrate concentrations increased from 1 to 8 mmol/L, and continuous increase of nitrate concentration resulted in decrease in F v/F m. The similar changes occurred under phosphate treatments. As nitrate concentrations increased from 1 to 8 mmol/L, photosynthetic rates gradually increased, but when nitrate concentrations increased to 16 mmol/L, photosynthetic rate reduced by 16%, in contrast to the control. Photosynthetic rates reached a maximum when seedlings were supplied with 1 mmol/L, and an oversupply of phosphate (2 mmol/L) resulted in decrease in photosynthetic rates. The results suggested that supply levels of nitrogen affected ALA biosynthetic rates, activities of PBG synthase, and affected contents of chlorophyll and carotenoids. Moreover, nitrogen supply levels affected contents of total nitrogen and soluble proteins in leaves, and net photosynthetic rates. ALA biosynthesis rates and activities of PBG synthase were affected by phosphate supply, but contents of chlorophyll and carotenoids were not affected. And net photosynthetic rates were affected little by phosphate supply. __________ Translated from Scientia Silvae Sinicae, 2005, 41(4) [译自:林业科学, 2005, 41(4)]  相似文献   

13.
This study was conducted on Alnus japonica seedlings subjected to flooding for 2, 4, and 6 weeks to examine responses in growth, morphology, and photosynthesis to different periods of flooding. Seedlings subjected to flooding for 2 and 4 weeks were drained after flooding then watered daily. Increases in biomass of leaves, roots, and whole plants were less for 6-week-flooded seedlings. Rate of photosynthesis and stomatal conductance of flooded seedlings decreased within 2 weeks. For 2-week-flooded seedlings recovery from reduced stomatal conductance and recovery of photosynthetic activity occurred after drainage. For the 6-week-flooded seedlings stomatal conductance recovered by the end of the experiment. Adventitious root formation by the 4 and 6-week-flooded seedlings was observed from the third week of flooding. These results suggest that recovery of reduced function in leaves may progress with development of adventitious roots during the period of flooding.  相似文献   

14.
The effects of Glomus mosseae colonization on the plant growth and drought tolerance of 1-year-old trifoliate Poncirus trifoliata seedlings in potted culture were studied in natural water stress and rewatering conditions. Results showed that arbuscular mycorrhizal (AM) inoculation significantly improved the height, stem diameter, and fresh weight of P. trifoliata seedlings before natural water stress. By the end of the experiment, the survival percentage of AM-transplanted seedlings was 8% higher than those of non-AM ones. During water stress and rewatering, AM significantly increased the contents of soluble sugars and proteins in leaves, and enhanced the activities of superoxide dismutase (SOD), guaiacol peroxidase (G-POD), and catalase (CAT) in either seedling leaves or roots, which indicated that AM colonization could improve the osmotic adjustment response of P. trifoliata, enhance its defense system, and alleviate oxidative damages to membrane lipids and proteins. These results demonstrated that the drought tolerance of P. trifoliata seedlings was increased by inoculation with AM fungi. The functional mechanism underlying the observation that mycorrhizas increased the host’s drought tolerance was closely related to enzymatic and nonenzymatic antioxidant defense systems such as SOD, G-POD, CAT, and soluble protein. Translated from Chinese Journal of Applied Ecology, 2005, 16(3) (in Chinese)  相似文献   

15.
Patterns of above- and below-ground biomass allocation in seedlings of nine common cloud forest (CF) tree species of western Mexico were examined under varying controlled light conditions using artificial shade houses. We analysed the relationships between vital rates (growth and survival) and four morphological traits (SLA, biomass allocation to stems, leaves and roots). We hypothesised that these traits represent differentiation axes in the way seedlings face the heterogeneous light regime typical of the CF understorey. For all species, traits between the different light levels, i.e. allocation to leaves, roots and stems differed among light levels. Five species had the largest SLA in the lowest light levels at the end of the experiment (Citharexylum, Dendropanax, Fraxinus, Quercus and Magnolia). Juglans was the only species with a large SLA at the highest light level (377.47 cm2 g−1). In contrast, light levels did not cause any significant variation in SLA of Persea and Simplococarpon at the end of the experiment. The relative height growth rates (RHGR) of the seedlings of five species were significantly different between light levels (P < 0.05). Overall, all species grew better in the highest light levels. The RHGR of three species were correlated positively with SLA. In turn, allocation to stem, leaves and root biomass were strongly correlated with the RHGR of five species (e.g. Citharexylum, Dendropanax and Fraxinus). Survival did not vary significantly between treatments in any species, only in the case of Simplococarpon (P < 0.05) and was correlated with all morphological variables. For this species, Peto and Peto's test showed a significantly larger survival of seedlings in the highest light level. The mean responses of these species based on all traits to the controlled light variation did not differed significantly. Our results show that these species display a wide range of resource allocation patterns when exposed to the varying light conditions that may be found in the forest understorey and highlight the role of morphological traits in this variation.  相似文献   

16.
Selection of quality seedlings in nursery is important for raising fast-growing trees for production of fuelwood and other products. In order to identify the morphophysiological variables that can be used in nursery for selection purpose, a study on growth, drymatter production, and rate of photosynthesis was undertaken with seedlings of four tree species, viz, Acacia nilotica, Albizzia lebbeck, Dalbergia sissoo and Eucalyptus camaldulensis. The species varied significantly in growth, drymatter production and photosynthetic rate in nursery. E. camaldulensis was the fastest in growth and A. nilotica had maximum number of leaves. Total drymatter production was maximum in D. sissoo followed by A. lebbeck. The rate of photosynthesis was maximum in D. sissoo followed by A. nilotica and lowest in A. lebbeck. Among the various seedling attributes, height, number of leaves per plant, rootweight and photosynthetic rate exhibited significant correlations with seedling drymatter. Seedling diameter showed weak positive correlations with drymatter of both seedlings as well as two-year old field trees. However, number of leaves per plant, rootweight, shootweight and leafweight showed significant correlations with two-year field tree drymatter, the strongest correlation (r = 0.96, P = 0.001) was found between number of leaves per plant and field tree drymatter. Although plant height and leaf photosynthetic rate showed a positive correlation with two-year field growth, the relationship was statistically non-significant. The study reveals that maximum value for leaf number and dryweight of seedling components such as root, shoot and leaf can be used as criteria for selecting nursery stocks for field planting in semiarid conditions.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

17.
18.
The injury tolerance of cell plasma membrane and the correlative enzymes activities of plasma-membrane protection system in the Ulmuspumila leaves treated by nine concentrations (0.3%, 0.6%, 0,9%, 1,2%, 1.5%, 1.8%, 2,1%, 2.4%, 3.0%) of Na2CO3 and NaHCO3 mixtures were studied in a greenhouse of Northeast Forestry University, Harbin, China. The rate of electrolyte leakage (REL) and SOD (Superoxide dismutase) activity in leaves of different samples were determined. Results showed that the REL in leaves of U. pumila presented a slowly increasing trend at the salt concentrations less than 1.5%, which indicated that cell plasma membrane of U. pumila leaves had rather strong resistance to the injury of salt ion, and had a significant increase at the salt concentrations more than 1.5%. The SOD activities in leaves of U, pumila presented an increased trend at salt concentrations less than 1.5%, the growth of seedlings did not decline, and tress and leaves had no symptom of injury, while the salt concentrations exceeded 1.5%, SOD activities sharply decreased and REL increased promptly.  相似文献   

19.
G. Singh  Bilas Singh 《林业研究》2009,20(4):307-313
1998年7月,利用非称重式蒸渗池种植单一种源的一年生黄檀种苗,研究在印度沙漠地区培养黄檀种苗的合理灌水技术参数。当各处理(W1、W2、W3、W4)的土壤水分含量分别降低到7.56%、5.79%、4.44%和3.23%时,通过灌溉使苗木生长保持在一定的土壤的水分状况,如36.2mm(W1)、26.5mm(W2)、20.2mm(W3)和18.1mm(W4)。结果表明,在36.2mm(W1)水平时,种苗的株高、冠径、叶数和叶面积达到最大值(p〈0.01)。在W1和W2处理中,虽然上述参数没有明显差异,但在W2处理中,种苗的每升水分利用率的生物量最大。在W3、W4和W5灌溉水平下,不利于提高种苗的株高、生物量和营养积累。在W2水平以下(5.79%),土壤水分有效率能提高根系生物量占总生物量的百分比。但在W3和W4处理中,叶干生物量百分比下降,同时在W5处理中,茎干生物量百分比下降。在W5处理中,土壤水势达到-196Mpa,种苗才可以成活。在W3和W4处理中,土壤水分有效率的限额影响黄檀种苗的生长和生物量。在W2处理中,土壤水分有效利用率最高,种苗的生长和生物量达到最高值。因此,在壤砂土条件下,通过灌溉维持幼苗土壤水分含量在5.79%以上时,可获得较好的黄檀种苗的生长和生物量产量。  相似文献   

20.
Photosynthetic responses to a series of 1-min lightflecks (1,000μmol m−2 s−1) superimposed on a background with different duration (1, 5, and 10 min) and intensity (25 and 50μmol m−2 s−1) of low background photosynthetic photon flux density (PPFD) were measured in the leaves ofFagus crenata grown in a gap and understory of aFagus crenata forest in the Naeba Mountains. The two background PPFD intensities most frequently occurred in understory and gap sites respectively. The maximum net photosynthetic rate (P Nmax) and maximum stomatal conductance (g smax) were higher in the gap seedlings than in the understory seedlings. However, when the background PPFD was 25μmol m−2s−1, the net photosynthetic rate (P 25) and stomatal conductance (g s25) were almost the same between the gap and understory. When the background PPFD duration was 1-min, the net photosynthetic rate (P N ) at the end of each lightfleck increased progressively. When the background PPFD duration was 5- and 10-min, the increase inP N at the end of each lightfleck was less. This indicates that background PPFD duration is important to photosynthetic responses to lightflecks. The higher ratios ofP 25/P Nmax andg s25/g smax in the understory seedlings indicate that the understory seedlings can maintain relatively lower levels of biochemical and stomatal limitations than the gap seedlings under low light conditions. The ratios ofP N /P Nmax at the end of each lightfleck (IS) and light utilization efficiency of single lightflecks (LUE s) that showed the influence of lightflecks on carbon gain were higher in the understory seedlings than in the gap seedlings when the background PPFD was 25μmol m−2 s−1. This means that understory seedling are capable of utilizing fluctuating light more efficiently under low light conditions than the gap seedlings although the net carbon gain of single lightflecks (CG s) in the understory seedlings was not higher than that in the gap seedlings. There were no significant differences inIS andLUE s between understory seedlings at a background PPFD of 25μmol m−2 s−1 and gap seedlings at a background PPFD of 50μmol m−2 s−1. However,CG s in gap seedlings was higher than in understory seedlings. These results provide more evidence thatF. crenata acclimate to a natural light environment in respect to relative induction state at low background PPFD and can capture the fluctuating light at the same efficiency in both the gap and understory seedlings under natural light environments. This study was funded by the research project, Evaluation of Total CO2 Budget in Forest Ecosystems, coordinated by the Ministry of Agriculture, Forestry and Fisheries of Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号