首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impetus for this paper is Canada's commitment under the Kyoto Protocol to reduce national greenhouse gas emissions as well as reducing dependency on fossil fuels. This research assesses the economic viability of using biomass from afforested lands and industrial wood waste as a feedstock for ethanol production to substitute for fossil fuels in the transportation sector. Afforestation can increase the size of the carbon sink and also provide a source of renewable energy. Ethanol offers an excellent opportunity for greenhouse gas mitigation due to market potential, an ability to offset significant emissions from the transportation sector, and reduce emissions from CO2-intensive waste-management systems. A case study of the economics of a hypothetical ethanol production facility found that a facility capable of producing 122 million litres of ethanol annually could have a net present value of CDN$245 million over a planning horizon of 36 years. This facility would require a supply of up to 960 oven-dry tonnes of wood-biomass per day and would result in net annual reductions of greenhouse gas emissions of approximately 349,000 tonnes of CO2. This includes the carbon sequestered through the afforestation as well as emissions avoided through fossil fuel substitution. Using biomass from afforested lands and industrial wood waste as a fuel for energy production can be an economically viable tool for reducing greenhouse gas levels in the atmosphere, reducing reliance on fossil fuels and reducing the sensitivity of transportation fuel prices to changes in gasoline prices. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
木质林产品跨境交易下碳储量核算方法比较分析   总被引:1,自引:0,他引:1  
国际贸易行为使得储存于采伐后木质林产品中的碳汇在各国间发生流动, 又由于对采伐后木质林产品的使用方式和最终用途的差异, 使得产品中碳汇的存续时间出现巨大的差异。如何对国际木质林产品跨境交易下的各国碳储量变化进行全面量化, 合理判断各国基于木质林产品消费方式的差异而对环境所造成的直接或间接影响, 从而明晰全球温室气体减排下各国的责任划分, 具有非常重要的意义。文中根据政府间气候变化专业委员会(IPCC)所提供的4种采伐后木质林产品碳储量核算方法, 分析各国对不同核算方法的立场及其背后的深层原因, 指出我国应该积极开展木质林产品跨境交易下碳储量核算方法的前沿跟踪研究, 以便未来在木质林产品碳汇计量谈判中掌握主动权从而有效维护国家利益。  相似文献   

3.
Temperate forests are an important carbon sink, yet there is debate regarding the net effect of forest management practices on carbon storage. Few studies have investigated the effects of different silvicultural systems on forest carbon stocks, and the relative strength of in situ forest carbon versus wood products pools remains in question. Our research describes (1) the impact of harvesting frequency and proportion of post-harvest structural retention on carbon storage in northern hardwood-conifer forests, and (2) tests the significance of including harvested wood products in carbon accounting at the stand scale. We stratified Forest Inventory and Analysis (FIA) plots to control for environmental, forest structural and compositional variables, resulting in 32 FIA plots distributed throughout the northeastern U.S. We used the USDA Forest Service's Forest Vegetation Simulator to project stand development over a 160 year period under nine different forest management scenarios. Simulated treatments represented a gradient of increasing structural retention and decreasing harvesting frequencies, including a “no harvest” scenario. The simulations incorporated carbon flux between aboveground forest biomass (dead and live pools) and harvested wood products. Mean carbon storage over the simulation period was calculated for each silvicultural scenario. We investigated tradeoffs among scenarios using a factorial treatment design and two-way ANOVA. Mean carbon sequestration was significantly (α = 0.05) greater for “no management” compared to any of the active management scenarios. Of the harvest treatments, those favoring high levels of structural retention and decreased harvesting frequency stored the greatest amounts of carbon. Classification and regression tree analysis showed that management scenario was the strongest predictor of total carbon storage, though site-specific variables were important secondary predictors. In order to isolate the effect of in situ forest carbon storage and harvested wood products, we did not include the emissions benefits associated with substituting wood fiber for other construction materials or energy sources. Modeling results from this study show that harvesting frequency and structural retention significantly affect mean carbon storage. Our results illustrate the importance of both post-harvest forest structure and harvesting frequency in carbon storage, and are valuable to land owners interested in managing forests for carbon sequestration.  相似文献   

4.
Commonly-used sustained yield harvest policies ensure sustained supply of harvest timber volume over a planning horizon. However, implemented policies gradually decapitalize forest values over time that threatens the sustainability of ecosystem and wood industries. Different business units of a forest-product supply chain have different ways of valuing forestry resources, different supply and demand policies, and corresponding business policy models to implement them. The objective of this study was to evaluate ecological and economic impacts to participating business units of a supply chain when implementing different business policies. We constructed six business models in a linear programming framework and solved them using data from commercially-managed forests. Our empirical results showed that compared to a base model (Model 1; unilateral decision by forest business unit), the best model (Model 6; integrated harvest and production planning) reduced the median harvest volume and area by 25% (12–31%) and 24% (7–40%), respectively, but increased net revenue by 88% (6–218%) over a 150-year planning horizon. Hence, efficiency increased by 158% (20–373%) per unit of harvest area and 163% (23–364%) per unit of harvest volume. Furthermore, when the models were simulated using a hard constraint to preserve at least 20% of old-growth forest area, the revenue was least affected (15%; 11–19%) by Model 6 compared to Model 1 (26%; 14–45%). We conclude that vertically-integrated harvest policy that embeds forest values in the planning model reduces the gap between the business units, and enhances ecosystem conservation with the least fluctuation of harvest and revenue by period over a planning horizon.  相似文献   

5.
Carbon is continuously being removed from the atmosphere by photosynthesis and stored in carbon pools(live,dead,and soil carbon)of forest ecosystems.However,carbon stock in dead wood and of trees with diameters at breast height(dbh)between 5 and 10 cm is often not considered in many studies carried out in the Congo Basin Forest.The relationship between tree diversity,life-forms and carbon stocks has received little attention.This study was carried out on the outskirts of Deng Deng National Park(DDNP)to determine tree diversity(dominant families,species richness and Shannon index),assess carbon stocks in the five carbon compartments(living tree,understory,fine roots,dead wood and litter)as well as to analyze the relationship between(1)carbon stocks and tree diversity;and,(2)between carbon stock and life-forms.The Shannon index of trees≥10 cm dbh ranged from 2.6 in riparian forest to 4.3 in secondary forest;and for the tree between 5 and 10 cm,it ranged to 1.56 in riparian forest to 3.68 in the secondary forest.The study site housed 16 species,7 genera and 3 families which are only found in trees of dbh between 5 and 10 cm.The average total carbon stock of the five compartments varied from 200.1 t ha-1 in forest residues to 439.1 t ha-1 in secondary forest.Dead wood carbon stock varied from 1.2 t ha-1 in riparian forests to 12.51t ha-1 in agroforests.The above ground carbon stocks for trees with diameter between 5 and 10 cm varied from 0.7 t ha-1 in young fallow fields to 5.02 t ha-1 in old secondary forests.This study reveals a low but positive correlation between species richness and total carbon stocks,as well as a significant positive relationship between life-forms and total carbon stocks.The findings highlight the need for more data concerning carbon content of dead wood,carbon of trees≥5 cm<10 cm dbh and the relationship between carbon stocks and tree diversity from other areas of the Congo Basin for a good understanding of the contribution of tropical forests to climate change mitigation.  相似文献   

6.
An ecosystem model (Sima) was utilised to investigate the impact of forest management (by changing both the initial stand density and basal area thinning thresholds from current recommendations) on energy wood production (at energy wood thinning and final felling) and management-related carbon dioxide (CO2) emissions for the energy wood production in Finnish boreal conditions (62°39′ N, 29°37′ E). The simultaneous effects of energy wood, timber and C stocks in the forest ecosystem (live and dead biomass) were also assessed. The analyses were carried out at stand level during a rotation period of 80 years for Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies L. Karst.) growing in different fertility sites. Generally, the results showed that decreased basal area thinning thresholds, compared with current thinning, reduced energy wood (logging residues) and timber production, as well as carbon stocks in the forest ecosystem. Conversely, increased thinning thresholds increased energy wood production (ca. 1–27%) at both energy wood thinning and final felling and reduced CO2 emissions (ca. 2–6%) related to the production chain (e.g. management operations), depending on the thinning threshold levels, initial stand density, species and site. Increased thinning thresholds also enhanced timber production and carbon stocks in the forest ecosystem. Additionally, increased initial stand density enhanced energy wood production for energy wood thinning for both species, but this reduced energy wood production at final felling for Scots pine and Norway spruce. This study concluded that increases in both initial stand density and thinning thresholds, compared with the current level, could be useful in energy wood, timber and carbon stocks enhancement, as well as reducing management-related CO2 emissions for energy wood production. Only 2.4–3.3% of input of the produced energy (energy wood) was required during the whole production chain, depending on the management regime, species and sites. However, a comprehensive substitution analysis of wood-based energy, in respect to environmental benefits, would also require the inclusion of CO2 emissions related to ecosystem processes (e.g. decomposition).  相似文献   

7.
Using wood as a building material affects the carbon balance through several mechanisms. This paper describes a modelling approach that integrates a wood product substitution model, a global partial equilibrium model, a regional forest model and a stand-level model. Three different scenarios were compared with a business-as-usual scenario over a 23-year period (2008?C2030). Two scenarios assumed an additional one million apartment flats per year will be built of wood instead of non-wood materials by 2030. These scenarios had little effect on markets and forest management and reduced annual carbon emissions by 0.2?C0.5% of the total 1990 European GHG emissions. However, the scenarios are associated with high specific CO2 emission reductions per unit of wood used. The third scenario, an extreme assumption that all European countries will consume 1-m3 sawn wood per capita by 2030, had large effects on carbon emission, volumes and trade flows. The price changes of this scenario, however, also affected forest management in ways that greatly deviated from the partial equilibrium model projections. Our results suggest that increased wood construction will have a minor impact on forest management and forest carbon stocks. To analyse larger perturbations on the demand side, a market equilibrium model seems crucial. However, for that analytical system to work properly, the market and forest regional models must be better synchronized than here, in particular regarding assumptions on timber supply behaviour. Also, bioenergy as a commodity in market and forest models needs to be considered to study new market developments; those modules are currently missing.  相似文献   

8.
Although it is known that forestry mitigates carbon emissions to some degree, there is still a need to investigate the extent to which changes in forest management regimes affect the carbon cycle. In a climate-change scenario, forest management schemes must be optimized to maximize product supply and minimize environmental impacts. It is difficult to predict the mitigating effects of different silvicultural regimes because of differences in the growth characteristics of each species, destination of products, and industrial efficiencies. The objective of the present study was to use a modeling approach to evaluate the effects of different management regimes for fast growing species in southern temperate Europe in relation to mitigating climate change. A comprehensive study was carried out considering the C sink effect in biomass, soil and wood products, the substitutive effect of bioenergy, and particular conditions of the forest industry in southern Europe. The mechanistic CO2Fix model was parameterized for three species used in fast growing plantations in southern Europe: Eucalyptus globulus, Eucalyptus nitens, and Pinus radiata. Data from 120 plots covering the complete age range observed for each species were used to calculate changes in C stocks in aboveground biomass and organic and mineral soil and to validate the parameterized model for these conditions. Additional information about the efficiency of forest industry processes in the region was also considered. A strong bias in soil organic carbon estimation was observed and attributed to overestimations in the decomposition rates of soil compartments. Slight bias was also observed in the carbon biomass estimation when forest-specific yield models were used to simulate afforestation over former pastureland. As regards the model sensitivity, the Yasso model was strongly robust to turnover of leaves, roots, and branches. The chip wood production alternative yielded higher carbon stock in biomass and products, as well as in bioenergy substitution effect, than the sawn wood production alternative. Nevertheless, the sawn wood alternative was the most effective as regards the C stock in the soil. Site index had an important effect for all species, alternatives, and compartments, and mitigating effects increased with site index. Harvesting of clearcutting and thinning slash for bioenergy use led to a slight decrease in the soil carbon equilibrium but significantly increased the mitigation effect through bioenergy use.  相似文献   

9.
We extended the Hartman model to examine the optimal rotation, taking into consideration the economic benefits of wood and the dynamics of three carbon pools (aboveground biomass, dead organic matter, and harvested forest products). Chinese fir (Cunninghamia lanceolata) stands in Southern China were taken for a numerical example to analyze the effects of carbon price on the optimal management of short-rotation plantations. The results show that, with the current price of carbon, introducing the effects of harvesting on different carbon pools into the decision model would increase the optimal rotation age on poor (SI = 10) and medium (SI = 17) sites by one year, while it does not have any impact on the optimal rotation for good sites (SI = 21). Irrespective of site condition, the optimal rotation age is not sensitive to carbon price and interest rate. An increase in interest rate by 1% would reduce the optimal rotation age by one year. In conclusion, forest carbon trade could effectively enhance land owners' income from short-rotation forest plantations. However, it does not lead to any significant increase in forest carbon sink.  相似文献   

10.
Sequestered forest carbon can provide a climate change mitigation benefit, but in dry temperate forests, wildfire poses a reversal risk to carbon offset projects. Reducing wildfire risk requires a reduction in and redistribution of carbon stocks, the benefit of which is only realized when wildfire occurs. To estimate the time needed to recover carbon removed and emitted during treatment, we compared the 7-year post-treatment carbon stocks for mechanical thinning and prescribed fire fuels reduction treatments in Sierra Nevada mixed-conifer forest and modeled annual carbon accumulation rates. Within our 7-year re-sample period, the burn only and understory thin treatments sequestered more carbon than had been removed or emitted during treatment. The understory thin and burn, overstory thin, and overstory thin and burn continued to have net negative carbon stocks when emissions associated with treatment were subtracted from 7-year carbon stock gains. However, the size of the carbon deficit in the understory thin and burn 7 years post-treatment and the live tree growth rates suggest that the remaining trees may sequester treatment emissions within several more years of growth. Overstory tree thinning treatments resulted in a large carbon deficit and removed many of the largest trees that accumulate the most carbon annually, thereby increasing carbon stock recovery time. Our results indicate that while there is an initial carbon stock reduction associated with fuels treatments, treated forests can quickly recover carbon stocks if treatments do not remove large, fire-resistant overstory trees.  相似文献   

11.
Dewar RC 《Tree physiology》1991,8(3):239-258
The carbon balance between managed forests and the atmosphere depends critically on the frequency and intensity of harvesting, and the lifetime of harvested products. To assess more quantitatively the nature of this dependence, a theoretical analysis, previously applied to carbon storage in trees and wood products only, is extended here to include the carbon in forest floor detritus and soil. A dimensionless combination of the parameters of the model, alpha, with critical value alpha(c), is identified such that for alpha < alpha(c), the conversion of old-growth forest to managed forest releases carbon to the atmosphere in the long term. Parameter alpha is given by the combination f(t)D/T(*), where f(t) is the fraction of old-growth forest carbon stored in trees, D is the residence time of harvested biomass (wood products and slash debris) within the system, and T(*) is the rotation period for maximum sustained yield (maximum mean annual increment). The critical value alpha(c), typically in the range 0.5-0.7, is derived for a variety of forest types. Parameter alpha determines the degree to which the carbon accumulated in harvested biomass offsets the loss of carbon in trees due to felling and in soils due to reduced litter input. When alpha > alpha(c), long-term carbon storage is optimized by harvesting for maximum sustained yield.  相似文献   

12.
International agreements require countries to annually report on greenhouse gas emissions and removals. For the land-use sector, this includes estimating stock changes in various carbon pools. For carbon pools like mineral forest soil where a country-level statistical inventory based on measurements is very difficult, models are usually applied together with data from case studies. In this paper, we present a country-specific model together with case studies that aim at capturing major soil processes due to forestry activity. These processes include “hot moments”, e.g., disturbances that occur rarely but might result in relatively high emissions. The model only aims at developing a conservative estimate, rather than a central one, of net country-level carbon stock change with emissions overestimated and removals underestimated. The model is partially parameterised using paired sampling of soil organic carbon in the uppermost 30-cm layer, applying standard methods including those suggested by IPCC, in afforestations on former croplands and in artificial regenerations. Results show that soils of afforested croplands act as a sink, and carbon stock after regeneration might decrease due to disturbance by forest operations, but might also increase due to transfer of carbon from dead roots to soil depending on disturbance levels. The estimation at the country level, which involves additional considerations and data from the literature, suggests that overall, forest soils are a net sink in Hungary, but also that artificially limiting soil organic carbon changes estimation to the uppermost 30-cm layer as applied in the IPCC methodology might lead to artefacts.  相似文献   

13.
Wood products are considered to contribute to the mitigation of carbon dioxide emissions. A critical gap in the life cycle of wood products is to transfer the raw timber from the forest to the processing wood industry and, thus, the primary wood products. Therefore, often rough estimates are used for this step to obtain total forestry carbon balances. The objectives of this study were (1) to examine the fate of timber harvested in Thuringian state forests (central Germany), representing a large, intensively managed forested region, and (2) to quantify carbon stocks and the lifetime of primary wood products made from this timber. The analyses were based on the amount and assortments of actually sold timber, and production parameters of the companies that bought and processed this timber. In addition, for coniferous stands of a selected Thuringian forest district, we calculated potential effects of management, as expressed by different thinning regimes on wood products and their lifetimes. Total annual timber sale of soft- and hardwoods from Thuringian state forests (195,000 ha) increased from about 136,893 t C (~0.7 t C ha−1 year−1) in 1996 to 280,194 t C (~1.4 t C ha−1 year−1) in 2005. About 47% of annual total timber harvest went into short-lived wood products with a mean residence time (MRT) < 25 years. Thirty-one per cent of the total harvest went into wood products with an MRT of 25–43 years, and only 22% was used as construction wood and glued wood, products with the longest MRT (50 years). The average MRT of carbon in harvested wood products was 20 years. Thinning from above throughout the rotation of spruce forests would lead to an average MRT in harvested wood products of about 23 years, thinning from below of about 18 years. A comparison of our calculations with estimates that resulted from the products module of the CO2FIX model (Nabuurs et al. 2001) demonstrates the influence of regional differences in forest management and wood processing industry on the lifetime of harvested wood products. To our knowledge, the present study provides for the first time real carbon inputs of a defined forest management unit to the wood product sector by linking data on raw timber production, timber sales and wood processing. With this new approach and using this data, it should be possible to substantially improve the net-carbon balance of the entire forestry sector.  相似文献   

14.
Longer forest rotation ages can potentially increase accumulation of carbon in harvested wood products due to a larger proportion of sawlogs that can be used for manufacturing durable wood products such as lumber and plywood. This study quantified amounts of carbon accumulated in wood products harvested from loblolly pine (Pinus taeda L.) stands grown in Mississippi by extending rotation ages traditionally used to manage these stands for timber. The financial viability of this approach was examined based on carbon payments received by landowners for sequestering carbon in standing trees and harvested wood products. Results indicated a potential to increase carbon accumulated in wood products by 16.11 metric tons (t) of carbon dioxide equivalent (CO2e) per hectare (ha) for a rotation increase of 5 years and 67.07 tCO2e/ha for a rotation increase of 65 years. Carbon prices of $50/tCO2e and $110/tCO2e would be required to provide a sufficient incentive to forest landowners to extend rotations by 5 and 10 years, respectively. With 2.8 million ha of loblolly pine stands in Mississippi, this translates to a possible increase in wood products carbon of 45 million tCO2e and 80 million tCO2e for harvest ages increased by 5 and 10 years, respectively. Higher carbon prices lengthened rotation ages modestly due to low present values of carbon accumulated with long rotations.  相似文献   

15.
The effect of changes in roundwood harvests in Norway on the harvests in rest of the world is examined using a global forest sector model. About 60–100% of the harvest change in Norway is offset by an opposite change in the rest of the world. Such leakage rates vary over time, wood category, background scenario, and the size of the harvest change. Asymmetries between the effects of increasing and decreasing the harvests also exist. Hence, the magnitude of leakage rate is case specific, though considerable. Under tightening wood supply there is less need/room to respond to harvest increase/decrease in Norway with incremental/reduced harvests elsewhere. When the use of global forest resources intensifies with increasing wood demand in the future, leakage rates can be smaller than today. It is important to account for harvest leakage in order to avoid overestimating the climate benefits of policies that decrease or increase roundwood harvests. For instance, for full carbon sequestration benefits of increasing harvests for harvested wood products, creating fresh additional demand for these products should be prioritized. Else the origin of raw material and the place of production for these products may change instead of their stock.  相似文献   

16.
We used national scenario analyses to examine the effects of harvesting intensity on the development of forest resources, timber supply, carbon balance, and biodiversity indicators of Finnish forestry in nine 10-year simulation periods (90-year simulation period) under the current climate. Data from the 11th National Forest Inventory of Finland were used to develop five even-flow harvesting scenarios for non-protected forests with the annual harvest ranging from 40 to 100 million m3. The results show that the highest annual even-flow harvest level, which did not decrease the growing stock volume over the 90-year simulation period, was 73 million m3. The total 90-year timber production, consisting of harvested volume and change in growing stock volume, was maximized when the annual harvest was 60 million m3. Volume increment increased for several decades when harvested volume was less than the current volume increment. The total carbon balance of forestry was the highest with low volume of harvested wood. Low harvested volume increased the values of biodiversity indicators, namely volume of deciduous trees, amount of deadwood and area of old forest.  相似文献   

17.
Life-cycle analyses, energy analyses, and a range of utilization efficiencies were developed to determine the carbon dioxide (CO2) and fossil fuel (FF) saved by various solid wood products, wood energy, and unharvested forests. Some products proved very efficient in CO2 and FF savings, while others did not. Not considering forest regrowth after harvest or burning if not harvested, efficient products save much more CO2 than the standing forest; but wood used only for energy generally saves slightly less. Avoided emissions (using wood in place of steel and concrete) contributes the most to CO2 and FF savings compared to the product and wood energy contributions. Burning parts of the harvested logs that are not used for products creates an additional CO2 and FF savings. Using wood substitutes could save 14 to 31% of global CO2 emissions and 12 to 19% of global FF consumption by using 34 to 100% of the world’s sustainable wood growth. Maximizing forest CO2 sequestration may not be compatible with biodiversity. More CO2 can be sequestered synergistically in the products or wood energy and landscape together than in the unharvested landscape. Harvesting sustainably at an optimum stand age will sequester more carbon in the combined products, wood energy, and forest than harvesting sustainably at other ages.  相似文献   

18.
We analyse which management to choose in order to increase the carbon benefit from the 1.342 million ha forest area in Hedmark County, Norway, and the cost of doing this compared to traditional profit maximising behaviour. The model used in the analysis is a dynamic forest management optimisation model which includes the main carbon flows and benefits from the forest area: tree growth and mortality, litter accumulation, decomposition of dead wood and harvest residues, soil processes, end-use of wood products, and saved greenhouse gas emissions from using wood products instead of more energy intensive materials and fossil fuels.  相似文献   

19.
Forest managers and policy-makers are being encouraged to incorporate carbon sequestration as a criterion for decision-making. This is a great challenge for small-scale forestry where the conspicuous lack of practical knowledge available for managers prevents the implementation of criteria to promote carbon sequestration. The carbon simulation model CO2FIX combined with local data could provide valuable information for C sequestration in these small-scale forestry systems. The research reported here focuses on community forestry located in the Juarez Mountain Range (Oaxaca State, Mexico), and analyzes the influences of forest management and wood-use (20 scenarios based on five forest management plans and four wood-use strategies) on the changes of C stock (biomass C, soil organic C, products C and fuelwood C) over time. The comparison of the whole stocks to reference results show that group-selection, based on an uneven-aged forest management system involving small patches, has only about half the C benefit relative to clear-cutting harvesting. A forest management strategy focused on oak logwood has a lower C benefit (70 %), and a forest management strategy focused on oak fuelwood has a higher C benefit (120 %) relative to the average of the studied wood-use strategies. Thus, in the study area forest managers and policy-makers who wish to mitigate climate change should increase the rotation period from 40 to 50 years in clear-cutting areas, continue with 40 years in group-selection areas, and promote the use of oak for bioenergy.  相似文献   

20.
Land-based emissions are an important contributor to global climate change. Various jurisdictions worldwide have implemented forest carbon mitigation strategies and policies to reduce their GHG emissions or increase carbon sequestration. Yet the policy literature on forest carbon mitigation is limited, and no attempt has been made so far to systematically document a jurisdiction's existing forest carbon mitigation policies and policy gaps. This paper applies policy gap analysis to policies for GHG and forest management in the province of British Columbia (BC), Canada, as a case study focusing on the challenges posed by existing policies and the opportunities for policy innovation to more effectively promote forest carbon mitigation. This policy gap analysis shows that while BC has an ambitious climate action regime for fossil fuel-based emissions, it has few policies explicitly targeting forests or the use of harvested wood products for carbon mitigation. As a result, forest carbon mitigation is an under-exploited opportunity for the province. Throughout history, forest management policies have evolved in response to changing social values, such as protection of fresh water, fish and wildlife, and biodiversity. As this case study of BC illustrates, it is time for jurisdictions to renew their forest policies to more effectively incorporate opportunities for carbon mitigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号