首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concepts of fracture mechanics have been applied to quantify the fracture behaviour of vitreous and mealy wheat endosperm in a single wheat cultivar. Two new techniques were developed and used to measure fracture toughness (energy per unit area of fracture) of individual grains: (1) load cycling of a notched grain; and (2) instrumented microtome cutting. The load cycling method gave average fracture toughness values for vitreous endosperm of 130 ± 42 J/m2 and 50 ± 12 J/m2 for mealy endosperm. Fracture toughness measured using the instrumented microtome gave values of 159 ± 7·4 J/m2 for vitreous endosperm and 44 ± 4·6 J/m2 for mealy endosperm. The results are consistent with the hypothesis that vitreous endosperm has stronger starch-protein matrix bonding than mealy endosperm. The effect of changing grain moisture on cutting fracture properties was investigated. As moisture decreased, values of fracture toughness increased for both mealy and vitreous endosperms at the same rate down to 11% moisture content, below which fracture toughness increased more rapidly for vitreous than for mealy endosperm. Intra-grain fracture toughness was also investigated by cutting successive sections across individual wheat grains. These showed a decrease in cutting force from the outside of the grain towards the centre, and then an increase near the crease. The critical particle size at which a transition from brittle to ductile failure occurs was calculated, giving predicted values of 1·2 mm for vitreous endosperm and 0·9 mm for mealy endosperm at 15% moisture content. This shows that vitreous endosperm undergoes more ductile deformation during deformation than does mealy endosperm, and that larger particle sizes are predicted for vitreous endosperm as a result of milling.  相似文献   

2.
The fracture properties of small, cylindrical samples of endosperm machined from single kernels of several varieties of wheat were measured using three methods: compression, wedge fracture and indentation. In addition, dynamic compression tests were also performed in impact loading. Density measurements using a variable density liquid gradient were carried out on machined endosperm samples that had previously been tested for fracture properties, enabling direct comparisons between their density and fracture properties. Within each variety, a distribution of density and hardness values was found. Soft wheat varieties (Riband, Apollo) showed a broad distribution of density with medians in the range 1340 to 1395 kg/m3, whilst hard varieties such as Mercia and a durum wheat exhibited much narrower distributions and higher mean densities, Mercia being skewed towards higher densities, with a median at around 1410 kg/m3. A considerable amount of overlap in density between the soft and hard variety occurred, with both containing a significant proportion of harder and higher density wheat grains, and the major difference appearing to be the presence in the soft wheat of a large proportion of lower density endosperm in the range 1280 to 1360 kg/m3. The differences in density between endosperm samples were attributed to variations in endosperm porosity, which were correlated with the fracture properties of the endosperm. It is proposed that increased levels of porosity weaken the endosperm structure and are responsible in part for soft endosperm texture. The relationship between endosperm density and fracture properties was non-linear, the failure stress and fracture toughness increasing rapidly as the density approached a limiting value corresponding to the density expected for pore-free endosperm. This indicates that endosperm is a notch sensitive material, where the pores concentrate applied stresses and can act as sites of crack initiation. It was shown that the notch sensitivity of endosperm is qualitatively consistent with models of brittle fracture based on fracture mechanics theory, i.e. stress concentration by voids.  相似文献   

3.
Durum wheat grains are used for producing food, such as pasta or couscous. The grain mechanical properties which are linked to its internal micro-structure (i.e. endosperm porosity) are known to determine its ability to produce semolina during milling. The proportion of grains having porous endosperm in a batch appears therefore as a critical quality factor for the durum wheat value chain. Our objective was to investigate the ability of X-ray micro-tomography (μCT) method to describe the porous or vitreous counterpart structures in the endosperm of durum wheat grains. We selected two different durum wheat samples displaying vitreous or partially porous endosperms. The grains were analyzed using μCT at two pixel sizes (1 μm or 7 μm). The μCT data collected at 7 μm pixel size were used for qualitative classification of grains according to apparent distribution curve of the porosity parameters. Analysis of μCT images at 1 μm pixel size allowed us to propose pore size classification in the vitreous and porous parts of the endosperm in three durum wheat grain. Results are used to better describe the durum-wheat endosperm microstructure, but requires long scanning periods.  相似文献   

4.
Mineral element distributions in milling fractions of Chinese wheats   总被引:2,自引:0,他引:2  
Malnutrition related to micronutrient deficiency can create immense economic and societal problems. The objective of this study was to quantify the mineral element concentration distribution in milled fractions, using 43 common wheat (Triticum aestivum L.) cultivars sown in Jinan, China during the 2005–2006 crop season. All 43 cultivars had low Fe (average 28.2 mg Kg−1) and Zn (28.6 mg Kg−1) concentrations, and wide ranges of variation for mineral element concentrations. Highly significant effects among milling fractions and cultivars on all traits were observed, with fraction effect being the larger. There was an uneven distribution of mineral element concentrations in wheat grain. Shorts and bran fractions had the highest mineral element concentrations, whereas flours from break and reduction had low concentrations. Compared with those in the central endosperm, the concentration of inorganic phosphorus (Pi) decreased the most with decreasing flour yield, whereas the concentration of phytic acid P (PAP), phytase activity, and Ca decreased the least. Pi was the most concentrated element in the aleurone, whereas PAP, phytase activity, and Ca were the least, compared to those in the central endosperm. Milling technique through adjusting flour yield can be used to improve the element composition of flour.  相似文献   

5.
The influence of hybrid solar drying (HSD) and storage conditions on microstructure, crack propagation, nano-hardness and milling indices of paddy and wheat grains were investigated. Milling yield and head rice yield of dried paddy was 71.48% and 72.42%, which was further increased by 1–1.26% and 3.12–4.65%, respectively. Flour yield from dried wheat was found to be 77.30% and was reduced by 3.5–7.7% after 180 days of storage. Maximum nano-hardness of 0.15 ± 0.02 GPa was obtained for rice stored at 5 °C, whereas, for wheat, nano-hardness, elastic modulus, and peak load values gradually reduced with a storage time of 180 days. Micro-X ray computed tomography images revealed the pore size of paddy and wheat samples to be in the range of 0.01–0.8 mm3. Micrographs showed a compact paddy surface, whereas wheat endosperm witnessed cell disruption and agglomeration.  相似文献   

6.
Increased flour yield in hard wheat is associated with increased endosperm rheology index, calculated from strength and stiffness as measured by the SKCS. A study of the fractured endosperm of hard wheat varieties grouped according to similar rheology index values was performed using environmental scanning electron microscopy (ESEM). Differing microstructures and fracture patterns were observed between each group. Specifically, the group representing high rheology index had a greater concentration of small starch granules in prismatic cells. Samples of diverse wheat germplasm were grown at two sites and subjected to laboratory milling. Starch granule size distribution (SGSD) analysis using a laser diffraction method was undertaken on a subset of samples in triplicate representing a range in flour yield. The results supported an hypothesis for a significant influence of SGSD on flour yield of hard wheat varieties. In addition, a significant part (R2>0.40 (p<0.05) at two sites) of the association appeared to be under genetic control. Results indicate a more even gradation of distributions involving an increase in the sample volume % of small granule (types B and C) and decrease in type A granules. This was associated with increased rheology index values and higher flour yield. The ratio of type A:C starch granules accounted for up to 58% (p<0.05) of the variation in flour yield in the samples studied. Thus, rheological parameters measured using a rapid SKCS screening method can be linked to the genetic regulation of SGSD with implications for the improvement of commercial processing performance of hard wheat.  相似文献   

7.
A new methodology based on pulsed lasers has been developed in order to estimate wheat outer layer mechanical properties without sample preparation. Laser experiments were carried out with an Argon Fluoride (λ = 193 nm) excimer laser source delivering pulses of 15 ns duration. Wheat grains from two cultivars were irradiated by single laser pulses with a quasi-uniform irradiation and two fluences (2.5 and 5 J cm−2). The ablation flux was characterized by environmental scanning electron microscopy before measuring the removed material on cross-sections observed by confocal scanning laser microscopy. Specific image treatment was carried out to obtain the ablation flux (amount of removed matter per pulse). Pericarp, seed coat and aleurone layer were gradually ablated under the laser conditions used in this work. Their ablation thresholds were different and could be related to tissue cohesion. Specific behaviour of seed coat layer (8 μm) could be emphasised with this technique. Pulsed laser ablation could be a potential methodology to reveal indirectly wheat grain layer cohesion.  相似文献   

8.
9.
The water vapor diffusivities of vitreous and mealy wheat endosperms were measured using diffusion cells containing wax-scaled cylinders of endosperm. The diffusion cells were incubated in a chamber that was maintained at a constant temperature and relative humidity. A water vapor gradient was created by filling each diffusion cell with desiccant. A steady-state condition was achieved within 24 h. The mean diffusivities for the vitreous endosperm samples of cvs Arizona and Len were 2·0 × 10-8 cm2/s. The diffusivities for mealy samples of cvs Logan and Titan were 3·5 and 9·1 × 10-8 cm2/2, respectively. The liquid water diffusivities of whole caryopses were similar for five vitreous and five mealy wheat samples tested. No change was detected in the diffusion mechanism for any of the samples in the temperature range tested. The energy of activation (E) was significantly (P < 0·05) higher for endosperm for cv. Len, a vitreous sample, than for cv. Titan, a mealy sample.  相似文献   

10.
The characterisation of the wheat endosperm by mechanical tests of compression highlighted a relation between the rupture energy and the elasticity modulus for different varieties of wheat; this relation allows us to distinguish mealy and vitreous endosperms. An approach based on the micromechanics of cohesive granular materials is used to analyse these experimental results. A geometrical model of the wheat endosperm made of grains linked by cohesive bonds is proposed. We introduced two parameters, the first one α represents the percentage of active bonds (bonds where the stiffness and strength are non-zero), and the second one β represents the threshold of the bond's rupture. The parameter β can be related to the cross-section of the bond. This model successfully describes the mechanical tests on the wheat endosperm. The comparison with the experimental tests makes it possible to clearly differentiate vitreous wheats and mealy wheats and then attribute this property to the parameter β. The model shows the same tendency as regards the evolution of the rupture energy and the elastic modulus with the parameter α. The modelling of endosperm by the mechanics of cohesive granular media provides a new theoretical framework to interpret the rheology of endosperm. This approach allows us to connect this rheology to the mechanical actions at the scale of the granules.  相似文献   

11.
Kafirins extracted from the endosperm of seven sorghum [Sorghum bicolor (L.) Moench] cultivars were analysed by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and enzyme-linked immunosorbent assay (ELISA). Kafirins extracted from the vitreous and floury endosperm portions within the kernel were also analysed by these techniques. The ELISA results indicated that the level of all the three kafirins was high in the hard endosperm kernels. The level of γ-kafirin was particularly higher in the vitreous endosperm portions of these kernels. The ratio of γ-kafirin to the α-kafirin was, however, higher for the floury portions of soft kernels. Tissue print immunoblotting revealed that the β- and γ-kafirins were concentrated in the central floury endosperm portions of soft kernels, whilst α-kafirin was distributed more uniformly throughout the endosperm. In contrast, all three kafirins were distributed uniformly throughout the endosperms of hard kernels. The data indicate that the content, as well as the distribution, of kafirins within the kernel is different in grains varying in endosperm hardness.  相似文献   

12.
Long-term (over 15 years) winter wheat (Triticum aestivum L.)–maize (Zea mays L.) crop rotation experiments were conducted to investigate the accumulation of phosphorus (P) at five sites differing geographically and climatically in China. The results showed that, in soils without P added, the concentration of soil P extracted by 0.5 mol L−1 NaHCO3 at pH 8.5 (Olsen-P) decreased with cultivation time until about 3 mg kg−1, afterwards it remained constant. The trend of decrease in Olsen-P in soils without P added could be described by an exponential function of time. The concentration of Olsen-P in soils with P fertilizers increased with cultivation time and the model of accumulation of Olsen-P in soils could be described using P application rate, crop yield and soil pH. The accumulation rate of Olsen-P in the long-term wheat–maize crop rotation experiments was 1.21 mg kg−1 year−1 on average. If the target yield of wheat and maize is 10 ton ha−1 in the soil with pH 8, the increasing rates of Olsen-P in soils as estimated by the model will be 0.06, 0.36, 0.66, 0.95, 1.25 and 1.55 mg kg−1 year−1 when P application rates are 30, 40, 50, 60, 70 and 80 kg P ha−1 year−1, respectively. The models of accumulation of Olsen-P in soils were validated independently and could be used for the accurate prediction of accumulation rate of Olsen-P in soils with wheat–maize rotation systems. Also the application of the model was discussed for best management of soil P in agricultural production and environment protection.  相似文献   

13.
The water adsorption properties of hard and soft wheat flours and flour components (starch, damaged starch, gluten, soluble pentosans, and insoluble pentosans) were determined at 25 °C using a controlled atmosphere microbalance. At different levels of relative humidity (from 10% to 95%), changes in sample mass (i.e., water gain) were continuously measured versus time and described using exponential models (R2≥0·994). Water adsorption isotherms were constructed for wheat flours and flour components and described using Guggenheim-Anderson-de Boer models (R2≥0·997). It was not possible to distinguish between the selected hard and soft wheat flours by their isotherms. The water-soluble pentosans had the highest water adsorption capacity. The theoretical distribution of water between the flour components (calculated using the Guggenheim-Anderson-de Boer parameters) was starch, 88%; gluten, 10%; and pentosans, 2%.  相似文献   

14.
B-Type avenin-like genes and proteins were characterized in 23 species of Triticeae. Southern blot analysis showed that the avenin-like genes belong to a multigene family. RT-PCR showed expression only in developing endosperms of wheat and related species, between 3 and 22 DPA (days post anthesis) with a peak between 11 and 15 DPA in wheat. The encoded proteins are cysteine-rich, containing 18–19 cysteine residues. An avenin-like protein from wheat was expressed in Escherichia coli, purified and used to raise polyclonal antibodies. These antibodies were used to detect b-type avenin-like proteins in endosperms of wheat and related species by western blotting.  相似文献   

15.
Secondary field emission scanning electron microscopy (FE SEM), atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to investigate native near-isogenic soft and hard wheat kernels and their roller milled flours. FE SEM images of flat-polished interior endosperm indicated distinct differences between soft and hard wheats with less internal continuity in the soft wheat, whereas individual starch granules were much less evident in the hard kernel due to a more continuous matrix. AFM images revealed two different microstructures. The interior of the hard kernel had a granular texture with distinct individual spheroid features of 10–50 nm while the images obtained for the soft kernel revealed less distinct small grains and more larger features, possibly micro-structural features of starch granules. Raman spectra resolved identical distinct frequencies for both kernel types with slightly different intensities between types. Finally, the chemical surface compositions of flour for these two types of kernels obtained by XPS provided subtle insight into the differences between soft and hard wheat kernels. These combined advanced microscopic and spectroscopic analyses provide additional insight into the differences between the soft and hard wheat kernels.  相似文献   

16.
Conventional tilled transplanting, a widely practiced method of rice (Oryza sativa L.) establishment in puddled soils in rice–rice and rice–wheat (Triticum aestivum L.) systems in Asia, requires a large amount of labor and water, which are becoming scarce and expensive. Growing more food with the same production costs or even reduced costs and sustaining the quality of the natural resource base are a major concern. On-farm trials were conducted in Chuadanga District of Bangladesh during the wet season as monsoon rice (aman) and during the dry season as winter rice (boro) in 2006–07 to evaluate the effects of establishment methods with improved crop management on productivity, resource (land, water, and labor) use, and economic return. Rice was established by sowing in line with a drum seeder on conventional tilled puddled soils (CT-DrumR) and by transplanting in line on the day of CT-DrumR (CT-TPR1) and 30 and 35 days after CT-DrumR (CT-TPR2) in aman and boro seasons, respectively. Farmers’ usual transplanting time corresponds to the day of CT-TPR2. Grain yields in CT-DrumR and CT-TPR2 were similar but the crop occupied the main field 22–24 days longer in CT-DrumR than in CT-TPR2, resulting in lower productivity (45 kg grain ha−1 day−1 vs. 55 kg grain ha−1 day−1) in both seasons. Drum-seeded rice matured earlier by 8 and 11 days, received 12% and 6% less irrigation water, saved 19 and 24 person-days ha−1, and gave higher gross margins of 6% and 4% but input costs increased by 20% and 12% than CT-TPR2 in aman and boro seasons, respectively. There is a need to examine these benefits of drum-seeded rice in relation to the feasibility of adoption by farmers.  相似文献   

17.
Wheat endosperm texture (hardness) largely determines end-product suitability. Since its development 25 years ago, the single kernel classification system (SKCS, a mechanical instrument that measures, among other properties, the force imparted on a kernel during crushing) has been used in breeding programs to differentiate soft wheats from hard wheats. Nominally, these have a soft to hard SKCS hardness index (HI) range of 25–75 (dimensionless units). However, in recent years, breeders have developed extremely soft (‘Super Soft’) lines having SKCS HI < 0. Until now, these very low SKCS HIs have not been corroborated with traditional methodologies that characterize mechanical strength. Herein, we report on the relationships between SKCS HI and three compressive strength properties (maximum stress, Young's modulus, and work) in Super Soft wheat. With respective correlation coefficients of 0.76, 0.66, and 0.75, we have found that the relationships between SKCS HI and compressive strength agree with prior research involving ordinary soft and hard wheats.  相似文献   

18.
Long-term field experiments are needed to fully realize positive and negative impacts of conservation tillage and poultry litter application. A study was initiated on a Decatur silt loam soil at the Tennessee Valley Research and Extension Center, Belle Mina, AL, USA in 1996 to evaluate cotton (Gossypium hirsutum L.) performance with long-term poultry litter (PL) application under different tillages and to study the build up of phosphorus (P) with application of PL. Treatments include incomplete factorial combinations of three tillage systems [conventional till (CT), mulch till (MT), and no-till (NT)], two cropping systems [cotton-fallow and cotton-winter rye (Secale cereale L.)], and two nitrogen sources and rates [100 kg N ha−1 from ammonium nitrate (AN), and 100 and 200 kg N ha−1 from poultry litter (PL)]. Cotton was rotated with corn (Zea mays L.) every third year. Results from 2003 to 2008 showed that all tillages gave similar cotton lint yields with AN at 100 kg N ha−1. Application of PL at 100 kg N ha−1 in NT plots resulted in 12 and 11% yield reductions compared to that of CT and MT, respectively. However, NT plots with higher quantity of PL (200 kg N ha−1) gave similar yields to CT and MT at 100 kg N ha−1. During corn years, higher residual fertility of PL, in terms of grain yields, was observed in NT plots compared to CT and MT. Long-term PL application (100 kg N ha−1 year−1) helped to maintain original soil pH in CT and MT while AN application decreased soil pH. In NT plots, PL at 100 kg N ha−1 was not sufficient to maintain original soil pH, but 200 kg N ha−1 maintained original pH. Although not-significant, elevated P levels were observed in all tillages compared to original P levels which indicates possibility of P build up in future with further application of PL. Application of PL at double rate (200 kg N ha−1) in NT plots resulted in significant build up of P. Results indicate that NT gives similar yields to CT when received AN, but needs higher rate of PL application to achieve similar yields to CT.  相似文献   

19.
Cereals are widely consumed foodstuffs and it is therefore important to take them into account when estimating consumer exposure to packaging-related chemicals. The mass transport of three model migrants (diphenylbutadiene, triclosan and BHT) from low-density polyethylene (LDPE) within dry foodstuffs of different particle size (rice and wheat flour) was studied because of the relationship between consumer exposure and possible harmful effects on human health. The conditions that most affect the mass transport of substances within dry foods are evaluated and discussed. The diffusion coefficients (DF) for diphenylbutadiene (DPBD) and triclosan in the studied foodstuffs were estimated. The DF values for DPBD and triclosan in wheat flour at 25 °C were 7.1 × 10−8 cm2/s and 3.3 × 10−8 cm2/s, respectively. The DF values for DPBD and triclosan in rice at 25 °C were 4.7 × 10−8 and 4.3 × 10−8 cm2/s, respectively. BHT displayed different behaviour and other tests were therefore carried out to elucidate the associated mass transport process.  相似文献   

20.
Endosperm Texture in Wheat   总被引:2,自引:0,他引:2  
One of the fundamental means of classifying wheat is through its endosperm texture. It impacts significantly on the milling process affecting among other things flour particle size and milling yield. Hardness in wheat is largely controlled by genetic factors but it can be affected by the environment and factors such as moisture, lipid, and pentosan content. The principal genetic locus controlling endosperm texture in wheat, Ha, is located on the chromosome 5D. At this locus several genes, notably the puroindolines, have been identified. Puroindolines are the major components of the 15 kDa protein band associated with starch granules that is more abundant in soft wheats than in hard. Recently the puroindolines have been shown to enhance grain hardness in rice. In this review we discuss the structure of hard and soft wheat endosperm with particular emphasis on when differences in endosperm texture can be detected in the developing seed. The role of the environment and other factors that may affect the endosperm texture is also examined together with the role of the puroindoline genes at theHa locus. Finally, we compare endosperm hardness in wheat and in barley.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号