首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
To compare clinicopathologic findings of transmissible mink encephalopathy (TME) with other transmissible spongiform encephalopathies (TSE, prion diseases) that have been shown to be experimentally transmissible to cattle (sheep scrapie and chronic wasting disease [CWD]), two groups of calves (n = 4 each) were intracerebrally inoculated with TME agents from two different sources (mink with TME and a steer with TME). Two uninoculated calves served as controls. Within 15.3 months postinoculation, all animals from both inoculated groups developed clinical signs of central nervous system (CNS) abnormality; their CNS tissues had microscopic spongiform encephalopathy (SE); and abnormal prion protein (PrP(res)) as detected in their CNS tissues by immunohistochemistry (IHC) and Western blot (WB) techniques. These findings demonstrate that intracerebrally inoculated cattle not only amplify TME PrP(res) but also develop clinical CNS signs and extensive lesions of SE. The latter has not been shown with other TSE agents (scrapie and CWD) similarly inoculated into cattle. The findings also suggest that the diagnostic techniques currently used for confirmation of bovine spongiform encephalopathy (BSE) would detect TME in cattle should it occur naturally. However, it would be a diagnostic challenge to differentiate TME in cattle from BSE by clinical signs, neuropathology, or the presence of PrP(res) by IHC and WB.  相似文献   

2.
A new monoclonal antibody (MAb), F99/97.6.1, that has been used to demonstrate scrapie-associated prion protein PrP(Sc) in brain and lymphoid tissues of domestic sheep with scrapie was used in an immunohistochemistry assay for diagnosis of chronic wasting disease (CWD) in mule deer (Odocoileus hemionus). The MAb F99/97.6.1 immunohistochemistry assay was evaluated in brain and tonsil tissue from 100 mule deer that had spongiform encephalopathy compatible with CWD and from 1,050 mule deer outside the CWD-endemic area. This MAb demonstrated abnormal protease-resistant prion protein (PrP(res)) in brains of all of the 100 mule deer and in 99 of the 100 tonsil samples. No immunostaining was seen in samples collected from deer outside the endemic area. MAb F99/97.6.1 demonstrated excellent properties for detection of PrP(res) in fresh, frozen, or mildly to moderately autolytic samples of brain and tonsil. This immunohistochemistry assay is a sensitive, specific, readily standardized diagnostic test for CWD in deer.  相似文献   

3.
Transmissible spongiform encephalopathies (TSEs) or prion diseases are unique disorders that are not caused by infectious micro-organisms (bacteria or fungi), viruses or parasites, but rather seem to be the result of an infectious protein. TSEs are comprised of fatal neurodegenerative disorders affecting both human and animals. Prion diseases cause sponge-like degeneration of neuronal tissue and include (among others) Creutzfeldt-Jacob disease in humans, bovine spongiform encephalopathy (BSE) in cattle and scrapie in sheep. TSEs are characterized by the formation and accumulation of transmissible (infectious) disease-associated protease-resistant prion protein (PrP(Sc)), mainly in tissues of the central nervous system. The exact molecular processes behind the conversion of PrP(C) into PrP(Sc) are not clearly understood. Correlations between prion protein polymorphisms and disease have been found, however in what way these polymorphisms influence the conversion processes remains an enigma; is stabilization or destabilization of the prion protein the basis for a higher conversion propensity? Apart from the disease-associated polymorphisms of the prion protein, the molecular processes underlying conversion are not understood. There are some notions as to which regions of the prion protein are involved in refolding of PrP(C) into PrP(Sc) and where the most drastic structural changes take place. Direct interactions between PrP(C) molecules and/or PrP(Sc) are likely at the basis of conversion, however which specific amino acid domains are involved and to what extent these domains contribute to conversion resistance/sensitivity of the prion protein or the species barrier is still unknown.  相似文献   

4.
In recent publications, it was shown that disease-associated prion protein (PrP(d)) accumulates in the lymphoid tissue of the rectal mucosa of a high proportion of scrapie-infected sheep at clinical and preclinical stages, regardless of several host factors; PrP(d) can also be detected in biopsy specimens of rectal mucosa, with an increased probability proportional to age or incubation period and with an efficiency almost identical to that of tonsil biopsies. Rectal biopsies have the advantages of providing higher numbers of lymphoid follicles and of being simpler to perform, which makes them suitable for scrapie screening in the field. In biopsy samples, PrP(d) could be demonstrated by immunohistochemical (IHC) and Western immunoblotting methods, and the purpose of the present study was to optimize and evaluate a "rapid test" for the diagnosis of scrapie in rectal biopsy samples. The HerdChek CWD (chronic wasting disease) antigen EIA (enzyme immunoassay) test was chosen and, once optimized, provided specificity and sensitivity figures of 99.2% and 93.5%, respectively, compared with IHC results in the same samples obtained at a postmortem. The sensitivity of the assay increased from 82.1%, when a single rectal mucosa sample was tested to 99.4% for those sheep in which 3 or more samples were analyzed. Similarly, sensitivity values of the HerdChek CWD antigen EIA test on biopsy samples increased from 95% to 100% for sheep subjected to 1 or 2 sequential biopsies 4 months apart, respectively. Thus, a preclinical diagnosis of scrapie in live sheep can be achieved by a combination of a simple sampling procedure, which can be repeated several times with no detrimental effect for the animals, and a rapid and efficient laboratory method.  相似文献   

5.
Scrapie and bovine spongiform encephalopathy (BSE) are both prion diseases affecting ruminants, and these diseases do not share the same public health concerns. Surveillance of the BSE agent in small ruminants has been a great challenge, and the recent identification of diverse prion diseases in ruminants has led to the development of new methods for strain typing. In our study, using immunohistochemistry (IHC), we assessed the distribution of PrP(d) in the brains of 2 experimentally BSE-infected sheep with the ARQ/ARQ genotype. Distribution of PrP(d) in the brain, from the spinal cord to the frontal cortex, was remarkably similar in the 2 sheep despite different inoculation routes and incubation periods. Comparatively, overall PrP(d) brain distribution, evaluated by IHC, in 19 scrapie cases with the ARQ/ARQ, ARQ/VRQ, and VRQ/VRQ genotypes, in some cases showed similarities to the experimentally BSE-infected sheep. There was no exclusive neuroanatomical site with a characteristic and specific PrP(d) type of accumulation induced by the BSE agent. However, a detailed analysis of the topography, types, and intensity of PrP(d) deposits in the frontal cortex, striatum, piriform cortex, hippocampus, mesencephalon, and cerebellum allowed the BSE-affected sheep group to be distinguished from the 19 scrapie cases analyzed in our study. These results strengthen and emphasize the potential interest of PrP(d) brain mapping to help in identifying prion strains in small ruminants.  相似文献   

6.
One of the "gold standard" techniques for postmortem confirmation of scrapie diagnosis in sheep and goats is immunohistochemical examination of brain tissue. Active surveillance for scrapie is mainly performed by rapid diagnostic tests on the basis of postmortem immunochemical detection of prion protein (PrP) in the obex tissue. The aim of this study was to determine the performance of 2 rapid tests, Prionics-Check LIA (a chemiluminescence sandwich enzyme-linked immunosorbent assay) and Prionics-Check Western blot for scrapie diagnosis when applied to brain areas other than the obex, in comparison with the recognized immunohistochemistry. Prion protein was detected in the obex, cervical spinal cord, and thalamus from all the scrapie-positive sheep by the 3 tests. Western blot and LIA were negative in other areas of the brain, although weak immunohistochemical staining was detected. The results show that the 2 rapid tests studied may detect PrP in brain areas other than the obex, although with a lower sensitivity than immunohistochemistry when there is minimal PrP deposition.  相似文献   

7.
In 2005, a prion disease identified in a goat from France was reported to be consistent with disease from the bovine spongiform encephalopathy (BSE) agent. Subsequent retrospective examination of UK goat scrapie cases led to the identification of one potentially similar, but as yet unconfirmed, case from Scotland. These findings strengthened concerns that small ruminant populations exposed to the BSE agent have become infected. The lack of data relating specifically to scrapie in goats has been contributory to past assumptions that, in general, sheep and goats respond similarly to prion infections. In this study, brain material from 22 archived caprine scrapie cases from the UK was reviewed by histopathology and by immunohistochemical examination for accumulations of disease-specific prion protein (PrP(Sc)) to provide additional data on the lesions of caprine scrapie and to identify any BSE-like features. The vacuolar change observed in the goats was characteristic of transmissible spongiform encephalopathies in general. PrP(Sc) immunohistochemical morphologic forms described in scrapie and experimental BSE infections of sheep were demonstrable in the goats, but these were generally more extensive and variable in PrP(Sc) accumulation. None of the cases examined showed a PrP(Sc) immunohistochemical pattern indicative of BSE.  相似文献   

8.
The use of Transgenic (Tg) mice expressing chimeric sheep/mouse (Sh/Mo) prion protein (PrP) and chimeric bovine/mouse (Bo/Mo) PrP genes was evaluated as a sheep scrapie model. We also investigated the potential for the transmission of sheep scrapie to a human/mouse (Hu/Mo) PrP Tg mouse line. The Sh/Mo PrP and Bo/Mo PrP Tg Prnp(+/+) or Prnp(0/0) mouse lines were inoculated intracerebrally with brain homogenates from three sheep with natural scrapie (KU, Y5 or S2). Incubation periods were slightly shorter in Sh/Mo PrP Tg Prnp(+/+), than in non-Tg mice inoculated with KU brain homogenate. In contrast, the incubation period was significantly prolonged (p<0.05) in Bo/Mo PrP Tg Prnp(+/+) mice inoculated with KU brain homogenate. The incubation period was significantly longer in all Tg Prnp(+/+) and Prnp(0/0), than in non-Tg mice (p<0.01) inoculated withY5 brain homogenate. None of the Tg Prnp(0/0) mice inoculated with S2 brain homogenate developed clinical signs and PrP(Sc) was undetectable in their brains. These results suggested that expression of the Sh/Mo PrP or Bo/Mo PrP transgenes does not confer susceptibility to sheep prions upon mice, and thus none of the Tg mouse lines could be a suitable model of sheep scrapie. Hu/Mo PrP Tg Prnp(0/0) mice inoculated with natural and experimental scrapie or mouse prions did not develop clinical signs of scrapie and PrP(Sc) was undetectable. These results suggested that neither sheep nor mouse strains of scrapie are highly transmissible to humans.  相似文献   

9.
Scrapie is a naturally occurring fatal neurodegenerative disease of sheep and goats. This study documents incubation periods, pathologic findings, and distribution of abnormal prion proteins (PrP(Sc)) by immunohistochemistry in tissues of genetically susceptible sheep inoculated with US sheep scrapie agent. Four-month-old Suffolk lambs (QQ at codon 171) were inoculated by 1 of 3 different routes (nasal, peritoneal, and conjunctival) with an inoculum (No. 13-7) consisting of a pool of scrapie-affected sheep brains. Except for 3 sheep, all inoculated animals were euthanized when advanced clinical signs of scrapie were observed between 19 and 46 months postinoculation (MPI). Spongiform lesions in the brains and labeling of PrP(Sc) in central nervous system and lymphoid tissues were present in these sheep. One intranasally inoculated sheep euthanized at 12 MPI had presence of PrP(Sc) that was confined to the pharyngeal tonsil. These results indicate that the upper respiratory tract, specifically the pharyngeal tonsil, may serve as a portal of entry for prion protein in scrapie-infected environments.  相似文献   

10.
To detect prion protein, brains from 5 cattle naturally affected with bovine spongiform encephalopathy (BSE) and 3 sheep naturally affected with scrapie were examined and compared with brains of normal cattle and sheep using a histoblot technique. The technique enabled the in situ distinctive detection of the cellular (PrP(C)) and abnormal (PrP(Sc)) isoforms of the prion protein. In BSE- or scrapie-affected brains, the Prp(C) signal decreased, especially in those areas where the PrP(Sc) signal was detected.  相似文献   

11.
To obtain a more detailed understanding of the prevalence of classical scrapie infections in a heavily affected German sheep flock (composed of 603 sheep and 6 goats), we analysed 169 sheep and 6 goats that carried the genotypes susceptible to the disease and that were therefore culled following discovery of the index case. The initial tests were performed using the Biorad TeSeE ELISA and reactive results were verified by official confirmatory methods (OIE-immunoblot and/or immunohistochemistry (IHC)) to demonstrate the deposition of scrapie-associated PrP(Sc) in the brain stem (obex). This approach led to the discovery of 40 additional subclinically scrapie-infected sheep. Furthermore, peripheral lymphatic and nervous tissue samples of the 129 sheep and 6 goats with a negative CNS result were examined by IHC in order to identify any preclinical infections which had not already spread to the central nervous system (CNS). Using this approach we found 13 additional sheep with PrP(Sc) depositions in the gut-associated lymph nodes (GALT) as well as in the enteric nervous system. Moreover, in most of these cases PrP(Sc) was also deposited in the spleen and in the retropharyngeal and superficial cervical lymph nodes. Taken together, these results show a 30.3% infection prevalence in this scrapie-affected flock. Almost 7.4% of the infected animals harboured PrP(Sc) exclusively in the peripheral lymphatic and nervous tissue and were therefore missed by the currently used testing strategy.  相似文献   

12.
The purpose of this study was to enhance the sensitivity of the Western blot (WB) test for use as an alternative and confirmatory method for the diagnosis of scrapie and chronic wasting disease (CWD) in Canada by comparing 2 sample preparation procedures: an abnormal prion protein (PrPSc) concentration procedure using sodium phosphotungstic acid (PTA) precipitation and a procedure using crude sample without precipitation. A total of 100 cerebrum samples (52 sheep and 48 elk), including 66 negative (31 sheep, 35 elk) and 34 positive (21 scrapie and 13 CWD positive) samples diagnosed by using immunohistochemistry (IHC) on retropharyngeal lymph node (RPLN) and medulla oblongata at obex, were tested by using WB with the 2 sample preparation procedures. The WB using non-PTA enriched sample (crude extract) detected, on average, only 71.7% (9 of 15, 60.0% for scrapie, 5 of 6, 83.3% for CWD) of the samples that tested positive by using WB with PTA enriched samples. No case was positive by WB using crude extract but negative by WB using PTA enriched sample. No false positive was found. Serial dilution of PTA precipitated samples demonstrated that the technique increases the detection limit approximately 100 fold. Additionally, the comparison of the WB and IHC on cerebrum from all the positive cases demonstrated that WB following PTA precipitation and IHC had 100% agreement by detecting 6 positive for CWD on cerebrum; while IHC detected scrapie in only 14 out of 15 positive cerebrum samples by using WB following PTA precipitation. Phosphotungstic acid precipitation is therefore a useful adjunct to WB analysis of scrapie and CWD and tissues.  相似文献   

13.
Since scrapie and bovine spongiform encephalopathy (BSE) in sheep are clinicopathologically indistinguishable, BSE in sheep may have been misdiagnosed as scrapie. Disease-specific prion protein (PrP(d)) patterns in archival tissues of 38 Irish ARQ/ARQ sheep diagnosed as scrapie-affected were compared to those in four Dutch BSE-challenged sheep. When medulla oblongata was immunolabelled with an antibody directed against amino acids 93-99 of ovine prion protein (ovPrP), intraneuronal PrP(d) was apparent in all 38 Irish sheep but was absent in BSE-challenged sheep. When lymphoid follicles were immunolabelled with antibodies directed against amino acids 93-106 of ovPrP, granule clusters of PrP(d) were seen in 34 of the 38 Irish sheep. Follicles of the remaining four archive sheep contained either no PrP(d) or single PrP(d) granules, similar to follicles from BSE-challenged sheep. Based on the medulla results, none of the archival cases had BSE-derived disease. The identification of some scrapie sheep with little or no intrafollicular PrP(d) suggests that this technique may be limited in discriminating between the two diseases.  相似文献   

14.
Amino acid polymorphisms of the prion protein (PrP) greatly influence the susceptibility of sheep to scrapie. Selective breeding to increase the prevalence of PrP gene alleles associated with scrapie resistance is a flock management practice that is important for scrapie control programs. Determination of sheep PrP alleles typically has required extraction of DNA from host tissues that are freshly derived or stored frozen. We describe application of a DNA extraction procedure for formalin-fixed, paraffin-embedded tissues (PET) for the purpose of PCR amplification and nucleotide sequencing of relevant codons (136-171) of the sheep PrP gene. Tissues derived from 96 sheep were studied. The DNA sequence identity was confirmed in 87 of 94 matched samples of PET and frozen tissue specimens. DNA from brainstem PET of 2 sheep, from which fresh tissue was not available, was amplified and sequenced after formalin fixation for 7-70 days. This method will allow retrospective analysis of PrP genetics of sheep subsequent to postmortem diagnosis of scrapie when nonfixed tissue is unavailable for DNA extraction; however, it is not recommended that submission of fixed tissue supplant collection of fresh tissues for the purpose of determining PrP gene polymorphisms.  相似文献   

15.
ABSTRACT: Interspecies transmission studies afford the opportunity to better understand the potential host range and origins of prion diseases. The purpose of this experiment was to determine susceptibility of white-tailed deer to the agent of scrapie after intracerebral inoculation and to compare clinical signs and lesions to those reported for chronic wasting disease (CWD). Deer (n = 5) were inoculated with 1 mL of a 10% (wt/vol) brain homogenate derived from a sheep clinically affected with scrapie. A non-inoculated deer was maintained as a negative control. Deer were observed daily for clinical signs of disease and euthanized and necropsied when unequivocal signs of scrapie were noted. One animal died 7 months post inoculation (pi) due to intercurrent disease. Examinations of brain tissue for the presence of the disease-associated abnormal prion protein (PrPSc) by western blot (WB) and immunohistochemistry (IHC) were negative whereas IHC of lymphoid tissues was positive. Deer necropsied at 15-22 months pi were positive for scrapie by IHC and WB. Deer necropsied after 20 months pi had clinical signs of depression and progressive weight loss. Tissues with PrPSc immunoreactivity included brain (at levels of cerebrum, hippocampus, colliculus, cerebellum, and brainstem), trigeminal ganglion, neurohypophysis, retina, spinal cord, and various lymphoid tissues including tonsil, retropharyngeal and mesenteric lymph nodes, Peyer's patches, and spleen. This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by intracerebral inoculation. To further test the susceptibility of white-tailed deer to scrapie these experiments will be repeated with a more natural route of inoculation.  相似文献   

16.
Transmissible spongiform encephalopathies, also termed prion diseases, are fatal neurodegenerative disorders that affect both humans and animals, which are characterized by presences of protease-resistance disease-associated prion protein (PrP(Sc)) in brains. In the present study, we optimized the Western blot assay for PrP(Sc) with a precipitation procedure of streptomycin sulphate. After incubated with suitable amount of streptomycin sulphate, the detective sensitivity for PrP(Sc) was remarkably improved. The precipitation of PrP(Sc) was obviously influenced by pH value in the solution. Employs of PrP(Sc) stock sample into various mimic specimens, including normal hamster brain homogenate, human cerebrospinal fluid and urine, demonstrated that streptomycin precipitation markedly increased the detective sensitivity of PrP(Sc), regardless in low concentration or in large volume. In addition, the PrP(Sc) from a human brain tissue of familiar Creutzfeldt-Jakob disease (fCJD) was efficiently precipitated with streptomycin sulphate. As a sensitive, specific, rapid and flexible protocol for PrP(Sc), the protocol in this study has the potential, alone or combined with other techniques, to detect low levels of PrP(Sc) in the specimens not only from central nerve system, but also from peripheral organs or fluids.  相似文献   

17.
Twenty-one orally inoculated and seven naturally infected sheep with scrapie were examined for PrP(Sc) in peripheral tissues and in the central nervous system (CNS), using immunohistochemistry. In the inoculated group, VRQ (valine at codon 136, arginine at codon 154 and glutamine at codon 171)/VRQ sheep generally had a greater accumulation of the pathologic form of prion protein (PrP(Sc)) in peripheral tissues, as compared with VRQ/ARQ (alanine at codon 136, arginine at codon 154, and glutamine at codon 171) animals at corresponding time points after inoculation. PrP(Sc) was not detected in the ileal Peyer's patch, the spleen, the superficial cervical lymph node, and peripheral nervous tissues of several inoculated VRQ/ARQ animals. All inoculated VRQ/VRQ sheep, but only one of eight inoculated VRQ/ARQ animals, were PrP(Sc)-positive in the CNS. Thus, the propagation of PrP(Sc) seemed slower and more limited in VRQ/ARQ animals. Tissue and cellular localization of PrP(Sc) suggested that PrP(Sc) was disseminated through three different routes. PrP(Sc)-positive cells in lymph node sinuses and in lymphatics indicated spreading by lymph. The sequential appearance of PrP(Sc) in the peripheral nervous system and the CNS, with satellite cells as early targets, suggested the periaxonal transportation of PrP(Sc) through supportive cells. Focal areas of vascular amyloid-like PrP(Sc) in the brain of five sheep, suggested the hematogenous dissemination of PrP(Sc). There was a poor correlation between the amount of PrP(Sc) in the CNS and clinical signs. One subclinically affected sheep showed widespread PrP(Sc) accumulation in the CNS, whereas three sheep had early clinical signs without detectable PrP(Sc) in the CNS. A VV(136) (homozygous for valine at codon 136) sheep inoculated with ARQ/ARR (alanine at codon 136, arginine at codon 154, and arginine at codon 171) tissue succumbed to disease, demonstrating successful heterologous transmission. Less susceptible sheep receiving VRQ/VRQ or ARQ/ARR material were PrP(Sc)-negative by immunohistochemistry, enzyme-linked immunosorbent assay, and western blot.  相似文献   

18.
Seventeen clinically suspect scrapie sheep, and twelve suspected BSE-affected cattle were confirmed using routine histopathological examination by the detection of characteristic spongiform change in the medulla brain region taken at the level of the obex. Three sheep and four cows acquired as controls showed no spongiform change. Five aliquots of brain tissue from each of four brain regions were taken (cerebellum, medulla, frontal cerebral cortex and occipital cerebral cortex) from each of the 36 animals. One aliquot was frozen at -70 degrees C, the others were subjected to one of four autolysis regimes at 3 or 7 days at 25 degrees C or 37 degrees C. All samples were tested by Western immunoblotting for detection of PrP(Sc) using the Prionics - Check test (Prionics AG, Zurich, Switzerland). Further samples of medulla from 15 suspect scrapie cases, 10 healthy sheep, 13 suspect BSE cows and 5 healthy cows, were taken adjacent to the obex, and subjected to autolysis at 37 degrees C for 6, 12, 24 and 48 hours before being fixed in 10 per cent formal saline and subsequently examined by a routine immunohistochemical technique for detection of PrP(Sc) protein. The abnormal protein could not be detected in any of the control animals by either technique. PrP(Sc) could be detected by Western immunoblotting in at least one brain area from all the positive animals after autolysis for 7 days at 37 degrees C. The protein could be detected by immunohistochemistry in all cases which were positive by histopathological examination using all autolysis conditions. From the results of this study it is concluded that autolysis does not significantly compromise the diagnosis of scrapie or BSE by either of these diagnostic methods.  相似文献   

19.
Surveillance for bovine spongiform encephalopathy (BSE) in fallen stock in Japan is conducted with a commercial enzyme-linked immunosorbent assay (ELISA) for mass screening, with Western blotting (WB) and immunohistochemistry performed for confirmation of the ELISA. All tests are based on immunological detection of an abnormal isoform of the prion protein (PrP(Sc)) in brain tissues, which have sometimes deteriorated by the time samples from fallen stock reach a diagnostic laboratory. To evaluate BSE surveillance procedures for fallen stock, we examined PrP(Sc) detection from artificially deteriorated BSE-affected bovine brain tissues with a commercial ELISA kit and compared the results with those of WB. The optical density (OD) values of the ELISA decreased with advancing deterioration of the tissues, whereas no reduction in the signal for PrP(Sc) was observed in WB, even when performed after 4 days of incubation at 37 degrees C. The progressive decrease in the OD values in the ELISA appear to be caused by a partial loss of the N-terminal moiety of PrP(Sc) due to digestion by endogeneous and/or contaminated microbial enzymes, and by the presence of ELISA inhibitors that are generated in deteriorated tissues. These results suggest that WB is the most reliable test for fallen stock, especially for cattle brains within decaying carcasses.  相似文献   

20.
Scrapie, a transmissible spongiform encephalopathy (TSE), is a naturally occurring fatal neurodegenerative disease of sheep and goats. This study documents survival periods, pathological findings, and the presence of abnormal prion protein (PrP(Sc)) in genetically susceptible sheep inoculated with scrapie agent. Suffolk lambs (AA/RR/QQ at codons 136, 154, and 171, respectively) aged 4 mo were injected by the intralingual (IL) or intracerebral (IC) route with an inoculum prepared from a pool of scrapie-affected US sheep brains. The animals were euthanized when advanced clinical signs of scrapie were observed. Spongiform lesions in the brain and PrPsc deposits in the central nervous system (CNS) and lymphoid tissues were detected by immunohistochemical and Western blot (WB) testing in all the sheep with clinical prion disease. The mean survival period was 18.3 mo for the sheep inoculated by the IL route and 17.6 mo for those inoculated by the IC route. Since the IC method is occasionally associated with anesthesia-induced complications, intracranial hematoma, and CNS infections, and the IL method is very efficient, it may be more humane to use the latter. However, before this method can be recommended for inoculation of TSE agents, research needs to show that other TSE agents can also transmit disease via the tongue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号