首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first part of our study (Müller et al., 2009) characterized angiogenesis in the equine cycling ovary through histomorphological and immunohistochemical examinations (vascular endothelial growth factors A and B [VEGF A, VEGF B], vascular endothelial growth factor receptors 1 and 2 [VEGF-R1, VEGF-R2], vascular angiopoietins 1 and 2 [Ang1, Ang2], angiopoietin receptor [Tie2], and von Willebrand Factor). Since angiogenesis plays an important role in development and growth of numerous tumours, the second part of our study involved a similar examination of 70 equine granulosa cell tumours (GCTt). The results of the second study were compared with those of the normal equine ovary. Certain similarities in the expression pattern could be detected between normal, cyclical ovaries (Müller et al., 2009) and GCTt. The immunoreactivity of granulosa cells and Leydig-like cells in GCTt resembles granulosa cells and luteinized thecal cells in periovulatory cycling ovaries. The neoplastic cells support circulation, supply and growth of GCTt by contributing to angiogenesis.  相似文献   

2.
The vascular changes associated with endometrial maturation in preparation for embryo implantation depend on numerous growth factors, known to regulate key angiogenic events. Primarily, the vascular endothelial growth factor (VEGF) family promotes vascular growth, whilst the angiopoietins maintain blood vessel integrity. The aim was to analyse protein levels of VEGFA ligand and receptors, Angiopoietin‐1 and 2 (ANG1/2) and endothelial cell receptor tyrosine kinase (TIE‐2) in the ovine endometrium in the follicular and luteal phases of the oestrus cycle and in response to ovarian steroids. VEGFA and its receptors were localized in both vascular cells and non‐vascular epithelium (glandular and luminal epithelium) and stroma cells. VEGFA and VEGFR2 proteins were elevated in vascular cells in follicular phase endometrium, compared to luteal phase, most significantly in response to oestradiol. VEGFR1 was expressed by epithelial cells and endothelial cells and was stimulated in response to oestradiol. In contrast, Ang‐1 and Ang‐2 proteins were elevated in luteal phase endometrium compared to follicular phase, and in response to progesterone, evident in vascular smooth muscle cells and glands which surround TIE‐2‐expressing blood vessels. Our findings indicate that VEGFA is stimulated by oestradiol, most predominantly in follicular phase endometrium, and Ang‐1 and 2 are stimulated by progesterone and were increased during the luteal phase of the oestrus cycle, during the time of vascular maturation.  相似文献   

3.
Introduction and Aim:  The corpus luteum is one of the most intensely vascularized tissues. Luteal angiogenesis is strictly controlled and blood vessels regress completely within a short period of time. The aim of this study was to investigate vascular dynamics in relation to cellular and molecular mechanisms of luteal angiogenesis and anti-angiogenesis.
Material and Methods:  Endothelial cells of blood vessels in paraffin sections of bovine corpora lutea from different stages were examined by labelling with the lectin Bandeiraea simplicifolia agglutinin I. Angiogenesis was studied by morphometry of the capillaries, and immunolocalization of the angiogenic factor VEGF and VEGF-receptor 2. Presence of apoptotic luteal and endothelial cells was investigated using the TUNEL test and transmission electron microscopy.
Results:  During development of the corpus luteum (day 3–8 of the oestrous cycle) a dense capillary network (8–12% area ratio) is established and maintained until day 17. Early regression (day 18–24) is characterized by a remarkable decrease of capillaries (1% area ratio). In the regressing corpus luteum the number of apoptotic luteal cells is closely correlated ( r  = 0.9) to the number of apoptotic endothelial cells. VEGF is immunolocalized in luteal cells (day 3–17), smooth muscle cells and endothelial cells of arterioles of the regressing corpus luteum. During late luteal regression, a moderate increase of capillaries (2.5% area ratio) is obvious.
Conclusions:  The dynamic changes of the capillarity during development and regression of the cyclic corpus luteum correlate with VEGF and VEGF-R2 activities. In contrary to expectations the late stage of luteal regression is accompanied by angiogenesis. One reason for this phenomenon may be an increase in metabolic activity resulting in re-organization of blood vessels already regressed.  相似文献   

4.
Introduction and Aim: The corpus luteum is one of the most intensely vascularized tissues. Luteal angiogenesis is strictly controlled and blood vessels regress completely within a short period of time. The aim of this study was to investigate vascular dynamics in relation to cellular and molecular mechanisms of luteal angiogenesis and anti‐angiogenesis. Material and Methods: Endothelial cells of blood vessels in paraffin sections of bovine corpora lutea from different stages were examined by labelling with the lectin Bandeiraea simplicifolia agglutinin I. Angiogenesis was studied by morphometry of the capillaries, and immunolocalization of the angiogenic factor VEGF and VEGF‐receptor 2. Presence of apoptotic luteal and endothelial cells was investigated using the TUNEL test and transmission electron microscopy. Results: During development of the corpus luteum (day 3–8 of the oestrous cycle) a dense capillary network (8–12% area ratio) is established and maintained until day 17. Early regression (day 18–24) is characterized by a remarkable decrease of capillaries (1% area ratio). In the regressing corpus luteum the number of apoptotic luteal cells is closely correlated (r = 0.9) to the number of apoptotic endothelial cells. VEGF is immunolocalized in luteal cells (day 3–17), smooth muscle cells and endothelial cells of arterioles of the regressing corpus luteum. During late luteal regression, a moderate increase of capillaries (2.5% area ratio) is obvious. Conclusions: The dynamic changes of the capillarity during development and regression of the cyclic corpus luteum correlate with VEGF and VEGF‐R2 activities. In contrary to expectations the late stage of luteal regression is accompanied by angiogenesis. One reason for this phenomenon may be an increase in metabolic activity resulting in re‐organization of blood vessels already regressed.  相似文献   

5.
Angiogenesis is prominent during development and downregulated in the adult. Strictly controlled angiogenesis in the healthy adult occurs cyclically in the ovary and corpus luteum, which therefore make an excellent model with which to study vascular growth. Dysfunctional or uncontrolled angiogenesis is involved in a number of diseases and is responsible for growth and dissemination of tumours. This review focuses on the following aspects of the ovary: the gross and microscopical anatomy of the blood vessels, described mainly--but not exclusively--in the bovine; vascularization of the follicle before and after ovulation; angiogenesis in the developing and the mature corpus luteum as well as in the corpus luteum of pregnancy. The potential mechanisms of vascular regression during luteolysis and the potential role of vascular growth in dominance and atresia of follicles will be described. Furthermore, recent research on ovarian angiogenic and potential anti-angiogenic factors including fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), angiopoietin and metalloproteinase inhibitor will be presented. Finally, the role of hormones including FSH, LH, sexual steroids, prostaglandins, prolactin, oxytocin and activin/inhibin in ovarian angiogenesis will be summarized. Future research is likely to yield valuable information that can contribute to the development of novel therapeutic strategies for the treatment of diseases characterized by disregulated angiogenesis and vascular regression.  相似文献   

6.
Adipose tissue angiogenesis   总被引:10,自引:0,他引:10  
A review of adipose tissue angiogenesis includes the morphological and cytochemical development of adipose tissue vasculature and the concept of primitive fat organs. Spatial and temporal relationships between fetal vascular and fat cell development are discussed, including depot- and genetic-dependent arteriolar differentiation. The relationship between connective tissue deposition and elaboration of adipose tissue vasculature is discussed with respect to regulating adipocyte development in a depot-dependent manner. In vitro studies indicated that depot-dependent vascular traits may be attributable to intrinsic growth characteristics of adipose tissue endothelial cells. These studies indicate that adipogenesis may be regulated by factors that drive angiogenesis. Fundamental aspects of angiogenesis, including basement membrane breakdown, vasculogenesis, angiogenic remodeling, vessel stabilization, and vascular permeability were reviewed. Critical angiogenic factors include vascular endothelial growth factor (VEGF), VEGF receptors, angiopoietins (Ang), ephrins, matrix metalloproteinases, and the plasminogen enzymatic system. Vascular endothelial growth factor is the most critical factor because it initiates the formation of immature vessels and disruption of a single VEGF allele leads to embryonic lethality in mice. Expression of VEGF is influenced by hypoxia, insulin, growth factors, and several cytokines. Angiogenic factors secreted and/or produced by adipocytes or preadipocytes are discussed. Vascular endothelial growth factor expression and secretion by adipocytes is regulated by insulin and hypoxia, and is associated with adipose tissue accretion. Vascular endothelial growth factor accounts for most of the angiogenic activity of adipose tissue. The proposed role of leptin as an adipogenic factor is reviewed with respect to efficacy on various aspects of angiogenesis relative to other angiogenic factors. The VEGF and leptin genes are both hypoxia inducible, but potential links between VEGF and leptin gene expression have not been examined. Finally, several studies including a study of mice treated with antiangiogenic factors indicate that adipose tissue accretion can be controlled through the vasculature per se.  相似文献   

7.
The objective of this study was to document the expression and localization of angiopoietin (ANGPT) family members comprising of angiopoietin (ANGPT1 and ANGPT2), and their receptors (Tie1 and Tie2) in buffalo corpus luteum (CL) obtained from different stages of the oestrous cycle, and the modulatory role of ANGPT1 and ANGPT2 alone or in combinations on progesterone (P4) secretion and mRNA expression of phosphotidylinositide‐3kinase‐protein kinase B (PI3K‐AKT), phosphoinositide‐dependent kinase (PDK), protein kinase B (AKT), Bcl2 associated death promoter (BAD), caspase 3 and von willebrand factor (vWF) in luteal cells obtained from midluteal phase (MLP) of oestrous cycle in buffalo. Real‐time RT‐PCR (qPCR), Western blot and immunohistochemistry were applied to investigate mRNA expression, protein expression and localization of examined factors whereas, the P4 secretion was assessed by RIA. The mRNA and protein expression of ANGPT1 and Tie2 was maximum (p < .05) in mid luteal phase (MLP) of oestrous cycle. The ANGPT2 mRNA and protein expression was maximum (p < .05) in early luteal phase, decreased in MLP and again increased in late luteal phase of oestrous cycle. ANGPT family members were localized in luteal cells and endothelial cells with a stage specific immunoreactivity. P4 secretion was highest (p < .05) with 100 ng/ml at 72 hr when luteal cells were treated with either protein alone. The mRNA expression of PDK, AKT and vWF was highest (p < .05) and BAD along with caspase 3 were lowest (p < .05) at 100 ng/ml at 72 hr of incubation period, when cultured luteal cells were treated with either protein alone or in combination. To conclude, our study explores the steroidogenic potential of angiopoietins to promote P4 secretion, luteal cell survival and angiogenesis through an autocrine and paracrine actions in buffalo CL.  相似文献   

8.
Endometrial remodeling is important for successful embryo development and implantation in pigs. Therefore, this study investigated change of proteins regulating endometrial remodeling on follicular and luteal phase in porcine endometrial tissues. The endometrial tissue samples were collected from porcine uterus during follicular and luteal phase, vascular endothelial growth factor (VEGF), myoglobin and cysteine‐rich protein 2 (CRP2) proteins were expressed by immnofluorescence, immunoblotting, and determined by 2‐DE and MALDI‐TOF/MS. We found that VEGF, myoglobin and CRP2 were strongly localized in endometrial tissues during luteal phase, but not follicular phase. The protein levels of VEGF, myoglobin and CRP2 in endometrial tissues were higher than luteal phase (P < 0.05). These results may provide understanding of intrauterine environment during estrous cycle in pigs, and will be used in animal reproduction for developing specific biomarkers in the future.  相似文献   

9.
REASONS FOR PERFORMING STUDY: Growth factors (GF) are important for maintenance and repair of intestinal mucosal structure and function, but there have been no studies investigating growth factor (GF) or growth factor receptor (GF-R) mRNA expression in the intestine of horses with large colon volvulus (LCV). OBJECTIVES: (1) To determine mRNA expression for epidermal growth factor (EGF), EGF receptor (EGF-R), insulin-like growth factor-I (IGF), IGF receptor (IGF-R), vascular endothelial growth factor (VEGF) and VEGF receptor (VEGF-R) in the intestine of horses with an LCV compared to normal intestine. (2) To measure the correlation between histological intestinal injury and mRNA expression. METHODS: In 5 horses, samples were collected from the mid-jejunum (small intestine, SI), pelvic flexure (PF) and right dorsal colon (RDC) prior to creation of the LCV (NORM), 1 h following creation of the LCV (ISCH) and 1 h following correction of the LCV (REPER). In 2 clinical cases of LCV, samples were collected from the PF and RDC. Samples were assessed histologically for the amount of intestinal injury. The mRNA expressions of growth factors and receptors were determined using qRT-PCR. RESULTS: VEGF and VEGF-R mRNA expression was greater in horses with an LCV compared to NORM. Expression of IGF-R mRNA increased in the SI during ISCH and REPER. CONCLUSION AND POTENTIAL RELEVANCE: The increase compared to NORM in VEGF and VEGF-R mRNA expression in horses with LCV may be important in early intestinal healing and may also explain, in part, the increase in vascular permeability in horses with a LCV. Expression of IGF and IGF-R in the SI warrants further investigation and may be important for understanding post operative complications in horses with SI lesions.  相似文献   

10.
LH and PGF(2alpha) are the principal luteotrophic and luteolytic hormones in domestic animals, however, it is becoming increasingly apparent that intra-ovarian factors can modulate luteal function. For example, the insulin-like growth factors (IGF-I and -II) can regulate ovarian function, and have direct effects on ovarian cells. An important role for the IGFs in regulating ovarian function is suggested by the multiple effects of IGFs on both follicular and luteal steroidogenesis. Expression of mRNA encoding IGF-I, IGF-II and the type 1 IGF receptor has also been detected in the ruminant CL and is suggestive of autocrine/paracrine roles for both IGF-I and -II in the regulation of luteal function. The actions of the IGFs are further modulated by their association with specific binding proteins (IGFBPs), which regulate the transport of IGFs and their presentation to specific receptors. IGFBPs have been detected in the CL of domestic animals, and inhibitory effects on IGF-I-stimulated progesterone production have been demonstrated. The rapid cyclical changes in luteal growth and regression are associated with rapid changes in vasculature. The principle angiogenic factors include the fibroblast growth factors (FGFs), vascular endothelial growth factor (VEGF) and the angiopoietins (Ang). Other locally produced factors include cytokines such as TNF-alpha and IL-1beta. One such factor is monocyte chemoattractant protein (MCP-1), which increases after exogenous PGF(2alpha). An influx of macrophages takes place in the CL around luteolysis, possibly in response to MCP-1 release, but these changes are not observed in cattle when luteolysis is inhibited. In conclusion locally produced factors are important in the control of luteal function, although their roles have yet to fully elucidated.  相似文献   

11.
Sanguinarine (SA), a phytobiotic from Sanguinaria Canadensis, has been demonstrated to inhibit vessel growth. Current restrictions on the use of antibiotic growth promoters have motivated addition of this alkaloid as a naturally appetizing feed additive for farm animals. However, concern may araise since angiogenesis is a fundamental event in ovarian follicle growth. Therefore, the aim of this study was to evaluate the potential negative role of SA in follicular angiogenesis. For this purpose, we studied the effect of 300 nM SA on the production of vascular endothelial growth factor (VEGF) by swine granulosa cells from follicles >5 mm and on the activation of Akt, the main effector of the VEGF signalling pathway. In addition, the potential interference of SA in vessel development was tested in an in vitro angiogenesis bioassay. SA inhibited both VEGF production and VEGF-induced Akt activation in swine granulosa cells. Moreover, it was able to block vessel growth induced by VEGF. Taken together, our results suggest that SA could be detrimental to follicular angiogenesis, and therefore supplementation of feed with this alkaloid should be carefully considered.  相似文献   

12.
13.
Recent findings indicate that the changing profile of angiopoietins (ANPT) and their receptor Tie2 are closely associated with development and regression of the vascular network in the cyclic ovary. We previously reported that mRNA expression for the ANPT-Tie system in theca interna changes during bovine follicular development and atresia, and both ANPTs affect steroidogenesis in the preovulatory follicle. The aim of this study was to investigate mRNA expression for ANPT1, ANPT-2 and Tie2 in granulosa cells (GC) during follicular development in the cow. Bovine follicles were classified according to the estradiol-17beta (E(2)) concentration in follicular fluid (FF) as follows: (1) E(2)<0.5, (2) 0.5180 ng/ml FF. Semi-quantitative RT-PCR analysis revealed that the expression of ANPT-1 mRNA was not detected in most of the follicle with E(2)<5 ng/ml (diameter of 5-10 mm), but clearly detected in all follicles with E(2)>5 ng/ml (diameter of >10 mm). The mRNA expression for ANPT-2 was drastically decreased in the follicles with E(2)>5 ng/ml. Tie2 mRNA expression remained unchanged at the different stages of follicular development. The present data show that ANPT-1 becomes predominant in the follicle producing high levels of E(2), indicating the possible switch-over from ANPT-2 (antagonist) to ANPT-1 (agonist). Thus, the result suggests that the ANPT-Tie system in bovine GC may stimulate E(2) secretion rather than angiogenesis in the late stages of follicular development.  相似文献   

14.
Angiogenesis in Developing Follicle and Corpus Luteum   总被引:7,自引:0,他引:7  
Angiogenesis is a process of vascular growth that is mainly limited to the reproductive system in healthy adult animals. The development of new blood vessels in the ovary is essential to guarantee the necessary supply of nutrients and hormones to promote follicular growth and corpus luteum formation. In developing follicles, the pre-existing endothelial cells that form the vascular network in the theca layer markedly develop in response to the stimulus of several growth factors, mainly produced by granulosa cells, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). The angiogenic factors also promote vessel permeability, thus favouring the antrum formation and the events inducing follicle rupture. After ovulation, newly formed blood vessels cross the basement membrane between theca and granulosa layers and continue a rapid growth to sustain corpus luteum development and function. The length of luteal vascular growth varies in cycling and pregnant animals and among species; both angiogenesis and subsequent angioregression are finely regulated by systemic and local factors. The control of angiogenic development in the ovary could be a useful tool to improve animal reproductive performances.  相似文献   

15.
血管新生是哺乳动物在出生后发生于周期性生理变化的器官中的特殊生理机制,卵巢作为具有明显周期性变化特征的器官,其上卵泡发育与闭锁、黄体的形成与退化均具有明显的血管周期性变化特点。在卵巢的周期性血管变化过程中,血管内皮生长因子(VEGF)和血管紧张素(Ang)起着重要的调控作用,其表达的时空特性与血管的周期性变化是密切相连的。  相似文献   

16.
Uterine has a pivotal role in implantation and conceptus development. To prepare a conducive uterine condition for possibly new gestation during the estrous cycle, uterine endometrium undergoes dramatic remodeling. In addition, angiogenesis is an indispensable biological process of endometrium remodeling. Furthermore, essential protein expressions related to important biological processes of endometrium remodeling, which are vascular endothelial growth factor (VEGF), myoglobin (MYG), collagen type IV (COL4), fucosyltransferase IV (FUT4), and cysteine‐rich protein 2 (CRP2), were detected in the endometrial tissue reported in many previous studies and recently discovered in histotroph substrates during the estrous cycle. Those proteins, which are liable for provoking new vessel development, cell proliferation, cell adhesion, and cell migration, were expressed higher in the histotroph during the luteal phase than follicular phase. Histotroph proteins considerably contribute to endometrium remodeling during the estrous cycle. To that end, the following review will discuss and highlight the relevant information and evidence of the uterine fluid proteins as endometrial‐secreted factors that adequately indicate the potential role of the uterine secretions to be involved in the endometrial remodeling process.  相似文献   

17.
血管内皮因子(VEGF)是一种由各种正常细胞和肿瘤细胞合成和分泌的一种糖蛋白。VEGF家族包括VEGF-A,VEGF-B,VEGF-C,VEGF-D,PGF 5个成员,VEGF有3种受体,即:Flt-1,Flt-4,Flk-1/KDR。VEGF与受体结合具有促进血管内皮细胞的增生和提高血管通透性的作用。VEGF及其受体在雌性动物卵巢上的卵泡、黄体正常发育与维持,子宫内膜的周期性变化及胚胎发育与附植等方面均具有重要作用。  相似文献   

18.
The corpus luteum (CL) of the estrous cycle in the cow is a dynamic organ which has a life time of approximately 17-18 days. The main function of the CL is to secrete a large amount of progesterone (P) thereby supporting the achievement of pregnancy. As the CL matures, the steroidogenic cells establish contact with many capillaries and the matured CL is composed of many vascular endothelial cells that account for up to 50% of all CL cells. The bovine CL produces several major angiogenic and vasoactive foctors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), angiopoietin-1 and -2 (ANPT-1 and -2), prostaglandin F (PGF), endothelin-1 (EDN1), angiotensin II (Ang II) and nitric oxide (NO). These factors regulate P secretion directly and/or indirectly within the CL. Moreover, different actions of PGF in the early cycle CL (non-luteolytic) and the mid cycle CL (luteolytic) may provide insight into the luteolysis cascade in the cow. The aim of the present review is to describe the current concepts of the local mechanisms for the cascade of development and regression of the bovine CL as regulated by luteal angiogenic and vasoactive factors.  相似文献   

19.
To address the role of follicular angiogenesis in the determination of ovulatory follicles and the effects of different vascular endothelial growth factor (VEGF) isoforms on follicular angiogenesis and development, mature female rats were treated with an angiogenic inhibitor (TNP-470), and also with VEGF 120 or 164 at different dosages (0.4, 0.8, 4.0 or 8.0 microg/kg body weight) for 3 days during the estrous cycle. Ovarian follicular angiogenesis, the population of large follicles and ovulation were examined. VEGF 120 (0.8 microg/kg) and 164 (8.0 microg/kg) treatments stimulated follicular angiogenesis in the theca interna layer, while TNP-470 treatment showed severe depression of follicular angiogenesis, and completely inhibited ovulation. After administration of VEGF 120 or 164, the number of healthy preovulatory follicles and ovulated oocytes increased significantly, concomitantly with a decrease in the number of atretic preovulatory follicles. The oocytes ovulated had normal fertilizability and developed to term with the same litter size as in the control rats. Our findings suggest that follicular angiogenesis may be a determinant of follicular development during the periovulatory phase, and that VEGF isoforms may play different important roles in regulating follicular angiogenesis.  相似文献   

20.
In the ovary, the development of new capillaries from pre‐existing ones (angiogenesis) is a complex event regulated by numerous local factors. The dominant regulators of angiogenesis in ovarian follicles and corpora lutea are the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), insulin‐like growth factor (IGF), angiopoietin (ANPT) and hypoxia‐inducible factor (HIF) family members. Antral follicles in our study were classified according to the oestradiol‐17‐beta (E2) content in follicular fluid (FF) and were divided into five classes (E2 < 0.5, 0.5–5, 5–20, 20–180 and >180 ng/ml FF). The corresponding sizes of follicles were 5–7, 8–10, 10–13, 12–14 and >14 mm, respectively. Follicle tissue was separated in theca interna (TI) and granulosa cells (GC). The corpora lutea (CL) in our study were assigned to the following stages: days 1–2, 3–4, 5–7, 8–12 13–16 and >18 of the oestrous cycle and months 1–2, 3–4, 6–7 and >8 of pregnancy. The dominant regulators were measured at mRNA and protein expression levels; mRNA was quantified by RT‐qPCR, hormone concentrations by RIA or EIA and their localization by immunohistochemistry. The highest expression for VEGF‐A, FGF‐2, IGF‐1 and IGF‐2, ANPT‐2/ANPT‐1 and HIF‐1‐alpha was found during final follicle maturation and in CL during the early luteal phase (days 1–4) followed by a lower plateau afterwards. The results suggest the importance of these factors for angiogenesis and maintenance of capillary structures for final follicle maturation, CL development and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号