首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective— To determine the effects of clamp reuse for the Kirschner–Ehmer (KE); Securos; and the IMEX–SK clamp.
Study Design— Experimental bench test of mechanical properties.
Methods— Specially designed fixtures were used to mechanically test 18 clamps of each type with respect to 6 mechanical variables: fixator pin slippage, connecting bar slippage, fixator pin rotation, connecting bar rotation, and clockwise and counterclockwise clamp–bolt axis pivot. Each clamp was tested 6 times for each variable at 7.68 Nm of clamp–bolt tightening torque. Results were compared using repeated measures ANOVA.
Results— For the IMEX–SK clamp, a significant degradation in the force required to cause slippage was found for connecting bar slippage and fixator pin rotation; however, this clamp also had a significant increase in the force to initiate slippage for clockwise clamp–bolt axis pivot with reuse. The Securos clamp had significant degradation in connecting bar slippage, connecting bar rotation, and fixator pin rotation whereas the KE clamp had significant degradation in connecting bar slippage only.
Conclusions— All 3 external fixator clamp types degraded in 1 or more movement variables in their ability to resist motion with reuse. The IMEX and Securos clamps were more subject to degradation than the KE clamp and this may have clinical importance for fixator composite rigidity.
Clinical Relevance— Fracture-reduction stability is related to the ability to resist motion within a clamp. The unpredictable nature of degradation we found cautions against repeated use. Clinicians should consider reuse of external fixator clamps with the knowledge that repeated use degrades clamp mechanical performance.  相似文献   

2.
OBJECTIVE: To compare external fixator clamps from Kirschner-Ehmer (K-E), Synthes, and Meynard with respect to 6 mechanical parameters. Study Design-A bench test of mechanical properties. METHODS: Specially designed fixtures were used to mechanically test 6 clamps of each type at 2.5, 5.0, and 7.5 Newton-Meters of clamp bolt-tightening torque. RESULTS: Components slipped axially and torsionally in the K-E clamp at higher forces for all parameters except for clamp bolt axis pivot. No bolt axis pivot occurred with the Synthes clamp. Instead, the clamp plastically deformed at the fixator-pin interface. This failure occurred at a higher applied torque than the pivot torque for other clamps. The Meynard clamp withstood significantly greater force than the K-E clamp when torsion was applied to the clamp bolt axis in the clockwise direction. Pivot forces for the K-E clamp were significantly higher than the Meynard clamp in the counterclockwise direction. CONCLUSIONS: Overall, the K-E clamp was able to resist higher axial and torsional forces before slipping than the Meynard clamp or the Synthes clamp. The Synthes clamp was best able to resist torsion around the clamp bolt axis. Torsional resistance at the clamp-fixator pin and clamp-connecting bar interface was the weakest parameter of clamp mechanics. CLINICAL RELEVANCE: The ability to resist motion within a clamp is related to fracture-reduction stability. Knowledge of the mechanical properties of fixator clamps will improve a clinician's ability to apply rigid fixation.  相似文献   

3.
Highly comminuted supracondylar humeral fractures were stabilised in six large-breed dogs with a modified type I external fixator using a craniomedial acrylic connecting column and an Intramedullary pin which was incorporated into the connecting frame. This construct provided sufficient stability to allow satisfactory bone healing in five of the six dogs, while premature removal of the intramedullary pin and external fixator resulted in subsequent refracture of the humerus in the remaining dog. Limb function at the time of final assessment was considered excellent in two dogs, good in three dogs and poor in one dog. The craniomedial acrylic connecting column simplified application of this modified type 1(a) configuration to the humerus by reducing the number of clamps required; the acrylic column also facilitated contouring of the cranlomedial connecting column to the brachium and was readily extended proxlmally to engage the intramedullary pin. In addition, the acrylic connecting column allowed placement of intramedullary pins of varying diameter.  相似文献   

4.
An aiming device was used to guide insertion of fixation pins in a type-II (bilateral) external fixator stabilizing an open canine tibial fracture. This device, designed by the Swiss AO group, has multiple applications in orthopedic surgery, because it accurately locates the exit point of a pin or drill hole on the far side of a bone or fractured bone fragment. When used with the type-II external fixator, it greatly facilitates pin placement by ensuring that, as a pin emerges from the bone, it is in line with the second clamp on the opposite connecting bar.  相似文献   

5.
Modifications of a Type 1a external skeletal fixator (ESF) frame were evaluated by alternately placing transfixation pins on opposite sides of the connecting rod (Type 1a-MOD) or by placing additional connecting rods on either of the two inside (Type 1a-INSIDE) or two outside (Type 1a-OUTSIDE) transfixation pins. The objective of this study was to evaluate the stiffness of these modifications in terms of axial compression (AC), cranial-caudal bending (CCB), and medial-lateral bending (MLB). We hypothesized that these designs would allow significant increase in unilateral frame stiffness, over Type 1a, without proportional increase in frame complexity or technical difficulty of application. All of the ESF frames were constructed using large IMEX SKtrade mark clamps, 3.2 mm threaded fixation pins, 9.5 mm carbon fibre connecting rods and Delrin rods as bone models. Nine, eight pin frames of each design were constructed, and subjected to repetitive non-destructive loading forces (AC, CCB, MLB) using a materials testing machine. Frame construct stiffness for each force (AC, CCB, MLB) was derived from load-deformation curve analysis and displayed in N/mm. Data revealed the 1a-MOD and 1a-OUTSIDE constructs had significantly increased stiffness in CCB and AC as compared to the Type 1a constructs while all of the modified constructs were significantly stiffer in MLB than the Type 1a constructs.  相似文献   

6.
Objective: To report pullout force to failure at the acrylic–pin interface for variably treated 3.2 mm external skeletal fixator pins. Study Design: In vitro biomechanical evaluation. Sample Population: 3.2 mm external skeletal fixator pins in polymethylmethacrylate bars. Methods: 3.2 mm external skeletal fixator pins were used for each of 5 treatment groups: polished, unpolished, 3 notched, 5 notched, and machine knurled. Each pin was seated into a 2‐cm‐diameter acrylic connecting bar and tested in pullout force to failure. Each group consisted of 6 pins. The force required to remove the pins from the acrylic bar was measured and compared between groups. Results: Significant differences between treatment groups were determined (P<.05). Within a construct group failure mode was consistent. Fracture of the acrylic bar was only seen with knurled pin ends. Conclusions: When using 2 cm acrylic bars in external skeletal fixation (ESF), a knurled pin shaft or a pin surface with 5 notches should be considered to improve the overall stability of the ESF construct.  相似文献   

7.
The Kirschner-Ehmer splint can be used to treat open, infected or highly comminuted fractures, gunshot fractures, nonunions, delayed unions, mandibular fractures and angular deformities in association with osteotomy, as well as to immobilize joints and as an adjunct to other fixation devices. After the fracture is reduced, 2-4 percutaneous pins are inserted with a Jacobs hand chuck through one or both cortices at 45-60 degrees to the longitudinal axis of the bone and attached to a connecting bar with clamps. Complications are minimized by not inserting the pin through large muscle masses, the fracture hematoma, large blood vessels or the incision line, avoiding encroachment of soft tissue with the clamps, and restricting the animal's activity during healing.  相似文献   

8.
External skeletal fixation is a very useful technique for managing many orthopedic problems in veterinary practice. The Kirschner apparatus has been the most widely used fixator for many years in veterinary orthopedics because of its versatility, simplicity, and economy in use. The medium-sized device has the widest indications and is easiest to begin with. The small size can be acquired later for use on cats and small dogs. The new "raised thread" fixation pin designs improve bone-pin integrity and can be used in combination with nonthreaded pins to decrease the incidence of postoperative complications and for economy. Acrylic-pin external fixators are particularly useful for treatment of mandibular fractures and transarticular application since they allow nonlinear placement of fixation pins in highly contoured bones. A commercial system, currently being developed, will have all the equipment and materials necessary for their application in a convenient kit. Circular fixators (Ilizarov design) use thin K wires placed under tension to replace rigid fixation pins. Their unique adjustability characteristics make them useful in the treatment of limb deformity and shortening. Many other human fixators can be used for veterinary application if the basic principles of fixators are followed. Instrumentation required for external fixator application include a pin driver, pin cutter, and wrenches. Although surgical versions of these materials are available, less expensive alternatives are available using gas sterilization instead of autoclaving. The use of selected orthopedic instrumentation such as a periosteal elevator, bone clamps, and curets will facilitate fracture management.  相似文献   

9.
The concept of external skeletal fixation was introduced by Malgaigne in 1840, with a spike driven into the human tibia that was held by a strap encircling the limb. The first readily available external fixator, the Parkhill clamp, appeared in 1897. By the 1920s, a number of adaptations of pins or screws inserted into bone fragments for external control of reduction and fixation had been published. Important developments in that era were triangular half-pin units and anchoring bone pins in both cortices. The Stader splint, which was the first half-pin splint to provide reduction as well as fixation, was used by surgeons in the U.S. Navy during World War II. The Kirschner-Ehmer splint, a veterinary modification of the Anderson splint for humans, was introduced in 1947. Popularity of external skeletal fixation declined in the 1950s because of poor results that may have been caused by errors of application. Improvements in fixator configurations and the skill and judgment of surgeons led to the current acceptance of the method.  相似文献   

10.
An 8-week-old female Patagonian cavy was examined because of acute right hind limb lameness; radiography revealed a moderately displaced, comminuted fracture of the proximal third of the tibia. The fracture was stabilized with a hybrid external skeletal fixator. Two Kirschner wires were placed in the main proximal fragment, parallel to the tibial plateau and at right angles to each other. These wires were connected to a partial circular external fixator ring. Three half pins were placed in the distal fragment, and a straight connecting rod positioned on the medial side of the limb was connected to these pins and the fixator ring. A second connecting rod was positioned on the craniomedial side of the limb and was connected to the fixator ring and a fourth half pin in the distal fragment. The fracture healed without complications, and the fixator was removed 3 weeks after surgery. Hybrid external skeletal fixators combine the benefits of circular and linear external skeletal fixation methods, enabling rigid fixation of periarticular long bone fractures without adversely affecting mobility of the adjacent joint.  相似文献   

11.
The purpose of this study was to determine the respective contribution of each of the following parameters to the compressive, bending, and torsional rigidity of the Kirschner-Ehmer (KE) external fixation splint as applied to canine tibiae with an osteotomy gap: bilateral versus unilateral splints; increasing the number of fixation pins; altering the diameter of fixation pins and side bars; decreasing side bar distances from the bone; increasing pin separation distances in each pin group; decreasing distances between pin groups; altering pin clamp orientation; and altering side bar conformation. Bilateral splints were 100% (mean) stiffer than unilateral splints, with stiffness enhanced to the greatest extent in mediolateral bending and torsion. Increasing pin numbers stiffened both bilateral (mean, 41%; 8 versus 4) and unilateral splints (mean, 14%; 8 versus 4). Medium KE splints were 85% (mean) stiffer than small KE splints. Decreasing side bar distances to the bone from 1.5 cm to 1.0 cm to 0.5 cm increased stiffness of both bilateral and unilateral splints by a mean of 13% to 35%. Widening pin spacing from 1.67 cm to 2.5 cm increased stiffness in craniocaudal bending only (56% increase, bilateral splints; 73% increase, unilateral splints). Decreasing the distance between pin groups from 5.84 cm to 2.5 cm increased stiffness in torsion between 23% (unilateral splints) and 45% (bilateral splints) and decreased stiffness of unilateral splints by 29% in craniocaudal bending. Altering pin clamp configuration so that the bolts of the clamp were inside the side bar rather than outside the side bar increased stiffness in axial compression only (73% increase, bilateral splints; 54% increase, unilateral splints). Conforming the lateral side bar to the tibiae increased only axial compressive stiffness by 77% but was no different than placing the clamps inside the side bars of an unconformed bilateral splint. These results quantify the relative importance of specific parameters affecting KE splint rigidity as applied to unstable fractures in the dog.  相似文献   

12.
Objective —To measure pullout strength of four pin types in avian humeri and tibiotarsi bones and to compare slow-speed power and hand insertion methods.
Study Design —Axial pin extraction was measured in vitro in avian bones.
Animal Population —Four cadaver red-tailed hawks and 12 live red-tailed hawks.
Methods —The pullout strength of four fixator pin designs was measured: smooth, negative profile threaded pins engaging one or two cortices and positive profile threaded pins. Part 1: Pins were placed in humeri and tibiotarsi after soft tissue removal. Part 2: Pins were placed in tibiotarsi in anesthetized hawks using slow-speed power or hand insertion.
Results —All threaded pins, regardless of pin design, had greater pullout strength than smooth pins in all parts of the study ( P < .0001). The cortices of tibiotarsi were thicker than the cortices of humeri ( P < .0001). There were few differences in pin pullout strengths between threaded pin types within or between bone groups. There were no differences between the pullout strength of pins placed by slow-speed power or by hand.
Conclusions —There is little advantage of one threaded pin type over another in avian humeri and tibiotarsi using currently available pin designs. There were few differences in pin pullout strengths between humeri and tibiotarsi bones. It is possible that the ease of hand insertion in thin cortices minimizes the potential for wobbling and therefore minimizes the difference between slow-speed drill and hand insertion methods.
Clinical Relevance —Threaded pins have superior bone holding strength in avian cortices and may be beneficial for use with external fixation devices in birds.  相似文献   

13.
OBJECTIVE: To compare the microstructural damage created in bone by pins with lathe-cut and rolled-on threads, and to determine the peak tip temperature and damage created by positive-profile external fixator pins with either hollow ground (HG) or trocar (T) tips during insertion. STUDY DESIGN: An acute, in vitro biomechanical evaluation. SAMPLE POPULATION: Twenty-seven canine tibiae. METHODS: Lathe-cut thread design with T point (LT-T), rolled-on thread design with T point (RT-T), and rolled-on thread design with HG point (RT-HG) pins were evaluated. Twenty pins of each type were inserted under constant drilling pressure into 12 canine tibiae (12 diaphyseal and 8 metaphyseal sites per pin type). Peak pin tip temperature, drilling energy, end-insertional pin torque, and pullout force were measured for each pin. For the histologic study, five pins of each type were inserted into cortical and cancellous sites in 15 additional tibiae. Entry and exit damage, and thread quality were assessed from 100 micron histologic sections by using computer-interfaced videomicroscopy. RESULTS: T-tipped pins reached higher tip temperature in both diaphyseal and metaphyseal bone compared with HG-tipped pins. RT-T pins had higher pullout strength (diaphyseal) and end-insertional torque compared with other combinations. No differences in drilling energy or insertional bone damage was found between the three pin types (P < .05). CONCLUSIONS: T-tipped pins mechanically outperformed HG-tipped pins. Pin tip and thread design did not significantly influence the degree of insertional bone damage. CLINICAL RELEVANCE: T-tipped pins may provide the best compromise between thermal damage and interface friction for maximizing performance of threaded external fixator pins.  相似文献   

14.
Fourteen interfragmentary orthopedic wire configurations were tested in torsion using a transverse fracture polyvinylchloride pipe model. These models included single and double Kirschner pins with and without orthopedic wire added to the configuration. The orthopedic wire was applied in either an encircling, figure-of-eight (skewer pin), or cruciate pattern. Double Kirschner pins were applied in a mono- or biplanar fashion. An external fixator model was also tested. Stiffness, yield load, safe load, and energy of absorption were measured and calculated for each model. Orthopedic wire added to any configuration increased stiffness. All single pin configurations with orthopedic wire and the external fixator had the highest stiffness. Two Kirschner pins had a higher torsional yield load and safe load than single pin configurations with or without orthopedic wire. The external fixator model had the highest torsional yield load, safe load and energy of absorption of all configurations tested. However, the external fixator was only significantly different in safe load from the 90° biplanar configurations with wire and the cross pin configuration with encircling wire. The 90° biplanar configurations with wire and the cross pin configuration with encircling wire were equally as effective as the external fixator model in yield load and energy of absorption.  相似文献   

15.
OBJECTIVE: To determine total stiffness and gap stiffness of an external fixation system in a canine mandibular fracture gap model incorporating a full interdental pin as the only point of rostral fixation in a bilateral type-I external fixator. SAMPLE POPULATION: 10 canine mandibles. PROCEDURE: Bilateral mandibular ostectomies were performed between premolars 3 and 4. A type-I external fixator incorporating a full interdental pin was placed to stabilize a 0.5-cm fracture gap. Four pin configurations (intact mandibular bodies with fixator; ostectomized mandibular bodies and complete fixator; ostectomized mandibular bodies with caudal pins of rostral fragment cut; ostectomized mandibular bodies with all pins of rostral fragment cut) were tested in dorsoventral bending 5 times on each mandible. The full interdental pin remained intact in all configurations. Total stiffness and gap stiffness were determined for each configuration on a materials testing machine. RESULTS: Total stiffness of intact mandibles was significantly greater than that of ostectomized mandibles, regardless of external fixator configuration. However, total stiffness and gap stiffness were not significantly different among different external fixator configurations applied to ostectomized mandibles. CONCLUSION AND CLINICAL RELEVANCE: External fixator configurations with only the full interdental pin engaging the rostral fragment were as stiff as configurations that had 2 or 4 additional pins in the rostral fragment for the applied loads. External fixators for rostral mandibular fractures may be rigidly secured with rostral fragment implants applied extracortically, avoiding iatrogenic trauma to teeth and tooth roots.  相似文献   

16.
Application of external skeletal fixation involves preoperative assessment of the fracture with regards to healing potential of the bone and stabilizing requirements of the fixator. The fixator can be used alone or with supplemental (IM pin, cerclage, hemicerclage, Kirschner wires, bone screws) fixation to counteract shear, bending, and torsional forces at the fracture site. In addition, cancellous bone grafting can be used to enhance fracture healing. Rigid frames should be based on predrilling pilot holes followed by slow speed or hand insertion of smooth and threaded pins. Precise knowledge of regional anatomy precludes iatrogenic neurovascular or muscular tissue damage, which, subsequently, improves patient morbidity. Postoperative care of the fixator consists of bulky wraps to control pin-skin motion and cleaning of pin tract drainage sites. "Dynamization" or bone loading can be performed during fracture healing to stimulate osteosynthesis. This involves staged disassembly and reduction of frames by removing pins and connecting rods.  相似文献   

17.
OBJECTIVE: To compare the stiffness and pin stresses of three sizes of external fixator systems with stainless-steel and acrylic connecting bars. STUDY DESIGN: Finite element analysis. METHODS: Small, medium, and large external fixator systems of type I and type II configurations were modeled for finite element analysis. Each model was evaluated with a standard stainless-steel and three different diameters of acrylic connecting bar. Displacements and stresses were calculated for the loading modes of axial compression, medio-lateral bending, cranio-caudal bending, and torsion. The location of the pin experiencing maximum stress was determined for all configurations and loading modes. RESULTS: Acrylic column diameters of 9.53 mm for the small external fixator system and 15.9 mm for the medium external fixator system provide equivalent stiffness and maximum pin stresses to those provided by the standard stainless-steel connecting bars (3.2- and 4.8-mm diameter, respectively). The largest diameter acrylic column tested (31.75-mm) produced lower stiffness and higher maximum pin stresses than the standard stainless-steel connecting bar (11.1-mm diameter). CONCLUSIONS: When applying a small or medium external fixator, an acrylic column of 9.53-mm or 15.9-mm diameter, respectively, can be used. For a large external fixator system, an acrylic column of diameter >31.75 mm is required. CLINICAL RELEVANCE: The sizes of acrylic connecting bars for use in small and medium external fixator systems have been determined. Large systems should incorporate the standard stainless-steel connecting bar.  相似文献   

18.
OBJECTIVE: To quantify the effect on gap stiffness and cranial to caudal bending stiffness of conversion of the 6 distal clamps of planar bilateral fixator models to sliding clamps and the effect of attachment of composite beams to the sliding clamp models. STUDY DESIGN: Mdash;Mechanical testing performed on models. SAMPLE POPULATION: Five models using birch dowels and a commercially available external skeletal fixator system. METHODS: A segmentally comminuted, middiaphyseal fracture was simulated with the use of wooden dowels, and a bilateral 6-pin fixator was applied to create each of 5 models. The models were mechanically tested with all fixed clamps, with the 6 distal clamps converted to sliding clamps and with composite beams attached to the sliding clamp models. Testing was carried out in axial loading with physiologically relevant loads for a canine model, and in bending in the cranial to caudal plane. RESULTS: Sliding clamp fixators with composite beams attached exhibited a nonlinear increase in axial loading gap stiffness as load increased. The composite beam group also exhibited an increase in cranial to caudal bending stiffness as compared with fixed clamp and sliding clamp models. CONCLUSIONS: Using composite beam elements, planar bilateral external fixators can be constructed such that the fracture site would undergo controlled amounts of displacement at low loads and lessening displacement at higher loads. CLINICAL RELEVANCE: The nonlinear stiffness profile attained by the addition of composite beam elements to a planar external fixator allows controlled axial micromotion at the fracture site. Because controlled axial micromotion appears to stimulate fracture healing, a nonlinear stiffness profile of this type should enhance fracture healing.  相似文献   

19.
Objective— (1) To evaluate resistance to axial extraction of 3 pin designs in avian humerus and tibiotarsus; (2) to assess the effect of pin location within the bone on holding power; and (3) to assess the influence of thread pitch on holding power. Study Design— Resistance of pins to axial extraction was measured immediately after insertion. Animals— Adult common buzzards (Buteo buteo; n=9). Methods— Different pin designs (1 smooth; 2 threaded pins, differing in pitch) were inserted into the proximal and distal metaphysis and the proximal, middle, and distal diaphysis of the humerus and tibiotarsus. Maximum force required for axial extraction of pins was recorded. Results— Smooth pins had the lowest extraction force (P<.05). Pins inserted into the diaphysis (proximal, middle and distal) of the humerus and the distal metaphysis of the tibiotarsus had a greater pullout strength than pins in other locations. Pins with a smaller pitch inserted into the proximal diaphysis and distal metaphysis of the humerus, and the proximal metaphysis of the tibiotarsus had significantly greater holding power than pins with a larger pitch (P<.05). Conclusions— Pins inserted into the diaphysis of humerus and the distal metaphysis of the tibiotarsus are better at resisting extraction. Pins with a smaller pitch possess greater holding power than pins with a larger pitch in avian humerus and tibiotarsus. Clinical Relevance— Consideration should be given to pin location and thread pitch, when choosing external skeletal fixation to repair an avian humeral or tibiotarsal fracture.  相似文献   

20.
OBJECTIVE: To compare the mechanical properties of two types of external skeletal fixation of the lumbar spine with polymethylmethacrylate (PMMA)/Steinmann pin fixation in a canine unstable spine model. STUDY DESIGN: Cadaver study. SAMPLE POPULATION: Lumbar spines of 17 mature large-breed dogs. METHODS: Spine stiffness (N-m/deg) in flexion, extension, and rotation under physiological loading conditions and spine strength (N-m) in flexion were determined. Spines were destabilized at L3-L4, instrumented and retested. Fixation techniques included four-pin PMMA (PMMA4), eight-pin PMMA (PMMA8), eight-pin biplanar type I external skeletal fixator (ESF) (SK), and eight-pin spinal arch ESF (ARCHES). RESULTS: All fixation groups were as stiff as intact spines in extension and rotation and were significantly stiffer in flexion. In flexion, both PMMA8 and ARCHES were significantly stiffer than SK, and PMMA8 was significantly stiffer than PMMA4. In rotation, PMMA8 and ARCHES were significantly stiffer than SK, and in flexion to failure, PMMA8 and ARCHES were significantly stiffer than PMMA4. CONCLUSIONS: External skeletal spinal fixation (ESSF) has mechanical properties comparable to more commonly used PMMA/pin internal fixation techniques. CLINICAL RELEVANCE: External fixation of the canine spine has several potential advantages over internal fixation including minimal dissection for pin placement, the ability to span affected vertebrae with placement of implants distant from the site of injury, postoperative adjustability, and complete removal of implants after healing. This study supports the biomechanical stability ESSF of the canine lumbar spine. Further studies are indicated to evaluate zones of consistently safe and secure placement of pins and clinical efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号