首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A laboratory experiment showed that the oxidized layer of submerged soil has high nitrifying activity. Denitrification was active in soil below the soil surface. Tracer technique indicated that the nitrification and the subsequent denitrification of ammonium sulfate was most active in the layer about 2 cm below the soil surface, and that the activities extended to a depth of about 5 cm, Nitrification Inhibitors reduced the nitrogen lost through nitrification and subsequent denitrification.  相似文献   

2.
3.
《Soil biology & biochemistry》2001,33(4-5):429-438
Microbivorous grazers are thought to enhance nutrient mineralization. The predicted effect of microbivory on nutrient cycling depends on the pore habitat model used. We evaluated CO2 evolution and mineral N content of an old field soil to test two alternative habitat hypotheses. The exclusion hypothesis predicts that nematodes are separated from their microbial food resources in water-filled pores when soils dry, resulting in slower rates of biogeochemical transformations. The enclosure hypothesis predicts that nematode densities increase relative to their forage in smaller, isolated water volumes when soils dry, accelerating rates of biogeochemical transformations. We investigated the effect of soil moisture on the relationship between microbial biomass, microbivorous and predaceous nematodes, soil respiration and mineral N concentrations in an old field five times during the course of a year.We could evaluate the validity of the two habitat hypotheses for the entire field only in August 1997 because that was the only sampling date when maximum water-filled pore diameters were smaller than microbivorous nematode body diameters in all sampled field locations. The mean microbivorous and predaceous nematode abundances for the field in August were greater than 6300 kg−1 and 80,000 kg−1, respectively. Accordingly, the exclusion hypothesis was rejected. Predaceous nematode abundance was markedly higher in August than at any other sampling date. The high abundance of predators present suggests that detrital resources were not limiting productivity and that predators and microbivores were in enclosures, allowing predators to efficiently access their prey. Spatial maps, in agreement with linear correlation analyses, suggest that under our driest sampling conditions, soil respiration and mineral N content were controlled by microbivory and predation.  相似文献   

4.
Mineralization and immobilization processes were studied in a soil treated with ammonium sulphate, calcium ammonium nitrate, urea, urea ammonium phosphate or suphala along with unhumified dung. The conversion of fertilizer nitrogen into non-KCI extractable fractions occurred within two weeks and was relatively rapid in the samples treated with urea and urea ammonium phosphate. The mineral nitrogen content during incubation studies was highest in calcium ammonium nitrate treated soils. Amino acid nitrogen appeared to be the main fraction involved in the immobilization and mineralization of nitrogen in soil. Dung behaved as an efficient nitrification inhibitor and slowed the release of nitrogen from fertilizers.  相似文献   

5.
Calculation of gross nitrogen immobilization and mineralization in soil   总被引:5,自引:0,他引:5  
In a laboratory experiment, soil was treated with 15NH4- and 15NO3-N compounds at various times during the incubation. Several approaches in the calculation of gross immobilization and gross mineralization between two sampling dates were compared and a new method was developed. It is based on a dynamic simulation model designed to interpret isotopic data and an optimization procedure used to determine the best fit between model output and experimental data. This flexible method was used to examine the validity of the assumptions usually made when calculating the gross transformations.
The results indicate that seriously erroneous estimates of the gross transformations can follow if it is assumed that remineralization of immobilized N does not occur. Less serious errors can result from the assumption that both opposing processes occur at a constant rate during the interval between sampling dates.
The combined use of the model and the optimization procedure has several advantages over traditional methods and some of the gross transformation estimates reported would not have been obtainable using older methods.  相似文献   

6.
Summary Laboratory experiments were used to examine the influence of cellulose and straw on denitrification and N immobilization in a sandy loam soil. The soil was mixed with 300 g nitrate-N/g and incubated in a special vessel under conditions that changed from aerobic to anaerobic or in the permanent absence of O2. Gases (O2, CO2, N2, N2O, NO and CH4) were analysed by gas chromatography at regular intervals and the soil was examined for nitrate, nitrite, ammonium and cellulose. Compared with controls, the application of straw and cellulose (0.5% and 1.0%, respectively) enhanced nitrate immobilization and decreased denitrification, under both anaerobic and originally aerobic (PO2 = 20 vol%) conditions. However, a comparison of results from the aerobic and the anaerobic incubations shows that an increase in denitrification and N immobilization was apparent at an original O2 concentration of 20 vol%. N2 was the major product of denitrification in all experiments. Free methane was apparent as soon as nitrate was respired. The stimulating effect of O2 on total denitrification in the presence of relatively high amounts of easily decomposable cellulose is ascribed to a higher turnover and an intensified mineralization rate (CO2 production), which increased the total demand for electron acceptors.  相似文献   

7.
苏打盐碱化稻田土壤氮素矿化和硝化特征及其影响因子   总被引:1,自引:0,他引:1  
  【目的】  为探明土壤盐碱化对氮素转化的影响,研究了不同盐碱化条件下氮素的矿化和硝化特征以及这些特征与土壤盐分、养分含量的关系,为盐碱化土壤养分的科学管理提供理论依据和数据支撑。  【方法】  随机采集了30个不同盐碱化程度的稻田土壤 (0—20 cm)样品,根据盐碱化程度将采集的土壤样品划分为轻度(含盐量0.1%~0.3%,碱化度5%~15%)、中度(含盐量0.3%~0.5%,碱化度15%~30%)和重度(含盐量0.5%~0.7%,碱化度30%~45%)盐碱土3类,每个类别中依据最小归类样品数选取盐碱化程度接近的3个土样作为3次重复,进行氮素矿化和硝化室内培养试验(25℃,24 h光照)。于培养的第0、3、6、9、15、21天取样测定土壤铵态氮、硝态氮含量及脲酶和碱性蛋白酶活性。通过相关性分析研究土壤各指标与氮素矿化、硝化过程间的相关关系,采用逐步回归分析筛选影响氮素矿化和硝化过程的主要因子。  【结果】  随着土壤盐碱化程度的加剧,氮素矿化和硝化作用显著下降(P<0.05)。与轻度盐碱土相比,中度和重度盐碱土的氮素最大净矿化速率分别低12.7%和29.8%,累积矿化氮量分别低15.7%和25.2%,最大净硝化速率分别低15.4%和23.1%,累积硝化氮量分别低15.4%和23.1%,最大脲酶活性分别低16.0%和34.8%,最大碱性蛋白酶活性分别低6.0%和15.6%。逐步回归分析表明,土壤电导率(EC)、pH、CO32–、Na+、全氮和有机质是影响土壤氮素矿化作用的主要因子,EC、pH、CO32–、Na+和有机质是影响土壤氮素硝化作用的主要因子。  【结论】  随着土壤盐碱化程度的增加,土壤氮素净矿化速率、净硝化速率、累积矿化氮量、累积硝化氮量、脲酶和碱性蛋白酶活性不断下降,土壤盐碱化显著抑制了氮素的矿化和硝化作用。  相似文献   

8.
滇池流域土壤氮磷分布特征及关键影响因素研究   总被引:3,自引:0,他引:3  
从流域的尺度对滇池流域非点源污染土壤氮、磷的空间分布进行了研究。结果显示,滇池流域土壤有机质的空间分布为:西山>斗南>松花坝>马金铺>宝象河>晋城新街>东大河>上蒜。土壤全氮空间分布特点为:斗南>西山>马金铺>晋城新街>东大河>上蒜>松花坝>宝象河。其中斗南片区土壤氮的含量最高(0.221?0.091%),宝象河片区最低(0.132?0.048%)。土壤全磷空间分布为:上蒜>马金铺>斗南>晋城>西山>东大河>松花坝>宝象河。其中上蒜片区最高(0.221?0.195%),宝象河片区最低(0.08?0.024%),滇池东岸和东南区为高磷素区。研究认为,长期的大棚种植模式和湖滨坝平地区过度的土地利用及大量化肥投入增加了滇池流域非点污染物氮、磷的积累,这些区域中的土壤高氮、磷积累将成为滇池非点源污染来源的高潜力区,应引起重视。  相似文献   

9.
The immobilization of nitrogen by straw decomposing in soil   总被引:3,自引:0,他引:3  
Immobilization of nitrogen (N) in decomposing straw varies between soils, and the objective of this study was to identify the mechanisms responsible. Internode segments of wheat straw were incubated in Denmark and in Scotland in arable soils fertilized with NH4NO3, labelled with 15N, for periods up to 1 year. Straw was recovered from the soils periodically and analysed for microbial biomass and different forms of N using chemical methods and CPMAS 15N NMR spectroscopy. The total N content of the straw increased, as long as the soil was not too wet, such that there was overall immobilization. This was accompanied by a rapid increase in the content of amino acid N and to a lesser extent of glucosamine N and a concomitant decrease in the carbohydrate content of the straw. Using direct and plate counts for bacterial and ergosterol content for fungal estimation, we found that fungal biomass was much greater than that of bacteria. This correlated with the forms of N in the straw as determined by CPMAS 15N NMR, which showed spectra that were more typical of fungi than of bacteria. It seems that immobilization of N is primarily caused by fungi as they decompose the straw.  相似文献   

10.
Immobilization of N was measured in a fumigated and in an unfumigated soil by adding (15NH4)2SO4 and following the disappearance of inorganic label from the soil solution and its simultaneous conversion to soil organic N. Calculations based on the measurement of organically-bound 15N gave more consistent values for immobilization than did calculations based on the measurement of the disappearance of label from solution. The fumigated soil immobilized 6.6 μg N g?1 N g?1 soil in 10 days at 25°C, the unfumigated control 4.8 μg. The corresponding gross mineralization rates were 34.9 and 5.6 μg N g?1 soil in 10 days.Addition of 58 μg N as (15NH4)2SO4 to the fumigated soil increased the quantity of the ynlabelled NH4-N extracted at the end of 10 days from 33.8 to 37.8 μg Ng?1 soil, i.e. there was a positive Added Nitrogen Interaction (ANI). The added labelled N produced this ANI, not by increasing the rate of mineralization of organic N, but by standing proxy for unlabelled N that otherwise would have been immobilized.A procedure for calculating biomass N from the size of the flush of mineral N caused by fumigation is proposed. Biomass N (BN) is calculated from the relationship BN = F'N/0.68 where F'N is [(N in fumigated soil incubated for 10 days — (N in unfumigated soil incubated for 10 days)].  相似文献   

11.
Summary Winter wheat grown on a clay soil was subjected to one of four treatments. The control was not irrigated; the drought treatment had screens to divert rainwater; the irrigation and irrigation/fertilization treatments were irrigated using a drip-tube system with liquid fertilizer (200 kg N ha-1 year-1) applied daily in the irrigation/fertilization treatment according to predicted plant uptake. All other treatments also received 200 kg N, but as a single application of bag fertilizer. Soil temperature was monitored. Soil moisture was measured using gravimetric samplings and a capacitance method. Litter bags with barley straw were buried at 10 cm depth in the spring and sampled repeatedly during the growing season. Decomposition rates were calculated assuming exponential decay and that water-soluble components were immediately decomposed or leached from the litter bags. Rates were highly dependent on soil moisture, and the constants ranged from 0.11% day-1 in the drought treatment to 0.55% day-1 in the irrigation/fertilization treatment. A simulation model with driving variables based on Q 10 temperature dependence and a log/linear relationship between soil water tension and activity was fitted to the data. The control and drought treatments showed high climate-corrected decomposition constants. The high values were attributed to low and erratic mass loss due to drought, and to low precision in the conversions from water content to tension in the dry range. The irrigated treatments showed good fits, and there was little or no difference in decomposition rates between the two irrigated treatments. The N dynamics of the straw differed considerably between treatments, and the ranking of plots in terms of net immobilization in the straw was control>irrigation/fertilization>irrigation>drought.  相似文献   

12.
Abstract

This study investigated whether small additions to soil of primary paper-mill sludge, a wood fibre residue from paper production (fibre sludge), caused temporary N immobilization and thereby reduced the amount of inorganic nitrogen leached from agricultural land. This was achieved by measuring respiration and immobilization of N in incubation studies at 8°C, with fibre sludge added at rates varying from 63 to 1000?mg?C?kg?1 soil. Glucose added at rates of 63–250?mg?C?kg?1 soil was used as a reference. Respiration in soil after glucose addition followed an exponential course with the highest rates on days 2–4. During this period maximum peaks of net N immobilization were measured. Even addition of only 63?mg glucose-C?kg?1 soil caused significant immobilization of N in soil. Fibre sludge additions to soil caused lower respiration activities, characterized by two initial peaks followed by somewhat higher respiration rates during the remaining incubation than for glucose. It was likely that hemicellulose, which amounted to 14% of the total C, was the initial available energy source in the sludge as concentrations of water-soluble C were very low. Addition of at least 250?mg?C?kg?1 soil as fibre sludge was required to cause significant N immobilization in soil corresponding to 5?kg?N?ha?1. Both nitrate and ammonium were immobilized. Relating maximum N immobilization data during days 2 to 10 to corresponding respiration data for glucose and fibre sludge revealed that microbes utilised similar amounts of C per unit N immobilized. On average, 175.6±74.8?mg CO2-C were respired to immobilize 1?mg?N and the relationship between C respiration and N immobilization was linear (R 2=0.984). To make soil application of fibre sludge a realistic counter-measure against N leaching from agricultural soils, pre-treatment is necessary to increase the content of energy readily available to microbes.  相似文献   

13.
Losses of N by denitrification from an imperfectly drained grassland soil were measured by the acetylene-inhibition technique over a 1-yr period, during which applications of up to 200 kg ha ?1 of N as cattle slurry or calcium nitrate were made. The quantities of N lost from nitrate-treated soil were much greater than from slurry-treated areas, and ranged up to 21% of the N applied. The losses occurred predominantly over brief periods following fertilizer application in the spring. Ratios of N released as N2 to that released as N2O increased as denitrification rates increased. The highest ratio recorded, 24, may have been a conservative estimate because inhibition of N2O reduction may not have been complete on all occasions. Increased respiration was observed in the soil profile as a result of adding C2H2. This effect should be taken into account in interpreting experiments using the C2H2-inhibition technique.  相似文献   

14.
Reduction of N2O in moist soil was inhibited completely by 10?2 atm C2H2 and partially by 10?5 atm C2H2. The effect of C2H4 was 104 times less than that of C2H2. Denitrification of NO?3 occurred in anaerobically or aerobically incubated waterlogged soil and in anaerobic but not in aerobic moist soil. In the absence of C2H2 there was transient accumulation of N2O. In the presence of C2H2 there was stoichiometric conversion of NO?3 to N2O. Some kinetics of the reduction of N2O and of NO?3 to N2O are presented. Denitrification of 1 μg added NO?3-N.g? could be measured within 1 h. Stoichiometries of production of N2O from NO?2 and NO?3, respectively, and production of CO2 attributable to denitrification were consistent with reported energy yields. Reduction of C2H2 to C2H4 occurred immediately following complete denitrification of added NO?3. The incubation of soil in the presence and in the absence of C2H2 thus permits assay of both denitrification and N2 fixation and provides information on the mole fraction of N2O in the products of denitrification.  相似文献   

15.
During freeze-thaw events, biophysical changes occurring in soils can affect processes such as mineralization, nitrification and denitrification which control inorganic N balances in agro-ecosystems. To evaluate the impact of these climatic events on soil biochemical properties, a study was conducted comparing soil denitrification enzyme activity (DEA), dissolved organic C (DOC) and inorganic N levels before and after the winter season in plots under: (1) continuous corn (Zea mays L.) (CC) with annual chisel plow and disking, (2) corn-soybean (Glycine max L.) (CS) rotation with chisel plow every other year prior to planting soybean, and (3) corn-soybean-wheat (Triticum aestivum L.)/hairy vetch (Vicia villosa Roth) (CSW-V) with ridge tillage during the corn and soybean crops, and dairy manure application during the corn year. Soil cores were collected in late autumn and immediately after spring thaw at 0-5, 5-10, 10-15, and 15-30 cm depths. Regardless of management practices, freeze-thaw events resulted in significant (2-10 times) increases in NH4+-N, NO3--N (P<0.001) and DOC (P<0.01) levels at all soil depths. Following freeze-thaw, DEA remained unchanged in the 5-30 cm depth but dropped significantly (P<0.01) in the 0-5 cm soil layer. In that layer, soils which had been chisel plowed during the previous growing season lost 78-84% of the DEA recorded during the fall, whereas in the plots amended with manure during the previous season, the loss of activity was 40-45%. These data indicate that frequent tillage, compared with manure additions, is more conducive to overwinter loss of DEA in surface layers of soils subject to freeze-thaw cycles.  相似文献   

16.
The effects of precipitation reduction and nitrogen deposition increase on soil bacterial communities and functions impact soil nitrogen cycling. Seasonal changes could modify the effects of precipitation reduction and nitrogen deposition increase on bacterial communities and functions by changing soil environments and properties. Understanding soil microbial communities and the seasonal response of functions to precipitation reduction and nitrogen deposition increase may be important for the accurate prediction of changes in the soil nitrogen dynamics. Thus, a long-term field simulation experiment of nitrogen deposition increase and throughfall exclusion was established to investigate soil bacterial communities’ response to nitrogen deposition increase and/or precipitation reduction, with no nitrogen deposition increase and no precipation reduction as a control, in a temperate forest. We examined soil bacterial communities (Illumina sequencing) under different treatments during the winter, freezing-thawing cycle periods (FTCs), and growing season. The bacterial functional groups were predicted by the FAPROTAX database. The results showed that nitrogen deposition increase, precipitation reduction, the combined effect of nitrogen deposition increase and precipitation reduction, and seasonal changes significantly altered the soil bacterial community composition. Interestingly, by combining the result of a previous study in which nitrogen deposition increase increased the nitrous oxide flux in the same experimental system, the loss of soil nitrogen was increased by the decrease in denitrification and increase of nitrification bacteria under nitrogen deposition increase, while ammonification bacteria significantly increased and N-fixing bacteria significantly decreased with precipitation reduction compared to the control. In relation to seasonal changes, the aromatic-degrading, cellulolytic, and ureolytic bacteria were lowest during FTCs, which indicated that FTCs might inhibit biodegradation. Nitrification and nitrite-oxidizing bacteria increased with nitrogen deposition increase or precipitation reduction and in FTCs compared to the control or other seasons. The interaction between treatment and season significantly changed the soil bacterial communities and functions. These results highlight that nitrogen deposition increase, precipitation reduction, seasonal changes, and their interactions might directly alter bacterial communities and indirectly alter the dynamics of soil N.  相似文献   

17.
 When comparing nitrite (NO2 ) and nitrate (NO3 ) toxicity to maize (Zea mays L.) growth, it is important to know the fate of applied nitrogen (N). A pot experiment, using potassium nitrite (K15NO2) and potassium nitrate (K15NO3) was conducted to determine the fate of N (0, 75, 150, and 225 mg N kg–1 soil) applied to a sandy loam soil collected from Gistel (Belgium). The total dry weight of the plants treated with NO2 was lower than that of the plants treated with NO3 at 15 and 26 days after N application (harvest 1 and harvest 2, respectively). Shoot and root biomass reduction started at a relatively low NO2 application rate (75 mg NO2 -N kg–1). Biomass reduction increased, at both harvests with increasing amounts of NO2 to more than 55% at the highest application rate (225 mg NO3 -N kg–1). In the NO3 treatment, a reduction of 16% in total plant dry biomass was recorded only at the highest application rate (225 mg NO2 -N kg–1), at both harvest times. The 15N plant uptake (shoots plus roots) at harvest 1 decreased with increasing N application rates of both N forms (KNO2 and KNO3). Twenty-six days after the N application, the total 15N taken up by the plant increased in all treatments in comparison with 15 days after the N application. However, only at higher rates of N application (150 and 225 mg N kg–1) was the 15N uptake by the NO2 fed plants significantly lower than by the NO3 fed plants. The percentage of immobilized N from the applied N was low (0–17.7%) at both harvests, irrespective of the N source. However, with relatively low N application rates (75 mg N kg–1), the immobilized N in the soil decreased with time. This may be due to the re-mineralization of the applied N. The percentage of inorganic 15N in the soil in NO2 treatments was slightly lower than in equivalent doses of NO3 . This might be due to higher losses of N as N-oxides. Unaccounted for N from the applied N ranged from 21% to 52% for the NO2 treatments and from 3% to 38% for the NO3 treatments. Received: 17 July 1997  相似文献   

18.
The immobilization and release process of nitrogen and the chemical characteristics of newly immobilized-, subsequently released-, and residual-N were studied in soils receiving KNO3 labelled with 15N together with glucose, straw, and cellulose.

Immobilization of nitrogen proceeded rapidly and reached its maximum at incubation periods of 3 days to 8 weeks or more, varying with the kind of carbon sources added. Following the maximum tie-up of nitrogen a rapid release began. After 20 weeks the immobilized nitrogen was released at a considerable rate for each carbon source.

At the period of maximum immobilization of nitrogen added to soil there was a clear difference in the percentage distribution of various forms of organic nitrogen between applied-N and native-N. The former was higher in amino acid N and unidentified N and lower in nonhydrolyzable N than the latter, and almost the same in hexosamine N and ammonium N as the latter.

With regard to all carbon sources the principal form of organic nitrogen contributing to mineralization was amino acid N and its susceptibility to mineralization was much higher in the applied-N than in the native-N, and further, the susceptibility of hexosamine N to mineralization was considerably lower than amino acid N.

In view of these results, it was presumed that a major origin of the amino acid N contributing to the mineralization process might be peptide complex substances such as mucopeptides and structural proteins, which originate from the microbial cell walls remaining in soil as a residual nitrogen of newly immobilized-N.  相似文献   

19.
Volatile fatty acids (VFAs) accumulate in animal manure when it is stored anaerobically, and they quickly decompose when the manure is applied to soil. In this study the influence of VFAs on the immobilization of N and mineralization of C in soil was investigated by incubating mixtures of acetate, propionate and butyrate in soils containing varying amounts of clay. The oxidation of VFAs (300 μg C g?1 soil) caused a significant increase in pH (0.6–2.2 pH units), with the largest increase in the most coarse-textured soil. The maximum net immobilization of N resulting from decomposition of the VFAs was 33–77 mg N g?1C and was maximal after 1–5 weeks of decomposition. After this time immobilized N was remineralized, and after 12 weeks the VFAs caused no net immobilization of N in the two most sandy soils. Despite this, the concentration of N in the microbial biomass was still greater in the soil amended with VFAs than in the control. After 12 weeks, the mineralization of C from the decomposition of the VFAs was equivalent to 60–113% of the applied C. It seems that mineralization of native soil C and N was stimulated by adding VFAs, except in the most clayey soil. This stimulation was presumably caused by the increase in the soil's pH as the VFAs oxidized.  相似文献   

20.
Laboratory incubations were conducted to study the effect of sodium chloride (NaCl) on denitrification and respiratory gases (CO2, O2) from soil treated with ammonium or nitrate and incubated at 20 % moisture. The same samples were assayed for denitrifying enzyme activity (DEA) after incubation at 40 % moisture with glucose and NO3. Under aerobic conditions (20 % water content), a flush of activity was observed at 6 hours after start of incubation and subsided to negligible levels at 12 hours. Sodium chloride significantly depressed N2O and CO2 emissions and O2 consumption. Significantly more loss of N2O occurred from NH4+‐ than NO3‐treated soil at all NaCl levels and was attributed to higher microbial activity. A highly significant positive correlation was obtained between N2O emission and respiratory gases. The respiratory quotient (CO2 evolved/O2) was higher for NH4+‐treated soil and decreased with the amount of NaCl. At 40 % moisture, N2O emissions were higher than at 20 % and peaked at 37 hours followed by a sharp decrease. Short‐term incubations of soil with NH4+ or NO3 did not have an effect on denitrifying enzyme activity (DEA) while NaCl had a positive effect, particularly in previously NO3‐treated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号