首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Denitrification loss from a loam under a cut ryegrass sward receiving 0, 250 and 500 kg N ha?1 a?1 in four equal amounts was measured during 14 months using the acetylene-inhibition technique. The rate of denitrification responded rapidly to changes in soil water content as affected by rain. Mean rates of denitrification exceeded 0.2 kg N ha?1 day?1 only when the soil water content was >20% (w/w) and nitrate was >5μ N g?1 in the upper 20 cm of the profile and when soil temperature at 2 cm was >5–8°C. When the soil dried to a water content <20%, denitrification decreased to <0.05 kg N ha?1 day?1. Highest rates (up to 2.0 kg N ha?1 day?1) were observed following application of fertilizer to soil at a water content of about 30% (w/w) in early spring. Denitrification in the control plot during this period was generally about a hundredth of that in plots treated with ammonium nitrate. High rates of N2O loss (up to 0.30 kg N ha?1 day-1) were invariably associated with high rates of denitrification (> 0.2 kg N ha?1 day?1). However, within 2–3 weeks following application of fertilizer to the plot receiving 250 kg N ha?1 a?1 the soil acted as a sink for atmospheric N2O when its water content was >20% and its temperature >5–8°C. Annual N losses arising from denitrification were 1.6, 11.1 and 29.1 kg N ha?1 for the plots receiving 0, 250 and 500 kg N ha?1 a?1, respectively. More than 60% of the annual loss occurred during a period of 8 weeks when fertilizer was applied to soil with a water content >20%.  相似文献   

2.
Calcium nitrate fertilizer containing 92.3 atoms % excess nitrogen-15 was applied on 5 May 1981 at a rate equivalent to 100 kg N ha?1 to a clay soil in southern England cropped to winter wheat. Samples of the soil gases were collected frequently during the following 3 weeks. The soil oxygen concentration declined to 5% after 60 mm rain. A maximum of 1.5 ± 0.5 atom % N-15 enrichment in labelled N2 gas (29N2) was detected in the soil atmosphere on 28 May. Total denitrification losses, calculated from air-filled pore space and rates of gas loss from the soil estimated using a Fick's law approximation, were 9.5 kg N ha?1 with a daily rate of 0.30 ± 0.07 kg N ha?1. Estimated total losses were greater than 30 kg N ha?1, 93% in the form N2, but the estimation depends on several assumptions about the amount of double labelled gas (30N2), rates of gas diffusion and flux.  相似文献   

3.
Turnover of 15N labelled nitrate nitrogen in soil as related to straw application and soil moisture In incubation experiments the effect of straw application on the turnover of 15N labelled nitrate has been studied at two soil moisture levels (brown podzolic soil). High 15N losses were found at the high soil moisture level. These losses are supposed to originate from denitrification. At both soil moisture levels straw application reduced significantly the 15N losses. Straw application resulted in a remarkable decrease of the 15NO3 content in the soil and promoted the incorporation of 15N into the organic soil fraction. The incorporation of 15N into α-amino N and particularly into the rest hydrolyzable-N fraction was favoured by straw, while the incorporation into the amide-N fraction was hampered. Exhaustive cropping (Lolium multiflorum and Sinapis alba) on the soil incubated before with 15N, showed that the 15N incorporated into the organic fraction was poorly available. Thus straw application resulted in significant yield depression. It is assumed that the fraction of the rest hydrolyzable N is hardly available to plants.  相似文献   

4.
Acetylene blockage was evaluated as a method for measuring losses of N2O + N2 from two Denchworth series clay soils. The denitrification potential in anaerobic, dark incubations at 20°C with nitrate (equivalent to 100 kg N ha?1 0–20 cm depth), maximum water holding capacity, and acetylene (1%), was equivalent to 32 ± 11 and 39 ± 6 kg N ha?1 per day for the two 0–20 cm soils and was positively correlated with carbon content (r= 0.98). After 4 days N2O was reduced to N2 in the presence of C2H2. In April 1980 following irrigation (24 mm) and applications of ammonium nitrate (70 kg N ha?1) and acetylene, the mean nitrous oxide flux from soil under permanent grass was 0.05 ± 0.01 kg N2O-N ha?1 per day for 8 days. In June 1980, the losses of nitrogen from cultivated soils under winter wheat after irrigation (36 mm) and acetylene treatment were 0.006 ± 0.002 and 0.04–0.07 ± 0.01 kg N ha?1 per day respectively before and after fertilizer application (70 kg N ha?1). The nitrous oxide flux in the presence of acetylene decreased briefly, indicating that nitrification was rate determining in drying soil.  相似文献   

5.
In continuation of former measurements about gaseous denitrification losses, these losses together with those by nitrate leaching were measured by different methods in a field cropped during two years by wheat. Furthermore, N-uptake by the plants of fertilizer- and soil-N as well as N-im-mobilization in soils during and after the cropping periods was determined by application of highly enriched15N-labeled fertilizer. Denitrification losses determined by the N2O release from C2H2–treated undisturbed soil cores agreed reasonably well with losses obtained by 15N-balance measurements. They both amounted during the cropping periods 12–15 and 6–20 kg N ha?1, respectively. Gaseous N-losses increased mainly during wet periods when the field was barren. Denitrifying enzyme activities and soil respiration (CO2-release) was measured throughout one year. Leaching losses of NO3 from soil-and fertilizer-N occurred only during fall until spring. Leached NO3? originated mostly from mineralized soil-N and very little from previously immobilized fertilizer-N.  相似文献   

6.
Knowledge about nitrate transformation processes and how they are affected by different plants is essential in order to reduce the loss of valuable N fertiliser as well as to prevent environmental pollution due to nitrate leaching or N2O emission after fertilisation or the reflooding of degraded fens with nitrate-containing municipal sewage. Therefore four microcosm 15N tracer experiments were performed to evaluate the effect of common wetland plants (Phalaris arundinacea, Phragmites australis) combined with different soil moisture conditions (from dry to reflooded) on nitrate turnover processes. At the end of experiment, the total formation of gaseous N compounds was calculated using the 15N balance method. In two experiments (wet and reflooded soil conditions) the N2O and N2 emissions were also directly determined.Our results show that in degraded fen soils, which process mainly takes place—denitrification or transformation into organic N compounds—is determined by the soil moisture conditions. Under dry soil moisture conditions (water filled pore space: 31%) up to 80% of the 15N nitrate added was transformed into organic N compounds. This transformation process is not affected by plant growth. Under reflooded conditions (water filled pore space: 100%), the total gaseous N losses were highest (77-95% of the 15N-nitrate added) and the transformation into organic N compounds was very low (1.8% of 15N nitrate added). Under almost all soil conditions plant growth reduced the N losses by 20-25% of the 15N nitrate added due to plant uptake. The N2 emissions exceeded the N2O emissions by a factor of 10-20 in planted soil, and as much as 30 in unplanted soil. In the treatments planted with Phragmites australis, N2O emission was about two times higher than in the corresponding unplanted treatment. 15% of the N2O and N2 formed was transported via the Phragmites shoots from the soil into the atmosphere. By contrast, Phalaris arundinacea did not affect N2O emissions and no emission via the shoots was observed.  相似文献   

7.
Leaching of nutrients, particularly in sandy soil with low nutrient and water holding capacity (WHC), is a major threat to marine and fresh water pollution. Addition of clay soil to sandy soil could be an option to increase water and nutrient holding capacity of sandy soils, but the effect of clay soil addition may depend on the form in which the clay soil is added and the addition rate. Clay soil was added to sandy soil at rate of 10 or 20% (w/w) finely ground (<2 mm) or 2 and 5 mm peds with and without nitrogen (N) and phosphorus (P) fertilizer equivalent to 60 kg N ha?1 and 15 kg P ha?1. The clay sand mixture for each treatment was weighed (30 g) in cores with nylon mesh at the bottom. The soils were incubated at 80% WHC for 7 weeks. To obtain leachate, 20 mL reverse osmosis (RO) water was added every week to each core. Leachate was analysed for inorganic N, P, and pH. Soil was analyzed for N, P, and pH before and after the leaching. Clay addition significantly reduced the leaching of N and P compared to sandy soil alone, with greatest reduction by finely ground clay soil and least with 5 mm peds. Compared to sandy soil alone, 83% more N was retained in clay-amended soil and P retention was doubled. This study showed that addition of finely ground clay soil can substantially reduce N and P leaching and thereby increase fertilizer retention compared to sandy soil alone.  相似文献   

8.
To provide improved data for modelling gaseous N losses, denitrification measurements by the acetylene inhibition technique were conducted in an Alfisol cropped with sugar beets. This investigation is integrated into a research program designed to model water and nutrient fluxes in an agricultural water catchment area. During the cropping season (April–October) the influence of soil temperature, water, nitrate and available carbon on the release of nitrous oxide (N2O) from the soil surface as well as on the N2O-concentrations along the soil profile was studied. Denitrification increased with increasing soil temperature and water content. During the time of intensive plant growth denitrification was small. Both, field and laboratory studies revealed that denitrification began at temperatures between 5 and 8 °C and soil water contents above 30% (v/v). Available carbon did not seem to be a factor that limited denitrification under the prevailing climatic conditions. Assuming that the N2O surface fluxes were representative of the amount of N denitrified, about 12 kg N ha?1 was evolved during the cropping season. Spatial variability of N2O evolution was, however, high and N2O concentration in the soil profile was still high at the end of each 48 h sampling period.  相似文献   

9.
Denitrification losses from puddled rice soils in the tropics   总被引:4,自引:0,他引:4  
Summary Although denitrification has long been considered a major loss mechanism for N fertilizer applied to lowland rice (Oryza sativa L.) soils, direct field measurements of denitrification losses from puddled rice soils in the tropics have only been made recently. This paper summarizes the results of direct measurement and indirect estimation of denitrification losses from puddled rice fields and reviews the status of research methodology for measurement of denitrification in rice fields. The direct recovery of (N2+N2O)-15N from 15N-enriched urea has recently been measured at sites in the Philippines, Thailand, and Indonesia. In all 12 studies, recoveries of (N2+N2O)-15N ranged from less than 0.1 to 2.2% of the applied N. Total gaseous N losses, estimated by the 15N-balance technique, were much greater, ranging from 10 to 56% of the applied urea-N. Denitrification was limited by the nitrate supply rather than by available C, as indicated by the values for water-soluble soil organic C, floodwater (nitrate+nitrite)-N, and evolved (N2+N2O)-15N from added nitrate. In the absence of runoff and leaching losses, the amount of (N2+N2O)-15N evolved from 15N-labeled nitrate was consistently less than the unrecovered 15N in 15N balances with labeled nitrate, which presumably represented total denitrification losses. This finding indicates that the measured recoveries of (N2+N2O)-15N had underestimated the denitrification losses from urea. Even with a probable two-or threefold underestimation, direct measurements of (N2+N2O)-15N failed to confirm the appreciable denitrification losses often estimated by the indirect difference method. This method, which determines denitrification losses by the difference between total 15N loss and determined ammonia loss, is prone to high variability. Measurements of nitrate disappearance and 15N-balance studies suggest that nitrification-denitrification occurs under alternate soil drying and wetting conditions both during the rice cropping period and between rice crops. Research is needed to determine the magnitude of denitrification losses when soils are flooded and puddled for production of rice.  相似文献   

10.
A method was developed for rapid measurement of soil denitrification under conditions where natural soil structure and aeration status is maintained. Air was continuously recirculated by means of a membrane pump through a soil core and a sample loop of a gas chromatograph equipped with an electron capture detector. Addition of acetylene to the recirculating air permitted measurement of denitrification in the soil core. Because of the rapid distribution of C2H2 and removal of N2O provided by the gas flow, denitrification rates could usually be determined in less than 2 h. By means of external 6-way and 8-way valves, four soil cores could be simultaneously analyzed on one gas Chromatograph equipped with dual detectors. Soil cores could also be stored at 4°C for later analysis without affecting the denitrification rate. The detection limit for denitrification rate measurements was 0.5 ngN g?1 soil day?1 or approximately 2.6 g N ha?1 day?1. Coefficients of variation for repeated measurements on the same soil core were usually less than 15%, but coefficients of variation for repacked or natural cores of the same soil were much higher (70–90%) Disruption of the natural soil structure by sieving increased the denitrification rate in an aggregated clay loam soil, but decreased the rate in a non-aggregated sandy soil. These results illustrate the importance of maintaining natural soil structure during denitrification measurements. The effect of pumping gas through soil was evaluated by comparing denitrification rates in soil cores where C2H2 was allowed to distribute into the soil by passive diffusion with rates obtained by pumping. Lower denitrification rates were observed in the static incubation presumably due to limited diffusion of C2H2 into or N2O out of the denitrifying sites in the soil. This diffusion limitation could be overcome in the static incubations if C2H2 was initially distributed through the soil by pumping. This gas flow method is well suited to the study of soil denitrification rates under nearly natural conditions because the indigenous substrates and anaerobic microsites are preserved, the rapidity in which denitrification rates can be measured, and the high sensitivity and relatively low analytical variability of the method.  相似文献   

11.
The effects of temperature and water potential on nitrification were investigated in two Iowa soils treated with Stay‐N 2000. The soils were incubated at 10, 20, and 30 °C after soil water potentials of ?1, ?10, or ?60 kPa were applied to each soil. A first‐order equation was used to calculate the maximum nitrification rate (K max), duration of lag period (t′), period of maximum nitrification (Δt), and termination period of nitrification (t s). The highest K max were 18 and 24 mg kg?1 d?1 nitrate (NO3 ?)–nitrogen (N), respectively, at 30 °C and ?10 kPa in both the Nicollet (fine‐loamy, mixed, superactive, mesic Aquic Hapludoll) and Canisteo (fine‐loamy, mixed, superactive, calcareous, mesic Typic Endoaquoll) soils and reduced to 4 and 16 mg kg?1 d?1 NO3 ?‐N when Stay‐N 2000 was added. The extension of t′ due to the addition of Stay‐N 2000 was as high as 7 d in the Nicollet soil at 10 °C and ?1 kPa and as little as 2 d in the Canisteo soil at 20 °C and ?10 kPa.  相似文献   

12.
Amending vegetable soils with organic materials is increasingly recommended as an agroecosystems management option to improve soil quality. However, the amounts of NO, N2O, and N2 emissions from vegetable soils treated with organic materials and frequent irrigation are not known. In laboratory-based experiments, soil from a NO 3 ? -rich (340 mg N?kg?1) vegetable field was incubated at 30°C for 30 days, with and without 10 % C2H2, at 50, 70, or 90 % water-holding capacity (WHC) and was amended at 1.19 g?C kg?1 (equivalent to 2.5 t?C ha?1) as Chinese milk vetch (CMV), ryegrass (RG), or wheat straw (WS); a soil not amended with organic material was used as a control (CK). At 50 % WHC, cumulative N2 production (398–524 μg N?kg?1) was significantly higher than N2O (84.6–190 μg N?kg?1) and NO (196–224 μg N?kg?1) production, suggesting the occurrence of denitrification under unsaturated conditions. Organic materials and soil water content significantly influenced NO emissions, but the effect was relatively weak since the cumulative NO production ranged from 124 to 261 μg N?kg?1. At 50–90 % WHC, the added organic materials did not affect the accumulated NO 3 ? in vegetable soil but enhanced N2O emissions, and the effect was greater by increasing soil water content. At 90 % WHC, N2O production reached 13,645–45,224 μg N?kg?1 from soil and could be ranked as RG?>?CMV?>?WS?>?CK. These results suggest the importance of preventing excess water in soil while simultaneously taking into account the quality of organic materials applied to vegetable soils.  相似文献   

13.
The fate of 15N-labelled synthetic urine (50 g N m?2) applied to an irrigated pasture soil was studied using large undisturbed monolith lysimeters (800 mm diameter × 1200 mm deep). Over a period of 1 year, the pasture plants recovered the largest fraction of the applied 15N (43%) and approximately 20% of the applied 15N still remained in the soil, the majority of which was found in the topsoil (0–20 cm). Although the experiment was conducted under relatively intense rainfall and irrigation conditions, only 8% of the applied 15N was found to have leached below 1200 mm after 1 year. During this time, the average peak concentration of nitrate in the leachate reached 42 mg NO3?-N dm?3. The amount of nitrogen (N) lost by the process of denitrification was calculated as 28% of the applied 15N. This large loss of N to the atmosphere was attributed to the wet soil conditions which prevailed.  相似文献   

14.
A long-term experiment on combined inorganic fertilizers and organic matter in paddy rice (Oryza sativa L.) cultivation began in May 1982 in Yamagata, northeastern Japan. In 2012, after the 31st harvest, soil samples were collected from five fertilizer treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)], at five soil depths (0–5, 5–10, 10–15, 15–20 and 20–25 cm), to assess the changes in soil organic carbon (SOC) content and carbon (C) decomposition potential, total nitrogen (TN) content and nitrogen (N) mineralization potential resulting from long-term organic matter addition. The C decomposition potential was assessed based on the methane (CH4) and carbon dioxide (CO2) produced, while the N mineralization potential was determined from the potassium chloride (KCl)-extractable ammonium-nitrogen (NH4+-N), after 2, 4, 6 and 8 weeks of anaerobic incubation at 30°C in the laboratory. Compared to NPK treatment, SOC in the total 0–25 cm layer increased by 67.3, 21.0 and10.8%, and TN increased by 64.2, 19.7 and 10.6%, in CM3, RS and CM1, respectively, and SOC and TN showed a slight reduction in the PK treatment by 5.2 and 5.7%, respectively. Applying rice straw compost (10 Mg ha?1) instead of rice straw (6 Mg ha?1) to rice paddies reduced methane production by about 19% after the soils were measured under 8 weeks of anaerobic incubation at 30°C. Soil carbon decomposition potential (Co) and nitrogen mineralization potential (No) were highly correlated with the SOC and TN contents. The mean ratio of Co/No was 4.49, lower than the mean ratio of SOC/TN (13.49) for all treatments, which indicated that the easily decomposed organic matter was from soil microbial biomass and soil proteins.  相似文献   

15.
Laboratory studies were conducted to evaluate the effect of soil pH, temperature and water content on the rate of nitrification and on the amount of N2O evolved from samples of Plano silt loam soil. The rate of nitrification of added NH4+-N increased with increasing soil pH (4.7, 5.1 and 6.7), temperature (10, 20 and 30°C) and water content (0.1, 0.2 and 0.3 m3 m?3). At soil water contents of 0.1 and 0.2 m3 m?3, corresponding to 18 and 36% water-filled pore space, respectively, N2O evolution was proportional to NO3? production. Approximately 0.1–0.2% of the nitrified N was evolved as N2O-N. At 0.3 m3 m?3 water content (54% water-filled pore space) and 20 and 30°C, the ratio of N2O-N evolved to N nitrified was significantly higher (range of 0.3–1.1%).An additional experiment was conducted using diurnally fluctuating temperatures (10–30°C). The pattern of N2O evolution was markedly different when the system was sampled at 10 and 30°C than at 20°C. The apparent N2O emission rates were approximately equal for 12-h periods during which the temperature increased from 10 to 30°C or decreased from 30 to 10°C. In contrast, the apparent N2O emission rates were significantly lower for the 12-h period when the incubation flasks were sampled at 20°C following the daily minimum temperature compared to the 12-h period when the samplings were at 20°C following the daily maximum temperature. This provides additional evidence that temperature fluctuation in the surface soil is a factor in-observed diurnal variations in N2O emissions under field conditions.Our findings indicate that an interaction of three factors (soil pH, temperature and water content) affects the amount of N2O evolved during nitrification in soils. In relatively dry soils, estimated N2O production of ca. 0.1–0.3% of the N nitrified may be sufficiently accurate. Much higher N2O output can be expected following rainfall or irrigation. Diurnal variability in N2O fluxes from soils due to fluctuating temperature is an additional uncertainty in quantifying N2O production in field soils.  相似文献   

16.
Summary We evaluated potential NO inf3 sup- losses from organic and inorganic N sources applied to improve the growth of cotton (Gossypium hirsutum) on a Pima clay loam soil (Typic Torrifluvent). An initial set of soil cores (April 1989) was collected to a depth of 270 cm from sites in a cotton field previously amended with anaerobically digested sewage sludge or an inorganic N fertilizer. The denitrification potential was estimated in all soil samples by measuring N2O with gas chromatography. Soils amended with a low or high rate of sludge showed increased denitrification activity over soil samples amended with a low rate or inorganic N fertilizer. All amended samples showed greater denitrification activity than control soils. The denitrification decreased with soil depth in all treatments, and was only evident as deep as 90 cm in the soils treated with the high sludge rate. However, when soils collected from depths greater than 90 cm were amended with a C substrate, significant denitrification activity occurred. These date imply that organisms capable of denitrification were present in all soil samples, even those at depths far beneath the root zone. Hence, denitrification was C-substrate limited. A second series of soil cores taken later in the growing season (July 1989) confirmed these data. Denitrification losses (under laboratory conditions) to a soil depth of 270 cm represented 1–4% of total soil N depending on treatment, when the activity was C-substrate limited. With additional C substrate, the denitrification losses increased to 15–22% of the total soil N.  相似文献   

17.
Abstract

Soil compaction is a significant production problem for agriculture because of its negative impact on plant growth, which in many cases has been attributed to changes in soil N transformations. A laboratory experiment was conducted to study the effect of soil compaction and water‐filled pore space on soil microbial activity and N losses. A hydraulic soil compaction device was used to evenly compress a Norfolk loamy sand (fine‐loamy, siliceous, thermic Typic Kandiudults) soil into 50 mm diameter by 127 mm long cores. A factorial arrangement of three bulk density levels (1.4, 1.6, and 1.8 Mg/m3) and four water‐filled pore space levels (60, 65, 70, 75%) was used. Fertilizer application of 168 kg N/ha was made as 1.0 atom % 15N as NH4NO3. Soil cores were incubated at 25°C for 21 d. Microbial activity decreased with both increasing water‐filled pore space and soil bulk density as measured by CO2‐C entrapment. Nitrogen loss increased with increasing bulk density from 92.8 to 334.4 g N/m3 soil at 60% water‐filled pore space, for 1.4 and 1.8 Mg/m3, respectively. These data indicate that N loss and soil microbial activity depends not only on the pore space occupied by water, but also on structure and size of soil pores which are altered by compaction.  相似文献   

18.
Purpose

This study examined the usefulness of 15N natural abundance (δ15N) with in situ core incubation to quantify the predominant N transformation processes in a natural suburban forest of subtropical Australia, which was subjected to prescribed burning.

Materials and methods

In situ core incubation for 3 days with 20 ml water, or 160.79 ml of 60 mg L?1 NO3?-N surface application, and in situ core with 160.79 ml water but without incubation were set up in Toohey forest for sampling three times as before (once) and after (twice) a prescribed burning. The δ15N of NH4+-N and NO3?-N in the top 5 cm soil before and after the incubation, and δ15N of NO3?-N in the 5–10 cm soil before incubation were compared with each other to examine the soil N mineralisation, nitrification, denitrification, and nitrate leaching processes.

Results and discussion

The significant decrease in δ15N of NH4+-N after incubation under 20 ml water treatment was ascribed to soil N mineralisation, and the significant decrease in δ15N of NH4+-N and significant increase in δ15N of NO3?-N after incubation with elevated water and nitrate inputs were associated with N mineralisation and nitrification, respectively, 2 months after the burning. The 160.79 ml water treatment also triggered nitrification in the baseline soil cores in both samplings after the burning. Water was crucial to stimulate soil N mineralisation and nitrification, but excessive water depleted labile N pools and reduced N mineralisation and nitrification. Burning effects were hard to separate from the seasonal impacts on soil N cycling processes.

Conclusions

The δ15N in soil mineral N pools was sensitive to indicate soil N mineralisation and nitrification processes. Soil water and labile N were determining factors for N transformations in the soil. It is suggested that δ15N combined with soil inorganic N concentrations and net N transformation rates could be used to identify primary N transformation processes. More frequent samplings would be needed to differentiate burning impacts from the seasonal impacts on soil N cycling processes.

  相似文献   

19.
15N标记秸秆在太湖地区水稻土上的氮素矿化特征研究   总被引:4,自引:0,他引:4  
采用室内恒温培养试验研究了在太湖地区乌栅土和黄泥土上添加15N标记秸秆后,秸秆15N在矿质氮、微生物氮和不同粒径土壤组分中的分配情况,并应用氮同位素库稀释法测定了秸秆在两种土壤上的氮总矿化速率。结果表明:两种土壤添加秸秆后,土壤矿质氮量在7~28 d之间迅速下降,微生物氮在前7 d逐渐升高,随后维持稳定。随着秸秆的分解,秸秆15N进入矿质氮库和微生物氮库,矿质15N在第7天时最高,占添加秸秆15N的9.24%~12.3%,微生物15N在第14天时最高,占添加秸秆15N的21.3%~40.5%,随后矿质15N和微生物15N量均下降。在培养的第7~28天之间,矿质15N和微生物15N出现下降,可能存在秸秆氮的损失。培养56 d时,10.5%~13.3%的秸秆15N进入土壤53μm~2 mm组分,24.5%~26.5%进入2~53μm组分,30%进入<2μm组分,有5.7%~14.9%的秸秆氮损失掉,仍有15.4%~29.1%的秸秆未分解,秸秆在乌栅土上分解的更多,但损失也更多。添加秸秆后0.5 d时,秸秆在乌栅土和黄泥土上的氮总矿化速率分别为1.61 mg kg-1d-1和1.48 mg kg-1d-1;56 d时,秸秆在乌栅土和黄泥土上的氮总矿化速率分别为0.26 mg kg-1 d-1和0.36 mg kg-1 d-1。  相似文献   

20.
淹水种稻条件下化肥氮的硝化-反硝化损失的初步研究   总被引:3,自引:1,他引:3  
在中性和微酸性水稻土中施用硫铵时,硝化-反硝化作用是化肥氮损失的主要途径,除了淹水后在土表形成的氧化层及其下的还原层中可以分别进行硝化和反硝化作用外,水田中的硝化微生物与具反硝化作用的极毛杆菌相伴生,无论是在土表的氧化层或其下的还原层中,或是在稻根附近的氧化层或根外的还原层中都可进行硝化一反硝化作用[4]。本工作的主要目的是:用特制盆钵进行盆栽试验,研究在淹水种稻条件下不同机制的硝化一反硝化作用气此外也涉及到水稻的生长、氮肥的施用方法对氮素损失的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号