首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Microbial biomass was determined by three biochemical procedures in nine topsoils from a climosequence in tussock grasslands. The pH values of the samples ranged from 4.4 to 6.2 and organic C contents from 2.5 to 20.0%. When determined by a chloroform-fumigation procedure, contents of biomass C and mineral-N (Min-N) flush ranged from 530–2780 and 59–167 μgg?1 dry soil respectively. Adenosine 5'-triphosphate (ATP) content ranged from 2.2 to 10.7 μg g?1 dry soil. All three estimates were significantly correlated with each other and with several soil properties, including organic C and total N contents and CO2 production. They were not significantly correlated with any climatic factor.In spite of these significant correlations, the ratios of the biomass estimates varied appreciably in the different soils. The ratios of biomass C/Min-N flush ranged from 7.8 to 22.8 (average 12.5), biomass C/ATP from 163 to 423 (average 248) and Min-N flush/ATP from 12 to 35 (average 22). These ratios were mostly higher than those found elsewhere for Australian and English soils. The high biomass C/ATP and Min-N flush/ATP ratios did not appear to originate from inefficient extraction of “native” ATP or from the soils' P status. Based on these results, care in the use of factors for obtaining soil microbial biomass content from Min-N flush or ATP values is indicated.  相似文献   

3.
A mildly leached soil and a calcareous clay soil were dispersed using ultrasound. In the mildly leached soil, organic carbon, nitrogen and ATP (which was used as a guide of the soil microbial biomass) were concentrated in the finer fractions. In the calcareous clay, organic carbon and nitrogen were concentrated in the silt fraction.When slurries of the same soils were shaken vigourously in a wrist action shaker the soils were more completely dispersed but the recovery of ATP was only 30% compared with 90% after ultrasonic dispersion. It is concluded that the vigorous shaking of a soil slurry is destructive with respect to the biomass and smears cell contents, including ATP, across the colloidal fractions.The use of 14C showed that organisms, and metabolic products after incubation of [14C]glucose, existed mainly in larger aggregates (> 250 μm dia), silt and clay sized materials. Following physical dispersion the 14C shifted to silt and clay fractions.It is concluded that while fine clay may be a source of the metabolic products of organisms, the silt fraction a source of cells, and macroorganic matter contains most of the plant debris, the association of microorganisms with inorganic colloids is such that “clean” fractionations of biological components in soils cannot be realized.  相似文献   

4.
Abstract

A micro-plot 15N-tracer experiment was established in three different soils of a long-term soil fertility field experiment. The nutrient-poor loam sand has been subjected to various treatments over the years and this has resulted in different organic C (0.35% – 0.86%), microbial biomass (38.3 – 100.0 µg C mic g?1 soil), clay and fine silt contents. Using the 15N-pool dilution technique, we assessed gross N-transfer rates in the field. Gross N mineralization rates varied strongly among the three plots and ranged between 0.4 and 4.2 µg N g?1 soil d?1. Gross nitrification rates were estimated to be between 0 and 2.1 µg N g?1 soil d?1. No correlation between gross N mineralization rates and the organic matter content of the soils was established. However, gross nitrate consumption rates increased with increasing soil C content. The 15N-pool dilution technique was successfully used to measure gross N transfer rates directly in the field.  相似文献   

5.
施用碱稳定污泥污水土壤经γ-辐照后土壤溶液中Cu和Zn   总被引:1,自引:0,他引:1  
Soil samples collected from several acid soils in Guangdong, Fujian, Zhejiang and Anhui provinces of the southern China were employed to characterize the chemical species of aluminumions in the soils. The proportion of monomeric inorganic Al to total Al in soil solution was in the range of 19% to 70%, that of monomeric organic Al (Al-OM) to total Al ranged from 7.7% to 69%, and that of the acid-soluble Al to total Al was generally smaller and was lower than 20% in most of the acid soils studied. The Al-OM concentration in soil solution was positively correlated with the content of dissolved organic carbon (DOC) and also affected by the concentration of Al3+. The complexes of aluminum with fluoride (Al-F) were the predominant forms of inorganic Al, and the proportion of Al-F complexes to total inorganic Al increased with pH. Under strongly acid condition, Al3+ was also a major form of inorganic Al, and the proportion of Al3+ to total inorganic Al decreased with increasing pH. The proportions of Al-OH and Al-SO4 complexes to total inorganic Al were small and were not larger than 10% in the most acid soils. The concentration of inorganic Al in solution depended largely on pH and the concentration of total F in soil solution. The concentrat ions of Al-OM, Al3+, Al-F and Al-OH complexes in topsoil were higher than those in subsoil and decreased with the increase in soil depth. The chemical species of aluminumions were influenced by pH. The concentrations of Al-OM, Al3+, Al-F complexes and Al-OH complexes decreased with the increase in pH.  相似文献   

6.
The chemical form or speciation of mercury (Hg) in the floodplain soils of the East Fork Poplar Creek in Oak Ridge, Tennessee, a site contaminated from past industrial activity, was investigated. The speciation of Hg in the soils is an important factor in controlling the fate and effect of Hg at the site and in assessing human health and ecological risk. Application of three different sequential extraction speciation schemes indicated the Hg at the site was predominantly relatively insoluble mercuric sulfide or metallic Hg, though the relative proportions of each did not agree well between procedures. Application of X-ray and electron beam studies to site soils confirmed the presence of metacinnabar, a form of mercuric sulfide, the first known evidence of authigenic mercuric sulfide formation in soils.  相似文献   

7.
Site of nitrous oxide production in field soils   总被引:1,自引:0,他引:1  
Summary Nitrous oxide (N2O) fluxes at the soil surface and concentrations at 0.1, 0.2, and 0.3 m were determined in a 40-year-old planted tallgrass (XXX) prairie, a 40-year-old white pine (Pinus strobus) plantation, and field plots treated annually for 18 years either with 33 metric tons of manure ha–1 (330 kg N ha–1) and NH4NO3 (80 kg N ha–1) or with only NH4NO3 (control). Nitrous oxide fluxes from the prairie, forest, manure-amended, and control sites from 13 May to 10 November 1980 ranged from 0.2 to 1.3, 3.5 to 19.5, 3.7 to 79.0, and 1.7 to 24.8 ng N2O-N m–2s–1, respectively. We observed periods when there was no apparent relationship between the N2O flux from the surface and N2O concentrations in the soil profile. This was generally the case in the prairie and in the field sites following the application of N fertilizer. The N2O concentrations in the soil profile increased markedly and coincided with increased soil water content following periods of heavy rainfall for all sites except the prairie. Nitrous oxide concentration gradients indicate that following heavy rainfalls the site of N2O production was moved from the surface deeper into the soil profile. We suggest that the source of N2O production near the surface is nitrification and that N2O is produced by denitrification of NO3 leached into the soil following heavy rainfall.  相似文献   

8.
Media selective for the isolation of bacteria, actinomycetes and fungi were amended with 0.1% sunflower oil emulsified with 0.01% Tween 80. Lipase-producing microorganisms produced clear zones on these media. When lipase-producing bacteria were cultured on a polycarbonate membrane laid on the selective medium for bacteria, clear zones were produced on the medium when the membrane along with bacteria was removed. The agar disc cut from the clear zone also produced a clear zone when placed on the fresh medium, indicating that clear zone formation is the result of the activity of extracellular lipases. The largest population of lipase-producing microorganisms in an agricultural soil was actinomycetes followed by bacteria and fungi. Ranging from 12 to 75% of bacteria, actinomycetes and fungi isolates from soils collected from three different locations were capable of producing lipases. In general, relatively small percentages of soil bacteria were lipase producers, and lipase producers were more common among soil actinomycetes and fungi. These three groups of microorganisms appear to be all important in decomposition of oils in organic matters in soils.  相似文献   

9.
10.
Wetting front instability resulting in fingered flow has been found in both wettable and nonwettable soils. Understanding how and when this phenomenon occurs under field conditions is greatly limited. Laboratory research has resulted in a number of expressions for finger diameter. In this paper we test the applicability of one of these equations for three different soils in the Netherlands where detailed soil sampling of moisture content was done earlier. In addition, information needed for finger prediction, such as the main wetting and drying loops of the soil moisture characteristic curves and the unsaturated and saturated soil conductivities, were measured in the laboratory. Results show that predicted finger diameters for the two sandy soils agreed well with the observed moisture patterns, while for the loess soil the wetting front was flat as predicted. The finger diameters in dry soil were based on the main wetting loop and in the wet soils were dependent on the main drying loop.  相似文献   

11.
We investigated the question of whether exchangeable K+ is a reliable factor for K+ availability to plants on representative arable soils (Aridisols) rich in K+-bearing minerals. Five soils with different textures were collected from different locations in Pakistan and used for pot experiments. The soils were separated into sand, silt, and clay fractions and quartz sand was added to each fraction to bring it to 1 kg per kg whole soil, i.e., for each fraction the quartz sand replaced the weight of the two excluded fractions. On these soil fraction-quartz mixtures wheat, elephant grass, maize, and barley were cultivated in a rotational sequence. Growth on the sand mixture was very poor and except for the elephant grass all species showed severe K+-deficiency symptoms. Growth on the mixture with silt and clay fractions was much better than on the sand fraction; there was no major difference in growth and K+ supply to plants whether grown on silt or clay, although the clay fraction was rich and the silt fraction poor in exchangeable K+. On both these fractions the plant-available K+ supply was suboptimal and the plants showed deficiency symptoms except for the elephant grass. This plant species had a relatively low growth rate but it grew similarly on sand, silt, and clay and did not show any K+ deficiency symptoms, with the K+ concentration in the plant tops indicating a sufficient K+ supply regardless of which soil fraction the plants were grown in. The reason for this finding is not yet understood and needs further investigation. It is concluded that on soils rich in mica, exchangeable K+ alone is a poor indicator of K+ availability to plants and that mica concentrations in the silt and clay fraction are of greater importance in supplying crops with K+ than exchangeable K+.  相似文献   

12.
A simple predictive approach to solute transport in layered soils   总被引:1,自引:0,他引:1  
Solute transport through layered columns (repacked aggregates overlying sand) was studied under steady flow conditions. Predictions of transport were simplified by assuming that the distribution of solute travel times in one layer was not correlated with that in the other. The implications of this assumption were developed for the transfer function model (TFM) and the convection-dispersion model (CDM) of solute transport. The parameter values in each model were obtained from experiments carried out on columns containing only aggregates or sand.
The solutes used were nitrate (surface-applied) and chloride (previously distributed); predictions of the chloride movement were made using the parameter values for the nitrate. The predictions were tested against experimental values of drainage effluent concentration and solute concentration with depths in the columns (measured at the end of the experiments). The TFM (with an assumed lognormal distribution of travel times) and the CDM did not differ significantly, mainly because the spatial scale of the experiments was small.
Because the parameter values for the columns of aggregates or sand were determined from the drainage effluent data, they were average values for whole columns. These parameters were satisfactory for predicting drainage effluent concentration from the two-layer columns. However, they were not satisfactory for predicting the depth distribution of solute, particularly in the sand, because the water content of the sand increased with depth, unlike that of the aggregates, which was approximately constant with depth. The overall results of this study on materials of differing transport characteristics suggest that the assumption of uncorrelated travel times between layers has a potentially wide application. The approach taken here needs to be tested on undisturbed layered soils.  相似文献   

13.
Abstract

A number of procedures were tested for determining carbonate‐C in soils and limestones, using a simple technique for digesting and collecting the CO2, previously described by the author10. Some of the procedures appeared suitable for removing and quantifying carbonate‐C prior to the determination of organic‐C. Depending on the digestion solution and the length of treatment, between 0.25 and 0.68 % of the organic‐C in cultivated mineral soils was released as CO2 during the digestion, and thus included in the figures for carbonate‐C.

The study includes furthermore, an examination of the effects of particle size and the length of the heating period on the rate of dissolution of calcite and dolomite. A semi‐quantitative EDTA extraction procedure is described for separation of these minerals in limestones.  相似文献   

14.
The degradation of penoxsulam [2-(2,2-difluoroethoxy)-N-5,8-dimethoxy[1,2,4]triazolo[1,5-C]pyrimidin-2-yl-6-(trifluoromethyl)benzene-sulfonamide] was studied in flasks simulating flooded rice field conditions using four representative rice field soils from the Sacramento Valley. Degradation half-lives (t(1/2) values) ranged between 2 and 13 days. Increased degradation rates were observed in flask systems with steeper redox gradients between the flooded soil layer and the overlaying water. Two transient metabolites were identified that were temporarily formed in amounts exceeding 5% of the total initial mass of penoxsulam. The results of high-performance liquid chromatography/(14)C radiodetection studies indicate that the degradation of the triazolopyrimidine system and its substituents is the main pathway of microbial transformation processes. Microbial activity, as measured by dehydrogenase activity, was not affected by penoxsulam concentrations corresponding to the proposed maximum annual use rate of 40 g active ingredient/ha.  相似文献   

15.
Ground 15N-labelled legume material (Medicago littoralis) was mixed with topsoils in confined microplots in the field, and allowed to decompose for 7 and 5 months in successive years (1979, 1980) before sowing wheat. The soil cropped in 1979 (and containing 15N-labelled wheat roots and legume residues) was cropped again in 1980.The results support evidence that ungrazed legume residues, incorporated in amounts commonly found in southern Australian wheat growing regions, contribute only a little to soil available N and to crop N uptake, even in the first year of their decomposition. Thus mature first crops of wheat, although varying greatly in dry matter yield (2.9-fold) and total N uptake (2.4-fold), took up only 27.8 and 20.2% of the legume N applied at 48.4 kg ha?1, these corresponding to 6.1 and 10.8% of the N of the wheat crops. The availability of N from medic residues to a second wheat crop declines to <5% of input. For both first and second wheat crops, uptake of N from legume residues was approximately proportional to legume N input over the range 24.2 to 96.8 kg ha ?1.The proportional contributions of medic N to soil inorganic N, N released in mineralization tests, and to wheat crop N, differed between seasons and soils, but for a given crop did not significantly differ between tillering, flowering and maturity. In both years, grain accounted for 52–65% of the total 15N of first crops, roots for < 5–6%. In neither year did the amounts of N or 15N in the tops change significantly between flowering and maturity, despite a gain in tops dry matter in 1979; by contrast N and 15N of roots decreased significantly during ripening in both years. Wheat plants at tillering contained about 75% of the N and 15N taken up at flowering. The amounts of legume-derived 15N in mature first wheat crops were equivalent to 82–88% of the amounts of inorganic 15N in the soil profiles at sowing. Wheat straw added at the rate of 2.5 t ha?1, 2 months before sowing, decreased the uptake of N (15%) and 15N (18%) by wheat in a nitrogen responsive season.  相似文献   

16.
Abstract

A bioassay procedure is described for diagnosing aluminium toxicity in soils using short term root growth in extracted soil solution. Soil solution is extracted from moist soil which has been incubated at “field capacity”; for 4 days. Soil solution extracted is divided into two portions, each of which is treated with CaCl2 and H3BO3 to ensure that neither Ca nor B is limiting root growth. One portion is adjusted to pH 5.5 (pH adjusted treatment) with saturated Ca(OH)2 solution. Aliquots (11 ml) of each portion are separately dispensed into each of five polypropylene tubes. Seedlings (in our experiment Glycine max cv. Forrest) of uniform root length are inserted into each tube (one per tube) and grown for 48 h. The increase in root length during the 48 h growth period (root elongation) in the unadjusted solutions is expressed as a percentage of that in the pH adjusted solutions to derive relative root elongation (RRE) ‐ an index of aluminium toxicity.

For 24 acidic surface soils, RRE using this soil solution bioassay was linearly correlated (r2 = 0.96) with RRE obtained from a soil bioassay (with unamended, CaSO4 and CaCO3 treatments). The latter is commonly used to obtain an index of aluminium toxicity. The proposed procedure is less time consuming and tedious than the soil bioassay, and interpretation of the result is unambiguous.  相似文献   

17.

Purpose  

The remediation of soil polluted by polycyclic aromatic hydrocarbons (PAHs) is of great importance due to the persistence and carcinogenic properties of PAHs. Phytoremediation has been regarded as a promising alternative among suggested approaches. For the establishment of highly effective remediation method and better understanding of the remediation mechanisms by plants, the potentials of three plant species and their planting patterns on the remediation efficacy were studied by pot experiments.  相似文献   

18.

Purpose

The purpose of the present study was to investigate the distribution of antimony (Sb) and its species in soil fractions in order to understand better the real risk associated with Sb in the environment.

Materials and methods

Nine surface soil samples contaminated from lead/zinc and iron smelting operations and coal fired power plants were examined using: (1) four-step sequential extraction procedure (BCR); (2) two-step sequential extraction including ethylenediaminetetraacetic acid (EDTA), sodium hydroxide (NaOH) and NH4F; and (3) single extraction with EDTA and NaOH. Liquid phase extraction was used for redox speciation of Sb. The distribution of Sb between soil fulvic and humic acids was determined after their chemical separation. The concentrations of Sb were measured by electrothermal atomic absorption spectrometry.

Results and discussion

The main part of total Sb (2.5–105 mg?kg?1) was associated with the residual fraction in all soils. The exchangeable/carbonate-bound concentrations were 0.83–4.7 % of total Sb. Up to 6.8 % was in the reducible and up to 1.4 % was in the oxidizable fraction. EDTA removed 7.2–11.4 % of total content. Sb(V) was the predominant form in acetic acid and EDTA extracts. Single extraction with 0.1 mol?l?1 NaOH released up to 13.7 % of soil antimony. The main part of Sb was complexed to the higher molecular weight fraction of soil-derived humic substances.

Conclusions

For highly contaminated soils, 4 % solubility in acetic acid could represent risk of contamination of ground water under specific conditions. Also, the relatively high phytoavailable Sb (7–11 %) can represent a significant proportion in highly polluted soils. Pentavalent antimony was the main antimony species extracted from soils. The main part of the organically antimony was found to be present as complexes with higher molecular weight humic acids fraction.  相似文献   

19.
The ecological effects of heavy metals in soils are closely related to the content and speciation of the elements in the solid and liquid phases of soils. Methods for the determination of metal species in both phases are described and critically evaluated. In connection with the possible binding mechanisms of heavy metals in soils the concept of specific and non-specific adsorption is discussed. Recent results indicate that the adsorption of heavy metals on soil particles is not only restricted to the formation of surface complexes but can also take place in the interior of minerals. Diffusion processes of heavy metals into soil minerals are described for goethite. In order to assess metal mobility and availability in soils, the concentration and speciation of metals in the soil solution or in comparable aeqeous equilibrium solutions of soil samples and the transfer of metals from solid pools to the liquid phase and vice versa have to be assessed. Methods for the determination of the amount of plant available heavy metals are described and the associated problems discussed.  相似文献   

20.
Brazilian green coffee beans of Coffea arabica and Coffea canephora species were roasted to light, medium, and dark roast degrees and analyzed in relation to furan content by using an in-house validated method based on gas chromatography coupled to mass spectrometry preceded by headspace solid-phase microextraction. Furan was not detected in green coffees, whereas levels between 911 and 5852 μg/kg were found in the roasted samples. Higher concentrations were found in Coffea canephora species and darker ground coffees. Some of the potential furan precursors were observed in significant amounts in green coffee, especially sucrose and linoleic acid, but their concentrations could not be correlated to furan formation. Additionally, coffee brews were prepared from roasted ground coffees by using two different procedures, and furan levels in the beverages varied from <10 to 288 μg/kg. The factor that most influenced the furan content in coffee brew was the brewing procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号