首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical resistivity of gray forest soils and gray forest soils with a second humus horizon was studied in the Bryansk Opol’e region. The dependence of electrical resistivity on the soil’s organic content, moisture, and bulk density was found. It was concluded that the supply of organic matter in the upper layer (50 cm) can be estimated in wet conditions using the equation Csupply = 2.7ER + 34.3 (t/ha).  相似文献   

2.
Long-term stationary field experiments were performed to study the efficiency of increased rates of nitrogen fertilizer in crop rotations with cereal crops, perennial grasses, clover, and plow fallow on gray forest soils. It was found that an excess of mineral nitrogen (mainly of nitrates) accumulated in the soil in the case of unbalanced nitrogen fertilization and long-term fallowing creates conditions for the development of unfavorable processes in the nitrogen cycle. Significantly increasing nitrogen losses from the agroecosystem because of leaching and denitrification constitute a depletion hazard for the soil nitrogen pool.  相似文献   

3.
The carbon budget in agroecosystems with spring wheat was studied in long-term (1997–2004) field experiments on gray forest soils in the forest-steppe of the Lake Baikal region, including soils polluted with the fluorides emitted by an aluminum plant. Pollution was revealed to increase the deficit in the carbon budget due to the more intense mineralization of organic matter and CO2 emission from the soils. Raising of the crops’ productivity upon permanent application of fertilizers may provide maintenance of a positive carbon budget.  相似文献   

4.
The hydrologic regimes of arable chernozems were simulated for two plots located within a watershed. For the last fifty years continuous corn monoculture was practiced in one plot, and permanent bare fallow was practiced in the other plot. Carbonates are detected from a depth of 140–160 cm under corn and from 70–80 cm under bare fallow. The objective of the simulation study was to test the validity of the hypothesis that the shallower depth to carbonates under bare fallow is related to carbonate rise due to changes in the hydrologic regime of bare soil compared to soil under vegetation. Mathematical modeling using the HYDRUS-1D software and the FAO56 method confirmed that the hydrologic regimes of arable chernozems within the two plots are different. The soil water content under bare fallow is generally higher than that under corn. The downward soil water fluxes for the two plots are comparable. The upward soil water fluxes under bare fallow significantly exceed those under corn and affect a thicker soil layer. The changes in the hydrologic regimes of chernozems under bare fallow favor the upward movement of carbonates through both the direct transfer by upward water fluxes and the diffusion of ions.  相似文献   

5.
 Soil respiration was measured by closed chamber and gradient methods in soils under forest, sown meadow and crops. Annual total soil respiration determined with the closed chamber method ranged from 180 to 642 g CO2-C m–2 year–1 and from 145 to 382 g CO2-C m–2 year–1 determined with the CO2 profile method. Soil respiration increased in the order: cropland<sown meadow<forest. The C balance calculated as the difference between net primary production (sink) and respiration of heterotrophs (source) suggested an equilibrium between the input and output of C in the cropland, and sequestration of 135 and 387 g CO2-C m–2 year–1 in the forest and meadow, respectively. Received: 1 December 1997  相似文献   

6.
Pristine peat soils are characterized by large porosity, low density and large water and organic matter contents. Drainage and management practices change peat properties by oxidation, compaction and mineral matter additions. This study examined differences in physical properties (hydraulic conductivity, water retention curve, bulk density, porosity, von Post degree of decomposition) in soil profiles of two peatland forests, a cultivated peatland, a peat extraction area and two pristine mires originally within the same peatland area. Soil hydraulic conductivity of the drained sites (median hydraulic conductivities: 3.3 × 10?5 m/s, 2.9 × 10?8 m/s and 8.5 × 10?8 m/s for the forests, the cultivated site and the peat extraction area, respectively) was predicted better by land use option than by soil physical parameters. Detailed physical measurements were accompanied by monitoring of the water levels between drains. The model ‘DRAINMOD’ was used to assess the hydrology and the rapid fluctuations seen in groundwater depths. Hydraulic conductivity values needed to match the simulation of observed depth to groundwater data were an order of magnitude greater than those determined in field measurements, suggesting that macropore flow was an important pathway at the study sites. The rapid response of depth to groundwater during rainfall events indicated a small effective porosity and this was supported by the small measured values of drainable porosity. This study highlighted the potential role of land use and macropore flow in controlling water table fluctuation and related processes in peat soils.  相似文献   

7.
8.
The amorphous iron content in the upper soil horizons, the profile distribution of iron oxides and hydroxides, and the Schwertmann (Feo/Fed) ratio can be used as diagnostic criteria for the degree of gleyization in the classification of hydromorphic soils. Drainage removes chemical elements, e.g., nonsilicate Fe, from soils.  相似文献   

9.
Summary Soil respiration was investigated in three loamy Orthic Luvisols (two arable, one forest soil), three sandy Haplic Podzols (also two arable, one forest soil) with a modified intersite method according to Lundegardh (1924). The method allows characterization of the CO2-flux from the soil and interpretation of the different levels with regard to temperature, nutrient and air supply. The method is sensitive to tillage and fertilization effects. In the two arable Luvisols the mean cumulative respiration rate was not uniform compared with the forest soil; in one case it was much higher and in another much lower. CO2 evolution in the Podzol under spruce was much lower than in the two arable Podzols. In the sandy Podzols 5 replicate measurements gave adequate results, with an error probability of 10%, but in the loamy Luvisols it was necessary to use 10 replicates to specify the same degree of difference. If soil respiration is very high, immediately after fertilization with cattle slurry or dung on arable land, or after litterfall in a deciduous forest, more replicates are necessary.  相似文献   

10.
The rate of phosporus (P) release from soils can significantly influence P fertility of soils. The objectives of this study were to investigate the effects of land‐use types on the kinetics of P release under different management practices and the relationship between kinetic parameters and soil physical and chemical properties from calcareous soils. The kinetics of P release in 0.01 M CaCl2 was studied in surface samples of 30 calcareous soils planted to garlic, garden, pasture, potato, vegetables, and wheat. Trend in P‐release kinetics was similar between land‐use types. Significantly different quantities of P were released under different land use. The maximum amount (average of five soils) (46.4 mg kg–1) of P was released in soil under potato and the minimum amount (10.4 mg kg–1) under pasture. The kinetics of P release from soils can be described as an initial rapid rate followed by a slower rate. Different models were used to describe P release. In general, parabolic diffusion and power equation were found to be appropriate for modeling P release. The P‐release rate for the soils was estimated by parabolic equation for the studied land‐use types. The constant b was lower for pasture and wheat than for garlic and potato. The relationship between the rate of P release with Olsen‐P was linear, while it was curved with respect to the CaCl2‐P, indicating that release of P was diffusion‐controlled. When the kinetic parameters of models were regressed on soil properties, CaCl2‐P and CaCO3 appeared to be the most important soil properties influencing P‐release rates in these soils.  相似文献   

11.
不同栽培方式菜田耕层土壤重金属状况   总被引:4,自引:2,他引:4  
【目的】评价不同栽培方式(温室、大棚和露地)菜田土壤重金属状况,为菜田土壤质量改善和蔬菜高效安全施肥提供一定的理论依据。【方法】针对我国北方3个区域(东北、黄淮海、西北地区)和南方4个区域(华中、西南、华东、华南地区)主要蔬菜种植区不同栽培方式的典型菜田耕层土壤展开调查,选择的主要菜区不同栽培方式的菜田均为远离城郊的未受到工业“三废”、汽车尾气等污染的农村菜田,取样时间是2013年作物收获后或蔬菜施肥前或生长后期,共采集503个土壤样品,对温室、大棚和露地三种栽培方式下土壤重金属状况进行了研究。【结果】1)采样区设施(温室和大棚)菜田土壤重金属Cu、Zn和Cd总量总体上均高于露地菜田土壤,较露地菜田土壤平均分别高12.2%、21.7%和30.4%。2)随着种菜年限的增加,菜田土壤重金属Cu、Zn和Cd总量呈显著增加的趋势。不同栽培方式菜田土壤中均可能存在几种重金属同时污染的复合污染现象,土壤Cu、Zn、Cd等之间的相关性均达到极显著水平。3)采样区不同栽培方式菜田土壤Cd的二级超标率在19.2%~22.3%之间,温室、大棚和露地菜田土壤Cd的单项污染指数平均分别为0.97、0.98和0.70;土壤Cu、Zn、Pb、Cr、As和Hg的二级超标率在0~14.6%之间,单项污染指数在0.06~0.52之间。【结论】设施菜田N、P2O5和K2O总量及有机肥用量均显著高于露地菜田,可能是造成设施菜田土壤中重金属Cu、Zn和Cd积累显著高于露地菜田的重要原因。采样区设施(温室和大棚)菜田土壤Cd总体上处于污染警戒级状态,露地菜田土壤总体上未受到Cd的污染;设施和露地菜田土壤Cu、Zn、Pb、Cr、As和Hg总体上均未构成对土壤的污染。  相似文献   

12.
不同土地利用条件下土壤质量综合评价方法   总被引:18,自引:5,他引:18  
针对传统的土壤质量评价方法难以满足现代农业发展的现状,提出了一种土壤质量指数法(SQI)综合评价土壤质量,旨在为农业生产、农产品产地选址、农业环境保护等提供理论支撑和参考依据。将方法在北京市郊区7种土地利用方式(粮田、林地、湿地、荒地、果园、菜地、草地)上进行了应用,并与常规方法进行了对比,结果表明:采用隶属度模型评价土壤肥力,肥力高低顺序为:湿地>菜地>粮田>林地>果园>荒地>草地;采用内梅罗污染指数评价了重金属污染状况,污染程度高低顺序为:湿地>菜地>荒地>果园>林地>粮田>草地;采用SQI指数评价土壤综合质量,其综合质量的高低顺序为:湿地>粮田>菜地>果园>林地>荒地>草地。此外还对评价模型的适用范围、评价结果的划分等一系列关键问题进行了探讨,得出:SQI指数评价方法的应用及结果的划分涵盖了不同的土地利用方式的农用地,体现了各种土壤属性的差异和变异特性,评价结果可实现土壤综合质量定性和定量化,能够反映土壤的关键信息,符合农业生产需要。  相似文献   

13.
A method is presented for assessing the distribution of enzymatic activity inside and outside of water-stable aggregates. Two samples of water-stable aggregates >1 mm have been isolated from dry aggregates of 1–2 mm. To determine the enzymatic activity, a substrate has been added to one of the samples without disaggregation; the other sample has been preliminarily disaggregated. Enzymatic activity within waterstable aggregates has been assessed from the difference between the obtained results under the supposition that the penetration of substrate within the water-saturated aggregates is hampered, and enzymatic reactions occur only at the periphery. The levels and distributions of enzymatic (peroxidase, polyphenol oxidase, and catalase) activities in water-stable aggregates of soddy-podzolic soils under forest and plowland and typical chernozems of long-term field experiments have been studied. The peroxidase, polyphenol oxidase, and catalase activities of water-stable aggregates vary from 6 to 23, from 7 to 30, and from 5 to 7 mmol/(g h), respectively. The ratio between the enzymatic activities inside and outside of soil aggregates showed a higher dependence on soil type and land use, as well as on the input of organic matter and the structural state, than the general activity level in water-stable aggregates.  相似文献   

14.
Previous field studies in N Europe have shown that the impact of soil tillage on soil respiration is mostly indirect, caused by altered distribution of plant residues in soil affecting decomposition of residues. Tillage operations alter soil moisture and temperature conditions in soil, which control decomposition dynamics. Experiments under laboratory conditions allow indirect effects of altered residue decomposition to be distinguished from direct effects of mechanical disruption, i.e., the increased exposure of substrates within aggregates and micropores upon tillage. This study examined the effects of physical disruption of soils with different soil texture, land‐use history, and soil organic C content on soil respiration under controlled abiotic conditions. Undisturbed soil samples from 7 sites (arable land and grassland) were incubated at 20°C and three different water potentials (–1, –10, and –30 kPa). Soil respiration was measured before and after physical disruption with laboratory homogenizer, using an automated respiration apparatus. Soil organic C, water content, and bulk density explained 67% of the variation in base respiration. In half of the disrupted samples, bulk density was re‐adjusted by re‐compaction to conditions prevailing before disruption. Disruption and re‐compaction generally resulted in higher respiration flushes than disruption alone. Respiration peaks increased with water content. However, total C losses were small and corresponded to < 0.1 Mg C ha?1. Overall, physical soil disruption increased decomposition of soil organic matter only marginally and temporarily. It would be difficult to detect an effect of tillage on soil organic matter decomposition under field conditions.  相似文献   

15.
Microbial nitrogen fixation is an important source of nitrogen in soils of both old and secondary-growth forests. Considering that many soils, which today support secondary-growth forests were once under cultivation, no studies have examined how this kind of disturbance history affects contemporary populations of nitrogen-fixing microbes in forest soils. In the work presented here, we compare secondary-growth forest sites, which were under cultivation more than 150 years ago, to old-growth forest sites in Cadwell Forest, Massachusetts. For each site, nitrogenase activity was measured and the diversity of the nifH gene pools was examined. Three sites with prior agricultural history exhibited higher nitrogenase activity and were dominated by diazotrophs closely related to the α- and γ-Proteobacteria. In contrast, lower nitrogenase activity and the dominance of the anaerobic Cluster III diazotrophs characterized the three old forest sites. Further analyses of species overlap among all six sites revealed that the diazotrophic composition was closely related to previous management history, with agricultural sites clustering together and separate from old forest sites, independent of the proximity between sites. By specifically targeting one of the main functions of microbial communities in soils, the activity and diversity of nitrogen-fixing microorganisms, this work points to a long-lasting effect of former agricultural activities on secondary-growth forest soils, more than one hundred years after succession.  相似文献   

16.
Issues related to the information stored in the electronic spectra of humus acids were considered. The spectrum recording procedure for revealing even small structural changes in the chromophore groups containing the C=C and C=O bonds is discussed. The effect of methods used for separation and purification of humus acids on their spectral and chemical properties is described. Differences in the polarizability and reactivity of humus substances from virgin and arable gray forest soils are revealed.  相似文献   

17.
盐渍区土地利用变化与土壤-植被系统固碳潜力耦合关系的研究对以植被建设、增加碳汇为目的的盐渍区最优土地利用方式的实施具有重要的理论和实际意义。本研究以滨海撂荒盐碱裸地为对照,连续观测和定量描述栽植3年和10年的柽柳林、栽植2年和8年的人工枸杞林及冬季咸水结冰灌溉结合地膜覆盖下的棉田的土壤有机碳和植被生物量的动态变化过程,探讨滨海盐渍区不同土地利用方式下土壤-植被系统固碳能力,为进一步提升区域碳储量提供理论依据。研究表明:1)柽柳、枸杞的栽植及结冰灌溉结合覆膜等土地利用方式在撂荒盐碱地实施后,土壤-植被系统固碳能力明显增强,且土壤容重显著减小;栽植10年的柽柳林和栽植8年的枸杞林土壤-植被系统碳储量最高,分别为118.24 t·hm~(-2)和96.27 t·hm~(-2),比冬季咸水结冰灌溉结合地膜覆盖棉田增加58.51 t·hm~(-2)和36.54 t·hm~(-2),比撂荒盐碱裸地增加83.39 t·hm~(-2)和61.42 t·hm~(-2)。2)对不同土地利用方式固碳趋势研究发现,栽植3年的柽柳林和栽植2年的枸杞林土壤-植物系统固碳速率较高,分别为10.08t·hm~(-2)·a~(-1)和2.71 t·hm~(-2)·a~(-1)。冬季咸水结冰灌溉结合地膜覆盖棉田固碳速率较低,仅为0.53 t·hm~(-2)·a~(-1)。栽植10年的柽柳和栽植8年的枸杞样地,植株固碳速率明显减慢,土壤-植被系统表现为一个弱的碳源。春季地表覆膜处理棉花存活率低且植株成熟后秸秆被移除,碳储量每年净减少0.86 t·hm~(-2)。撂荒盐碱裸地在无外源碳补充的条件下表现为碳源,土壤-植被系统碳储量减少速率为1.42 t·hm~(-2)·a~(-1)。综上所述,滨海盐渍区人工栽植柽柳和枸杞是提高区域碳储量的有效途径。  相似文献   

18.
Our knowledge of effects of land use changes and soil types on the storage and stability of different soil organic carbon (SOC) fractions in the tropics is limited. We analysed the effect of land use (natural forest, pasture, secondary forest) on SOC storage (depth 0–0.1 m) in density fractions of soils developed on marine Tertiary sediments and on volcanic ashes in the humid tropics of northwest Ecuador. The origin of organic carbon stored in free light (< 1.6 g cm?3) fractions, and in two light fractions (LF) occluded within aggregates of different stability, was determined by means of δ13C natural abundance. Light occluded organic matter was isolated in a first step after aggregate disruption by shaking aggregates with glass pearls (occluded I LF) and in a subsequent step by manual destruction of the most stable microaggregates that survived the first step (occluded II LF). SOC storage in LFs was greater in volcanic ash soils (7.6 ± 0.6 Mg C ha?1) than in sedimentary soils (4.3 ± 0.3 Mg C ha?1). The contribution of the LFs to SOC storage was greater in natural forest (19.2 ± 1.2%) and secondary forest (16.6 ± 1.0%) than in pasture soils (12.8 ± 1.0%), independent of soil parent material. The amount of SOC stored in the occluded I LF material increased with increasing silt + clay content (sedimentary soils, r = 0.73; volcanic ash soils, r = 0.58) and aggregation (sedimentary soils, r = 0.52; volcanic ash soils, r = 0.45). SOC associated with occluded I LF, had the smallest proportion of new, pasture‐derived carbon, indicating the stabilizing effect of aggregation. Fast turnover of the occluded II LF material, which was separated from highly stable microaggregates, strongly suggested that this fraction is important in the initial process of aggregate formation. No pasture‐derived carbon could be detected in any density fractions of volcanic ash soils under secondary forest, indicating fast turnover of these fractions in tropical volcanic ash soils.  相似文献   

19.
Infiltration rates into two tropical-forest soils of western Nigeria under bush fallow (natural regrowth) were found to be high, equilibrium rates about 20–25 cm/h, even after precautions were taken to ensure only vertical flow from the double-ring infiltrometer system. Horizontal flow was difficult to restrain apparently due to the presence of horizontally oriented micro-fauna channels.Ploughing and tillage operations destroyed the micro-fauna channels in the plough layer and greatly reduced the tendency for horizontal flow from a normal double-ring infiltrometer system during arable cropping. Micro-fauna activity also declined in the cultivated soils and had little effect on infiltration.When the land was shifted to arable cropping, the weak granular aggregation of the surface soil deteriorated, and by the end of the first cropping year crusts began to decrease the infiltration capacity. Crusting became more severe during the second cropping year with a further reduction in the infiltration capacity and caused the development of rather serious soil erosion. The soil body beneath the crust remained hydraulically stable for a longer period but it also began to deteriorate during the second cropping year in the Oba soil probably due to its susceptability to tillage compaction and plough pan formation.  相似文献   

20.
Attention is being paid to the use of different tillage regimes as a means of retaining soil organic carbon (SOC) and sequestering more SOC. Alongside earlier measurements of total SOC stocks under different tillage regimes, we have examined the distribution of nitrogen (N), microbial activity and the structure of the soil bacterial community from differently tilled plots under continuous barley. The plots were established 5 yr before sampling and have been maintained annually under conventional tillage (CT; moldboard ploughing to 20 cm and disking), deep ploughing (DP; ploughing to 40 cm and disking), minimum tillage (MT; disking to 7 cm) or zero tillage (ZT). Our earlier work showed there was no difference in SOC contents down to 60‐cm depth between the treatments, but now we report that there were significant differences in the total N and active microbial biomass (substrate‐induced respiration) contents of the same soils. The N contents of the CT, DP and MT treatments were not significantly different, but the ZT contained significantly more N, indicating either greater N retention under the ZT treatment or preferential loss from the more intensively tilled treatments, or a combination of both. The microbial biomass content was greater for the CT and DP treatments than for the MT and ZT treatments, indicating greater sensitivity to treatment effects of the microbial biomass pool than the total C pool, consistent with its more dynamic nature. Terminal restriction fragment length polymorphism (T‐RFLP) analyses of the soil bacteria DNA (a method of assessing the bacterial community structure) enabled the samples to be distinguished both according to SOC content, which is to be expected, and to tillage regime with the greatest differences in community structure occurring in the ZT treatment and the least in DP and CT treatments, reflecting the degree of homogenization or disturbance resulting from tillage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号