首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Grape seeds and skins are good sources of phytochemicals such as gallic acid, catechin, and epicatechin and are suitable raw materials for the production of antioxidative dietary supplements. The differences in levels of the major monomeric flavanols and phenolic acids in seeds and skins from grapes of Vitis vinifera varieties Merlot and Chardonnay and in seeds from grapes of Vitis rotundifolia variety Muscadine were determined, and the antioxidant activities of these components were assessed. The contribution of the major monomeric flavonols and phenolic acid to the total antioxidant capacity of grape seeds and skins was also determined. Gallic acid, monomeric catechin, and epicatechin concentrations were 99, 12, and 96 mg/100 g of dry matter (dm) in Muscadine seeds, 15, 358, and 421 mg/100 g of dm in Chardonnay seeds, and 10, 127, and 115 mg/100 g of dm in Merlot seeds, respectively. Concentrations of these three compounds were lower in winery byproduct grape skins than in seeds. These three major phenolic constituents of grape seeds contributed <26% to the antioxidant capacity measured as ORAC on the basis of the corrected concentrations of gallic acid, catechin, and epicatechin in grape byproducts. Peroxyl radical scavenging activities of phenolics present in grape seeds or skins in decreasing order were resveratrol > catechin > epicatechin = gallocatechin > gallic acid = ellagic acid. The results indicated that dimeric, trimeric, oligomeric, or polymeric procyanidins account for most of the superior antioxidant capacity of grape seeds.  相似文献   

2.
Seven table grape cultivars grown in Apulia region were considered: Italia, Baresana, Pizzutello, Red Globe, Michele Palieri, Crimson Seedless, and Thompson Seedless. Seeds, skins and pulps were extracted and analyzed for their phenolic profiles and antioxidant activities. The hierarchy in the phenolic contents was seeds, skins, and pulps. These results indicate that the intake of the whole berries (seeds included) must be strongly recommended. The highest phenolic contents were detected on Italia and Michele Palieri cv., respectively within the white and the red/black table grapes. Seeds gave a high contribution to the berry antioxidant activity, as they had higher phenolic content than skins and contained high quantities of proanthocyanidines, but the strongest antioxidant activity was shown by the pulp juices due to their content in hydroxycinnamyl acids. The principal component analysis applied to the phenolic composition and antioxidant activity of skins, pulps, and seeds allowed a good separation of Italia and Michele Palieri cultivars. According to the cluster analysis, cultivars were grouped into two clusters, one including Michele Palieri and the other one including Italia, Baresana, Pizzutello, and Thompson Seedless.  相似文献   

3.
A rapid and comprehensive qualitative method has been developed to characterize the different classes of polyphenols, such as anthocyanins, flavonols, phenolic acids, and flavanols/proanthocyanidins, in grape products. The detection was achieved by two runs with the same LC gradient in different MS ionization modes and mobile phase modifiers (positive ionization mode and 0.4% trifluoroacetic acid for anthocyanins and flavonols; negative ionization mode and 0.1% formic acid for phenolic acids and flavanols). From an analysis of the MS and UV data and in comparison with the authenticated standards, a total of 53 compounds were identified, including 33 anthocyanins, 12 flavonols, 4 phenolic acids, and 4 flavanols/proanthocyanidins. With the method developed, a survey was then conducted to qualitatively assess the composition of polyphenols among 29 different grape products including original grape, grape juice, grape wine, and grape-derived dietary supplements, and their chemical profiles were systematically compared. This method provided a comprehensive qualitative insight into the composition of polyphenols in grape-derived products.  相似文献   

4.
The flash release (FR) process, consisting of rapidly heating the grapes and then applying strong vacuum, has been proposed to increase the polyphenol content of red wines. Its impact on polyphenol extraction kinetics and on the polyphenol composition of red juice and wines was studied over two seasons on different grape varieties (Grenache, Mourvedre, Carignan). The FR process allows fast extraction of all phenolic compounds (hydroxycinnamic acids, flavonols, anthocyanins, catechins, proanthocyanidins) and can be used to produce polyphenol-enriched grape juices. However, the concentration of all polyphenols dramatically decreased throughout fermentation when pressing was achieved immediately after FR. The FR wines made with pomace maceration were also enriched in polyphenols compared to the corresponding control wines. Increasing the duration of high-temperature exposure in the FR treatment further increased extraction of phenolic compounds but also accelerated their conversion to derived species. The tannin-to-anthocyanin ratio was particularly low in the wine fermented in the liquid phase, higher after FR than in the control, and even higher after longer heating. FR resulted in an increased tannin-to-anthocyanin ratio and an increased conversion of anthocyanins to tannin-anthocyanin adducts showing the same color properties as anthocyanins. The tannin-to-anthocyanin ratio was particularly low in the wine fermented in the liquid phase that also contained larger amounts of orange sulfite bleaching-resistant pigments.  相似文献   

5.
The detailed phenolic composition (anthocyanins, flavonols, hydroxycinnamic acid derivatives, stilbenes, and flavan-3-ols) in the skin and flesh of the new BRS Clara and BRS Morena seedless table grapes has been studied using HPLC-DAD-ESI-MS/MS. The two grapes, especially BRS Morena, contained high amounts of phenolic compounds, mainly located in their skins and qualitatively not different from those found in Vitis vinifera grapes. In addition, BRS Morena (a teinturier variety) showed qualitatively different phenolic compositions in its skin and flesh, mainly affecting the anthocyanin and flavonol profiles. Consistent with high phenolic contents, high antioxidant capacity values were registered for both grape varieties, especially for BRS Morena. Proanthocyanidins and hydroxycinnamoyl-tartaric acids were the major phenolic compounds found in BRS Clara and were also important in BRS Morena, although anthocyanins were the main phenolic compounds in the latter case. These results suggest that the entire grapes, including the skin, may potentially possess properties that are beneficial to human health. In this context, the BRS Morena grape can be considered as a high resveratrol producer.  相似文献   

6.
The phenolic composition of Malbec (Vitis vinifera L.) grape skins and seeds during ripening and the effect of cluster thinning (CT) in two consecutive seasons (2008-2009) were evaluated by high-performance liquid chromatography-diode array detection/electrospray ionization-mass spectrometry (HPLC-DAD/ESI-MS). Removal of 50% of clusters was performed at 40 days (T1), 80 days (T2), and 100 days after flowering (T3) in a vineyard located in southern Mendoza (Argentina). Yield components, with the exception of cluster weight, were significantly affected by CT in both seasons, but no statistically significant differences were found among treatments. Cluster thinning and its timing had little or no influence on physical parameters and fruit chemical composition, and the differences with respect to the control were mainly due to the season. At harvest in 2008, T1 encouraged the biosynthesis of individual anthocyanins in skins, generating 44.0, 39.6, and 41.2% more glucosylated, acetylated, and total anthocyanins, respectively, as compared to the control, whereas in seeds, T1 and T2 mainly changed the concentrations of (+)-catechin, epicatechin-3-gallate, procyanidin B4, dimer gallate 1, trimer gallate 2, and tetramer. Conversely in 2009, T1 significantly affected the content of flavanols and flavonols in skins, whereas in seeds, T1 and T2 modified the level of (+)-catechin, procyanidins B4 and B6, and trimer gallate 2. Moreover, in 2008 the grapes had a higher concentration of most phenolic compounds, indicating a greater potential for more complex wines. Finally, dihydroquercetin-3-glucoside was the major compound among all nonanthocyanin phenolics detected in Malbec skins and represented 25.7% (2008) and 39.9% (2009) of the total content of those compounds at harvest. This finding could represent a distinctive feature of this grape variety.  相似文献   

7.
Dehydrated waste grape skins from the juice industry were used as an additive to produce rosé wines. Maceration time, particle size, dosage, alcoholic content, and maceration temperature were first studied in model wine solutions using two different dehydrated waste grape skins. Full factorial experimental designs together with Factor Analysis and Multifactor ANOVA allowed for the evaluation of each parameter according to the composition of color and phenolic and aroma compounds. Higher maceration time favored the extraction of anthocyanins; phenolic compound release was influenced by dosage independent from other factors studied. Rosé wines were produced by direct addition of dehydrated waste grape skins, according to selected parameters in two different white wines, achieving characteristics equivalent to commercial rosé wines. After three months of storage, rosé wine composition was stable.  相似文献   

8.
Berry phenolics and their antioxidant activity   总被引:19,自引:0,他引:19  
Phenolic profiles of a total of 26 berry samples, together with 2 apple samples, were analyzed without hydrolysis of glycosides with HPLC. The phenolic contents among different berry genera varied considerably. Anthocyanins were the main phenolic constituents in bilberry, bog-whortleberry, and cranberry, but in cowberries, belonging also to the family Ericaceae genus Vaccinium, flavanols and procyanidins predominated. In the family Rosaceae genus Rubus (cloudberry and red raspberry), the main phenolics found were ellagitannins, and in genus Fragaria (strawberry), ellagitannins were the second largest group after anthocyanins. However, phenolic acids were dominant in rowanberries (genus Sorbus) and anthocyanins in chokeberry (genus Aronia). In the family Grossulariaceae genus Ribes (currants and gooseberry), anthocyanins predominated, as well as in crowberries (family Empetraceae genus Empetrum). In apples, hydroxycinnamic acids were the main phenolic subgroup. Extraction methods for berries and apples were studied to produce phenolic extracts with high antioxidant activity. Evaluation of antioxidant activity was performed by autoxidazing methyl linoleate (40 degrees C, in the dark). The extraction method affected remarkably both the phenolic composition and the antioxidant activity, but with statistical analysis the observed activity could not be well explained with the contents of individual phenolic subgroups.  相似文献   

9.
Polyphenol content, free radical scavenging capacity, and changes during storage over 7 months in the dark were studied in ecological and conventional red and white wines. In red wines, the most changeable components during storage were the anthocyanins since during storage anthocyanins content decreased 88% in conventional wine and 91% in ecological wine. Initially, the total flavonol contents of the conventional and ecological red wines were 163.88 +/- 2.69 and 153.58 +/- 1.71 mg/L, respectively, and no significant variations occurred during storage. No differences in hydroxycinnamic acid derivatives content between conventional and ecological red and white wines were observed. The flavonol level in white wines was very low, as expected since these compounds are found in grape skin. The initial antioxidant activity was 5.37 +/- 0.14 and 5.82 +/- 0.31 mM equivalents Trolox for conventional and ecological red wines, respectively; no significant differences were observed (p = 0.2831), and these values were 7-8 times higher than the antioxidant activity observed in conventional and ecological white wine. In contrast with other studies, the total concentrations of phenolic compounds in conventional and ecological red and white wines were not related to antioxidant activity (p > 0.05). In red wines, no significant differences were observed in the antioxidant activity of ecological and conventional red wine (p = 0.28), while in white wine significant differences were observed in the antioxidant activity between conventional and ecological white wine (p = 0.006).  相似文献   

10.
Reversed phase high performance liquid chromatography (RP-HPLC) on a semimicro separation scale was employed to develop a straightforward method for the simultaneous separation, identification, and quantification of phenolic compounds occurring in whole berries of Vitis vinifera, which comprise phenolic acids, flavonols, catechins, stilbenes, and anthocyanins. A C-18 narrow bore column of 150 x 2.0 mm I.D. and a semimicro photodiode array detector (PDA) cell of 2.5 microL, in conjunction with a mass spectrometry detector equipped with an electrospray ionization source (ESI-MS) to confirm peak identification, were employed. The C-18 narrow bore column was eluted by a multisegment gradient of increasing concentration of acetonitrile in water-formic acid solution that was optimized on the basis of the results of a study carried out to evaluate the influence of mobile phase composition and gradient shape on separation performance and detection sensitivity by ESI-MS. The identification of individual phenolic compounds was performed on the basis of their retention times and both UV-visible and mass spectra, acquired by a mass spectrometer (MS) equipped with an electrospray ionization (ESI) source, employed in conjunction with the PDA detector. Libraries comprising retention times, UV-visible, and mass spectra for major phenolic compounds expected in grape berries were made by subjecting solutions of each phenolic standard to the optimized RP-HPLC method. Quantification of individual compounds was performed by the external standard method using a six point regression graph of the UV-visible absorption data collected at the wavelength of maximum absorbance of each analyte determined by the PDA spectra. The RP-HPLC method was validated in terms of linearity of calibration graphs, limits of detection, limits of quantification, repeatability, and accuracy, which was evaluated by a recovery study. The developed method was successfully applied to identify the phenolic compounds occurring in the whole berries of nine red and one white grape of different varieties of Vitis vinifera, comprising some autochthonous varieties of south Italy such as Aglianico, Malvasia Nera, Uva di Troia, Negroamaro, Primitivo, and Susumaniello. Large differences in the content of phenolic compounds was found in the investigated grape varieties. As expected, only glycosilated flavonols were quantified, and the total amount of these compounds was higher in the whole berries of red grapes than in the white Moscato, where the most abundant phenolic compound was quercetin 3-O-glucoside. In almost all samples, the most and least abundant anthocyanins were malvidin 3-O-glucoside and cyanidin 3-O-glucoside, respectively, with the exception of Uva di Troia where the least abundant anthocyanin was delphinidin 3-O-glucoside.  相似文献   

11.
Analysis of Concord grape juice by HPLC with ESI-MS(n), PDA, and fluorescence detection resulted in the identification and quantification of 60 flavonoids and related phenolic compounds, which were present at an overall concentration of 1508 ± 31 μmol/L. A total of 25 anthocyanins were detected, which were mono- and di-O-glucosides, O-acetylglucosides, O-p-coumaroyl-O-diglucosides, and O-p-coumaroylglucosides of delphinidin, cyanidin, petunidin, peonidin, and malvidin. The anthocyanins represented 46% of the total phenolic content of the juice (680 μmol/L). Tartaric esters of hydroxycinnamic acids, namely, trans-caftaric and trans-coutaric acids, and to a lesser extent trans-fertaric acid accounted for 29% of the phenolic content, with a total concentration of 444 μmol/L, of which 85% comprised trans-caftaric acid. Free hydroxycinnamic acids were also quantified but contributed to <1% of the total phenolic content (8.4 μmol/L). The other groups of polyphenolic compounds present in the juice, accounting for 24% of the total, comprised monomeric and oligomeric units of (epi)catechin and (epi)gallocatechin (248 μmol/L), flavonols (76 μmol/L), gallic acid (51 μmol/L), and trans-resveratrol (1.5 μmol/L). The bioavailability of the (poly)phenolic compounds in 350 mL of juice was investigated following acute intake by healthy volunteers. Plasma and urine were collected over 0-24 h and analyzed for parent compounds and metabolites. In total, 41 compounds, principally metabolites, were identified.  相似文献   

12.
Almond hulls and grape pomace are residues abundantly generated by agricultural industries, which could be processed to obtain bioactive products. To this purpose, crude ethanol extracts from both agricultural byproducts were attained and subsequently fractionated in order to obtain an organic/water fraction (FOW). Extracts and fractions were analyzed for antioxidant power and their phenolic components tentatively identified by HPLC-MS. Chromatographic peaks of almond hull extracts showed the occurrence of hydroxybenzoic and cinnamic acid derivatives, with minor presence of flavan-3-ols (ECG, EGCG), whereas the FOW fraction offered the additional presence of epicatechin (EC) and glycosylated flavonols. In the composition for extracts of white and red grape pomace several of these compounds were also detected but basically consisted of glycosylated flavonols (quercetin, kaempferol). As a difference between both grape pomaces, myricetin glycosyde was found in that from the red variety, whereas flavan-3-ols (EC, afzelechin) were only identified in white pomace. When their FOW fractions were analyzed, gallic acid and some hydroxybenzoic acids were additionally detected. Antioxidant activity was assessed by DPPH and TBARS assays. Almond hulls showed inhibition percentages lower than 50% in both assays, while the inhibition percentage ranged from 80% to 90% in pomace extracts. Red grape pomace extract was the most efficient antioxidant, with an EC50 value of 0.91 g/L for TBARS and 0.20 g/L for DPPH. Even appearing as two quite different vegetal matrixes, the composition of phenolics in grape pomace and almond hulls is quite similar, the main difference being the major occurrence of flavonols in grape pomace. This fact could presumably explain the lower antiradical activity of hull extracts.  相似文献   

13.
The phenolic constituents of seeds of 12 different apple cultivars were fractionated by sequential extraction with aqueous acetone (30:70, v/v) and ethyl acetate after hexane extraction of the lipids. Low molecular weight phenolic compounds were individually quantitated by RP-HPLC-DAD. The contents of extractable and nonextractable procyanidins were determined by applying RP-HPLC following thiolysis and n-butanol/HCl hydrolysis, respectively. As expected, the results revealed marked differences of the ethyl acetate extracts, aqueous acetone extracts, and insoluble residues with regard to contents and mean degrees of polymerization of procyanidins. Total phenolic contents in the defatted apple seed residues ranged between 18.4 and 99.8 mg/g. Phloridzin was the most abundant phenolic compound, representing 79-92% of monomeric polyphenols. Yields of phenolic compounds significantly differed among the cultivars under study, with seeds of cider apples generally being richer in phloridzin and catechins than seeds of dessert apple cultivars. This is the first study presenting comprehensive data on the contents of phenolic compounds in apple seeds comprising extractable and nonextractable procyanidins. Furthermore, the present work points out a strategy for the sustainable and complete exploitation of apple seeds as valuable agro-industrial byproducts, in particular as a rich source of phloridzin and antioxidant flavanols.  相似文献   

14.
This paper reports an attempt to functionally and chemically characterize commercial ingredients from Vitis vinifera L. grape skins, grape pomace, and leaves, which are used in the formulation of dietary antioxidant supplements. The antioxidant capacity of these ingredients was assessed for the first time by the oxygen radical absorbance capacity (ORAC) methodology. Ingredients from grape skins and pomace (n = 17) showed ORAC values from 1.38 to 21.4 mumol Trolox equivalents/mg whereas ingredients from leaves (n = 4) showed ORAC values from 1.52 to 2.55 mumol Trolox equivalents/mg. The high-performance liquid chromatography-diode array detection/electrospray ionization-mass sprectrometry analysis of anthocyanins and flavonols revealed the authenticity of the ingredients as derived from V. vinifera L. and confirmed large differences in their phenolic content and distribution. A progressive decline in both antioxidant capacity and total anthocyanin content of a grape skin ingredient (43 and 40% decrease, respectively) was observed over a 60 day storage period (45 degrees C and 75% relative humidity), demonstrating its poor stability under these conditions.  相似文献   

15.
Muscadine grapes have unique aroma and flavor characteristics. Although a few studies reported high polyphenols content of muscadine grapes, little research has been conducted to evaluate the phenolic compounds bioactivities in any muscadine grape cultivar. The objective of this study was to evaluate the effect of phenolic compounds in muscadine grapes on cancer cell viability and apoptosis. Four cultivars of muscadine (Carlos, Ison, Noble, and Supreme) were assessed in this study. Phenolic compounds were extracted from muscadine skins and further separated into phenolic acids, tannins, flavonols, and anthocyanins using HLB cartridge and LH20 column. Some individual phenolic acids and flavonoids were identified by HPLC. Anthocyanin fractions were more than 90% pure. The effect of different fractions on the viability and apoptosis of two colon cancer cell lines (HT-29 and Caco-2) was evaluated. A 50% inhibition of cancer cell population growth for the two cell lines was observed at concentrations of 1-7 mg/mL for crude extracts. The phenolic acid fractions showed a 50% inhibition at the level of 0.5-3 mg/mL. The greatest inhibitory activity was found in the anthocyanin fraction, with a 50% inhibition at concentrations of approximately 200 microg/mL in HT-29 and 100-300 microg/mL in Caco-2. Anthocyanin fractions also resulted in 2-4 times increase in DNA fragmentation, indicating the induction of apoptosis. These findings suggest that polyphenols from muscadine grapes may have anticancer properties.  相似文献   

16.
The diversity of berry skin flavonoids in grape genotypes has been previously widely investigated with regard to major compounds (nonacylated anthocyanins and flavonols), but much less with regard to acylated anthocyanins and hydroxycinnamoyl tartrates (HCTs). In this study, the composition of the phenolic fraction of the berry skin (free and acylated anthocyanins, flavonols, and HCTs) was assessed on 34 grapevine genotypes grown in a collection vineyard in northwestern Italy. The phenolic fraction was profiled on berries collected in the same vineyard, at the same ripening level across two successive vintages. The anthocyanin, HCT, and flavonol profiles were specific of each genotype, and the first two were relatively little affected by the vintage. A wide diversity in the polyphenolic fraction was shown among cultivars. Besides expected discriminatory effects of free anthocyanins and flavonol profiles, principal component analyses allowed a good discrimination of cultivars on the basis of coumaroylated anthocyanins and of the HCT profile. Anthocyanins were mostly acylated by aromatic acids, and acylation was independent from the anthocyanin substrate. HCTs were present mostly as coumaroyl and caffeoyl derivatives, and no correlation was observed between the same acylation patterns of tartrate and of anthocyanins. The results of this study are discussed in the light of new hypotheses on still unknown biosynthetic steps of phenolic substances and of the potential use of these substances in discrimination and identification of different grape cultivars in wines.  相似文献   

17.
Thirty-seven apricot varieties, including four new releases (Rojo Pasión, Murciana, Selene, and Dorada) obtained from different crosses between apricot varieties and three traditional Spanish cultivars (Currot, Mauricio, and Búlida), were separated according to flesh color into four groups: white, yellow, light orange, and orange (mean hue angles in flesh were 88.1, 85.0, 77.6, and 72.4, respectively). Four phenolic compound groups, procyanidins, hydroxycinnamic acid derivatives, flavonols, and anthocyanins, were identified by HPLC-MS/MS and individually quantified using HPLC-DAD. Chlorogenic and neochlorogenic acids, procyanidins B1, B2, and B4, and some procyanidin trimers, quercetin 3-rutinoside, kaempferol 3-rhamnosyl-hexoside and quercetin 3-acetyl-hexoside, cyanidin 3-rutinoside, and 3-glucoside, were detected and quantified in the skin and flesh of the different cultivars. The total phenolics content, quantified as the addition of the individual compounds quantified by HPLC, ranged between 32.6 and 160.0 mg 100 g(-1) of edible tissue. No correlation between the flesh color and the phenolic content of the different cultivars was observed.  相似文献   

18.
A simple and fast reversed-phase HPLC method using diode array detection was developed and validated for the simultaneous determination of trans-resveratrol and quercetin in Sicilian red wine from the Nero d'Avola red grape variety. Investigation was also extended to the quantitative determination of resveratrol and quercetin in grape skins and winemaking byproducts obtained from the same cultivar. Samples were eluted using a C18 narrow-bore column under isocratic conditions in less than 20 min. Quantification of trans-resveratrol and quercetin in red wine was performed without any sample pretreatment, whereas the determination of these phenolic compounds in grape skins and wine pomage required a solvent extraction procedure. Linearity was demonstrated over the 0.39-12.5 and 0.45-57.6 microg/mL range for trans-resveratrol and quercetin, respectively. Detection limits in real samples were in the low ppm level (0.07 mg/L for trans-resveratrol and 0.12 mg/L for quercetin). The HPLC-UV/DAD method was applied for the routine analyses of red wine and grape skin and winemaking byproduct extracts to evaluate their trans-resveratrol and quercetin content. In particular, a very high content of quercetin was found in wine pomace, suggesting the use of this wine byproduct as a potential source of this health-promoting phenolic compound.  相似文献   

19.
Seed coats and cotyledons from 25 Brazilian and 3 Peruvian bean cultivars were investigated in relation to their phenolic profiles and antioxidant capacity. Condensed tannins, anthocyanins, and flavonols such as kaempferol and quercetin glycosides were mostly found in seed coats. Cotyledons were rich in phenolic acids, such as ferulic, sinapic, chlorogenic, and other hydroxycinnamic acids. In general, the seed coat color pattern and the type of cultivar showed an important influence on the variability of phenolic profiles and levels, respectively. Total phenolics and antioxidant capacity assessed by the DPPH method were higher in seed coats than in cotyledons. The antioxidant capacity had a significant correlation with condensed tannins for all samples and with total anthocyanins in black and red seed coats, whereas in cotyledons, it was more related to the total phenolic content.  相似文献   

20.
A method for the identification and quantification of phenolic compounds from artichoke (Cynara scolymus L.) heads, juice, and pomace by HPLC with diode array and mass spectrometric detection was developed. Among the 22 major compounds, 11 caffeoylquinic acids and 8 flavonoids were detected. Quantification of individual compounds was carried out by external calibration. Apigenin 7-O-glucuronide was found to be the major flavonoid in all samples investigated. 1,5-Di-O-caffeoylquinic acid represented the major hydroxycinnamic acid, with 3890 mg/kg in artichoke heads and 3269 mg/kg in the pomace, whereas in the juice 1,3-di-O-caffeoylquinic acid (cynarin) was predominant, due to the isomerization during processing. Total phenolic contents of approximately 12 g/kg on a dry matter basis revealed that artichoke pomace is a promising source of phenolic compounds that might be recovered and used as natural antioxidants or functional food ingredients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号