首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The equatorial Pacific Ocean is one of the most important yet highly variable oceanic source areas for atmospheric carbon dioxide (CO2). Here, we used the partial pressure of CO2 (PCO2), measured in surface waters from 1979 through early 2001, to examine the effect on the equatorial Pacific CO2 chemistry of the Pacific Decadal Oscillation phase shift, which occurred around 1988 to 1992. During the decade before the shift, the surface water PCO2 (corrected for temperature changes and atmospheric CO2 uptake) in the central and western equatorial Pacific decreased at a mean rate of about -20 microatm per decade, whereas after the shift, it increased at about +15 microatm per decade. These changes altered the CO2 sink and source flux of the equatorial Pacific significantly.  相似文献   

2.
Late Pleistocene changes in oceanic primary productivity along the equator in the Indian and Pacific oceans are revealed by quantitative changes in nanoplankton communities preserved in nine deep-sea cores. We show that variations in equatorial productivity are primarily caused by glacial-interglacial variability and by precession-controlled changes in the east-west thermocline slope of the Indo-Pacific. The precession-controlled variations in productivity are linked to processes similar to the Southern Oscillation phenomenon, and they precede changes in the oxygen isotopic ratio, which indicates that they are not the result of ice sheet fluctuations. The 30,000-year spectral peak in the tropical Indo-Pacific Ocean productivity records is also present in the Antarctica atmospheric CO2 record, suggesting an important role for equatorial biological productivity in modifying atmospheric CO2.  相似文献   

3.
During the warm early Pliocene (approximately 4.5 to 3.0 million years ago), the most recent interval with a climate warmer than today, the eastern Pacific thermocline was deep and the average west-to-east sea surface temperature difference across the equatorial Pacific was only 1.5 +/- 0.9 degrees C, much like it is during a modern El Ni?o event. Thus, the modern strong sea surface temperature gradient across the equatorial Pacific is not a stable and permanent feature. Sustained El Ni?o-like conditions, including relatively weak zonal atmospheric (Walker) circulation, could be a consequence of, and play an important role in determining, global warmth.  相似文献   

4.
Pronounced increases in total gaseous mercury (TGM) in the near surface marine atmosphere were found in the equatorial region (4 degrees N to 10 degrees S) of the Pacific Ocean at 160 degrees W. The atmospheric enhancement of TGM corresponded closely to sea-surface manifestations of equatorial upwelling as reflected in measured changes of temperature and nutrient concentrations as well as to variations of reactive mercury in surface seawater. The elevated atmospheric TGM levels most probably result from oceanic mercury evasion associated with upwelling and increased biological production that occurs in the equatorial Pacific Ocean.This evidence of sea-to-air mercury transfer supports model predictions of an oceanic source of atmospheric mercury and suggests that marine-derived mercury emissions should occur in other biologically productive regimes.  相似文献   

5.
Sea surface temperatures (SSTs) in the cold tongue of the eastern equatorial Pacific exert powerful controls on global atmospheric circulation patterns. We examined climate variability in this region from the Last Glacial Maximum (LGM) to the present, using a SST record reconstructed from magnesium/calcium ratios in foraminifera from sea-floor sediments near the Galápagos Islands. Cold-tongue SST varied coherently with precession-induced changes in seasonality during the past 30,000 years. Observed LGM cooling of just 1.2 degrees C implies a relaxation of tropical temperature gradients, weakened Hadley and Walker circulation, southward shift of the Intertropical Convergence Zone, and a persistent El Ni?o-like pattern in the tropical Pacific. This is contrasted with mid-Holocene cooling suggestive of a La Ni?a-like pattern with enhanced SST gradients and strengthened trade winds. Our results support a potent role for altered tropical Pacific SST gradients in global climate variations.  相似文献   

6.
Earth's modern climate, characterized by polar ice sheets and large equator-to-pole temperature gradients, is rooted in environmental changes that promoted Antarctic glaciation ~33.7 million years ago. Onset of Antarctic glaciation reflects a critical tipping point for Earth's climate and provides a framework for investigating the role of atmospheric carbon dioxide (CO(2)) during major climatic change. Previously published records of alkenone-based CO(2) from high- and low-latitude ocean localities suggested that CO(2) increased during glaciation, in contradiction to theory. Here, we further investigate alkenone records and demonstrate that Antarctic and subantarctic data overestimate atmospheric CO(2) levels, biasing long-term trends. Our results show that CO(2) declined before and during Antarctic glaciation and support a substantial CO(2) decrease as the primary agent forcing Antarctic glaciation, consistent with model-derived CO(2) thresholds.  相似文献   

7.
The delta(13)C value of the dissolved inorganic carbon in the surface waters of the Pacific Ocean has decreased by about 0.4 per mil between 1970 and 1990. This decrease has resulted from the uptake of atmospheric CO(2) derived from fossil fuel combustion and deforestation. The net amounts of CO(2) taken up by the oceans and released from the biosphere between 1970 and 1990 have been determined from the changes in three measured values: the concentration of atmospheric CO(2), the delta(13)C of atmospheric CO(2) and the delta(13)C value of dissolved inorganic carbon in the ocean. The calculated average net oceanic CO(2) uptake is 2.1 gigatons of carbon per year. This amount implies that the ocean is the dominant net sink for anthropogenically produced CO(2) and that there has been no significant net CO(2) released from the biosphere during the last 20 years.  相似文献   

8.
A tropical Pacific climate state resembling that of a permanent El Ni?o is hypothesized to have ended as a result of a reorganization of the ocean heat budget approximately 3 million years ago, a time when large ice sheets appeared in the high latitudes of the Northern Hemisphere. We report a high-resolution alkenone reconstruction of conditions in the heart of the eastern equatorial Pacific (EEP) cold tongue that reflects the combined influences of changes in the equatorial thermocline, the properties of the thermocline's source waters, atmospheric greenhouse gas content, and orbital variations on sea surface temperature (SST) and biological productivity over the past 5 million years. Our data indicate that the intensification of Northern Hemisphere glaciation approximately 3 million years ago did not interrupt an almost monotonic cooling of the EEP during the Plio-Pleistocene. SST and productivity in the eastern tropical Pacific varied in phase with global ice volume changes at a dominant 41,000-year (obliquity) frequency throughout this time. Changes in the Southern Hemisphere most likely modulated most of the changes observed.  相似文献   

9.
Records of atmospheric carbon dioxide concentration (P(CO(2))) and Antarctic temperature have revealed an intriguing change in the magnitude of interglacial warmth and P(CO(2)) at around 430,000 years ago (430 ka), but the global climate repercussions of this change remain elusive. Here, we present a stalagmite-based reconstruction of tropical West Pacific hydroclimate from 570 to 210 ka. The results suggest similar regional precipitation amounts across the four interglacials contained in the record, implying that tropical hydroclimate was insensitive to interglacial differences in P(CO(2)) and high-latitude temperature. In contrast, during glacial terminations, drying in the tropical West Pacific accompanied cooling events in northern high latitudes. Therefore, the tropical convective heat engine can either stabilize or amplify global climate change, depending on the nature of the climate forcing.  相似文献   

10.
Unraveling the mystery of Indian monsoon failure during El Niño   总被引:1,自引:0,他引:1  
The 132-year historical rainfall record reveals that severe droughts in India have always been accompanied by El Ni?o events. Yet El Ni?o events have not always produced severe droughts. We show that El Ni?o events with the warmest sea surface temperature (SST) anomalies in the central equatorial Pacific are more effective in focusing drought-producing subsidence over India than events with the warmest SSTs in the eastern equatorial Pacific. The physical basis for such different impacts is established using atmospheric general circulation model experiments forced with idealized tropical Pacific warmings. These findings have important implications for Indian monsoon forecasting.  相似文献   

11.
Research conducted during the past decade has led to an understanding of many of the mechanisms responsible for the oceanic and atmospheric variability associated with the El Ni?o-Southern Oscillation (ENSO). However, the reason for one of the fundamental characteristics of this phenomena, its quasi-periodicity, has remained unclear. Recently available evidence from a number of sources now suggests that the ENSO "cycle" operates as a natural oscillator based on relatively simple couplings between the tropical atmospheric circulation, the dynamics of the warm upper layer of the tropical ocean, and sea surface temperatures in the eastern equatorial Pacific. This concept and recent field evidence supporting the natural coupled oscillator hypothesis are outlined.  相似文献   

12.
Super ENSO and global climate oscillations at millennial time scales   总被引:1,自引:0,他引:1  
The late Pleistocene history of seawater temperature and salinity variability in the western tropical Pacific warm pool is reconstructed from oxygen isotope (delta18O) and magnesium/calcium composition of planktonic foraminifera. Differentiating the calcite delta18O record into components of temperature and local water delta18O reveals a dominant salinity signal that varied in accord with Dansgaard/Oeschger cycles over Greenland. Salinities were higher at times of high-latitude cooling and were lower during interstadials. The pattern and magnitude of the salinity variations imply shifts in the tropical Pacific ocean/atmosphere system analogous to modern El Ni?o-Southern Oscillation (ENSO). El Ni?o conditions correlate with stadials at high latitudes, whereas La Ni?a conditions correlate with interstadials. Millennial-scale shifts in atmospheric convection away from the western tropical Pacific may explain many paleo-observations, including lower atmospheric CO2, N2O, and CH4 during stadials and patterns of extratropical ocean variability that have tropical source functions that are negatively correlated with El Ni?o.  相似文献   

13.
Lea DW  Pak DK  Spero HJ 《Science (New York, N.Y.)》2000,289(5485):1719-1724
Magnesium/calcium data from planktonic foraminifera in equatorial Pacific sediment cores demonstrate that tropical Pacific sea surface temperatures (SSTs) were 2.8 degrees +/- 0.7 degrees C colder than the present at the last glacial maximum. Glacial-interglacial temperature differences as great as 5 degrees C are observed over the last 450 thousand years. Changes in SST coincide with changes in Antarctic air temperature and precede changes in continental ice volume by about 3 thousand years, suggesting that tropical cooling played a major role in driving ice-age climate. Comparison of SST estimates from eastern and western sites indicates that the equatorial Pacific zonal SST gradient was similar or somewhat larger during glacial episodes. Extraction of a salinity proxy from the magnesium/calcium and oxygen isotope data indicates that transport of water vapor into the western Pacific was enhanced during glacial episodes.  相似文献   

14.
A sea surface temperature (SST) record based on planktonic foraminiferal magnesium/calcium ratios from a site in the western equatorial Pacific warm pool reveals that glacial-interglacial oscillations in SST shifted from a period of 41,000 to 100,000 years at the mid-Pleistocene transition, 950,000 years before the present. SST changes at both periodicities were synchronous with eastern Pacific cold-tongue SSTs but preceded changes in continental ice volume. The timing and nature of tropical Pacific SST changes over the mid-Pleistocene transition implicate a shift in the periodicity of radiative forcing by atmospheric carbon dioxide as the cause of the switch in climate periodicities at this time.  相似文献   

15.
Anomalously high values of atmospheric angular momentum and length of day were observed in late January 1983. This signal in the time series of these two coupled quantities appears to have been a consequence of the equatorial Pacific Ocean warming event of 1982-1983.  相似文献   

16.
An empirical correlation between marine barite (BaSO4) accumulation rate in core-top sediment samples from two equatorial Pacific transects (at 140°W and 110°W) and the estimated primary productivity of the overlying water column were used to evaluate glacial to interglacial changes in productivity. Fluctuations in barite accumulation rates down-core indicate that during glacial periods of the past 450,000 years, the productivity in the central and eastern equatorial Pacific was about two times that during intervening interglacial periods. This result is consistent with other evidence that productivity was high in the eastern and central equatorial Pacific during the last glacial.  相似文献   

17.
Atmospheric CO2 concentrations over the last glacial termination   总被引:1,自引:0,他引:1  
A record of atmospheric carbon dioxide (CO2) concentration during the transition from the Last Glacial Maximum to the Holocene, obtained from the Dome Concordia, Antarctica, ice core, reveals that an increase of 76 parts per million by volume occurred over a period of 6000 years in four clearly distinguishable intervals. The close correlation between CO2 concentration and Antarctic temperature indicates that the Southern Ocean played an important role in causing the CO2 increase. However, the similarity of changes in CO2 concentration and variations of atmospheric methane concentration suggests that processes in the tropics and in the Northern Hemisphere, where the main sources for methane are located, also had substantial effects on atmospheric CO2 concentrations.  相似文献   

18.
The western equatorial Pacific warm pool (sea-surface temperatures >29 degrees C) was observed to migrate eastward across the date line during the 1986-1987 El Ni?o-Southern Oscillation event. Direct velocity measurements made in the upper ocean from 1986 to 1988 indicate that this migration was associated with a prolonged reversal in the South Equatorial Current forced by a large-scale relaxation ofthe trade winds. The data suggest that wind-forced zonal advection plays an important role in the thermodynamics of the western Pacific warm pool on interannual time scales.  相似文献   

19.
The partitioning of gaseous mercury between the atmosphere and surface waters was determined in the equatorial Pacific Ocean. The highest concentrations of dissolved gaseous mercury occurred in cooler, nutrient-rich waters that characterize equatorial upwelling and increased biological productivity at the sea surface. The surface waters were supersaturated with respect to elemental mercury; a significant flux of elemental mercury to the atmosphere is predicted for the equatorial Pacific. When normalized to primary production on a global basis, the ocean effluxes of mercury may rival anthropogenic emissions of mercury to the atmosphere.  相似文献   

20.
The role of El Ni?o-Southern Oscillation (ENSO) in greenhouse warming and climate change remains controversial. During the warmth of the early-mid Pliocene, we find evidence for enhanced thermocline tilt and cold upwelling in the equatorial Pacific, consistent with the prevalence of a La Ni?a-like state, rather than the proposed persistent warm El Ni?o-like conditions. Our Pliocene paleothermometer supports the idea of a dynamic "ocean thermostat" in which heating of the tropical Pacific leads to a cooling of the east equatorial Pacific and a La Ni?a-like state, analogous to observations of a transient increasing east-west sea surface temperature gradient in the 20th-century tropical Pacific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号