首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In December 2009, the American Society for Veterinary Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards committee published the updated and peer-reviewed ASVCP Quality Assurance Guidelines on the Society's website. These guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports: (1) general analytical factors for veterinary laboratory performance and comparisons; (2) hematology, hemostasis, and crossmatching; and (3) clinical chemistry, cytology, and urinalysis. This particular report is one of 3 reports and provides recommendations for control of preanalytical and analytical factors related to hematology for mammalian and nonmammalian species, hemostasis testing, and crossmatching and is adapted from sections 1.1 and 2.3 (mammalian hematology), 1.2 and 2.4 (nonmammalian hematology), 1.5 and 2.7 (hemostasis testing), and 1.6 and 2.8 (crossmatching) of the complete guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimal guidelines for quality assurance and quality control for veterinary laboratory testing and a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts.  相似文献   

2.
In December 2009, the American Society for Veterinary Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards committee published the updated and peer-reviewed ASVCP Quality Assurance Guidelines on the Society's website. These guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports: (1) general analytical factors for veterinary laboratory performance and comparisons; (2) hematology, hemostasis, and crossmatching; and (3) clinical chemistry, cytology, and urinalysis. This particular report is one of 3 reports and documents recommendations for control of preanalytical, analytical, and postanalytical factors related to urinalysis, cytology, and clinical chemistry in veterinary laboratories and is adapted from sections 1.1 and 2.2 (clinical chemistry), 1.3 and 2.5 (urinalysis), 1.4 and 2.6 (cytology), and 3 (postanalytical factors important in veterinary clinical pathology) of these guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimal guidelines for quality assurance and quality control for veterinary laboratory testing and a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts.  相似文献   

3.
Owing to lack of governmental regulation of veterinary laboratory performance, veterinarians ideally should demonstrate a commitment to self-monitoring and regulation of laboratory performance from within the profession. In response to member concerns about quality management in veterinary laboratories, the American Society for Veterinary Clinical Pathology (ASVCP) formed a Quality Assurance and Laboratory Standards (QAS) committee in 1996. This committee recently published updated and peer-reviewed Quality Assurance Guidelines on the ASVCP website. The Quality Assurance Guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports on 1) general analytic factors for veterinary laboratory performance and comparisons, 2) hematology and hemostasis, and 3) clinical chemistry, endocrine assessment, and urinalysis. This report documents recommendations for control of general analytical factors within veterinary clinical laboratories and is based on section 2.1 (Analytical Factors Important In Veterinary Clinical Pathology, General) of the newly revised ASVCP QAS Guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimum guidelines for quality assurance and quality control for veterinary laboratory testing. It is hoped that these guidelines will provide a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts.  相似文献   

4.
OBJECTIVE: To compare CBC results obtained by use of an in-house centrifugal analyzer with results of a reference method. DESIGN: Prospective study. SAMPLE POPULATION: Blood samples from 147 dogs, 42 cats, and 60 horses admitted to a veterinary teaching hospital and from 24 cows in a commercial dairy herd. PROCEDURE: Results obtained with the centrifugal analyzer were compared with results obtained with an electrical-impedance light-scatter hematology analyzer and manual differential cell counting (reference method). RESULTS: The centrifugal analyzer yielded error messages for 50 of 273 (18%) samples. Error messages were most common for samples with values outside established reference ranges. Correlation coefficients ranged from 0.80 to 0.99 for Hct, 0.55 to 0.90 for platelet count, 0.76 to 0.95 for total WBC count, and 0.63 (cattle) to 0.82 (cats) to 0.95 (dogs and horses) for granulocyte count. Coefficients for mononuclear cell (combined lymphocyte and monocyte) counts were 0.56, 0.65, 0.68, and 0.92 for cats, horses, dogs, and cattle, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that there was an excellent correlation between results of the centrifugal analyzer and results of the reference method only for Hct in feline, canine, and equine samples; WBC count in canine and equine samples; granulocyte count in canine and equine samples; and reticulocyte count in canine samples. However, an inability to identify abnormal cells, the high percentage of error messages, particularly for samples with abnormal WBC counts, and the wide confidence intervals precluded reliance on differential cell counts obtained with the centrifugal analyzer.  相似文献   

5.
Abstract: The objective of this study was to compare and assess the agreement between the Coulter AcT Diff hematology analyzer (CAD) and the Bayer Technicon H1 (H1) using blood samples from 391 animals of 4 species. The H1 has been used in veterinary laboratories for many years. Recently, Coulter modified the CAD and added veterinary software for hematologic analysis of feline, canine, and equine samples. A comparison of hemograms from dogs, cats, horses, and cattle was made using EDTA-anticoagulated blood samples. Both instruments were calibrated using human blood products. Performance characteristics were excellent for most values. The exceptions were MCV in canine samples (concordance correlation of .710), platelet counts for feline and equine samples (.258 and .740, respectively), feline and bovine WBC counts (.863 and .857, respectively), and bovine hemoglobin (.876).  相似文献   

6.
A multichannel, semiautomated, blood cell counting system (Coulter Counter Model S550) was modified for use in veterinary hematology by increasing both the erythrocyte and leukocyte aperture currents to 225 V and 195 V, respectively, followed by calibration with human blood. It was evaluated by use of 350 samples from dogs, cats, horses, and cows. Values for leukocyte count, erythrocyte count, mean corpuscular volume, and hematocrit generated by the S550 were compared with values generated by an automated multichannel counter with histogram capability and other reference procedures when appropriate. Mean differences for values between S550 and reference values were less than calibration tolerance limits for the instrument. Correlation coefficients were excellent for all values of each species. To assess behavior of leukocytes of the different species with respect to the counting threshold, leukocyte size distribution histograms were generated for all samples analyzed on the S550. Means for mean leukocyte volumes in diluent and lysing reagents were 55.5, 56.6, 67.4, and 72.8 fl for dogs, cats, horses, and cows, respectively. Canine leukocyte counts, because of small leukocyte size, were an average of 14% less for 5 samples analyzed on the unmodified instrument, compared with analysis after increasing the leukocyte aperture current. Leukocyte threshold failures attributable to interfering particles, resulting in falsely high counts, were recognized in 14%, 10%, 8% and 0% of feline, bovine, canine, and equine samples, respectively. The magnitude of error in these samples averaged 5% for cows and dogs, but was considered not important. However, leukocyte counts of feline samples in this group averaged 44% falsely high.  相似文献   

7.
Background: Plasma biochemical and hematologic variables are important in the management of endangered sea turtles, such as loggerheads. However, studies on blood biochemistry and hematology of loggerheads are limited, and different concentrations according to variable criteria have been reported. Objective: The purpose of this study was to establish and compare baseline plasma chemistry and hematology values in Eastern Atlantic juvenile and adult nesting loggerhead sea turtles (Caretta caretta). Methods: Blood samples were collected from 69 healthy juvenile loggerhead sea turtles after their rehabilitation in captivity, and from 34 adult nesting loggerheads after oviposition. Fresh blood was used for leukocyte differential count and PCV determination. Heparinized blood was used for RBC and WBC counts. Plasma biochemical concentrations were measured using an automated biochemical analyzer. For the comparative study, nonparametric statistical analysis was done using the Mann–Whitney U‐test. Results: Minimum, maximum, and median concentrations were obtained for 14 hematologic and 15 plasma chemistry variables. Statistically significant differences between juvenile and adult turtles were found for PCV; RBC, WBC, and leukocyte differential counts; total protein, albumin, globulins, calcium, triglycerides, glucose, total cholesterol and urea concentrations; and lactate dehydrogenase activity. Conclusions: Age, size, and reproductive status cause important variations in the hematologic and plasma biochemical results of loggerheads. The reference values obtained in this study may be used as a standard profile, useful for veterinary surgeons involved in sea turtle conservation.  相似文献   

8.
Recent technologic advances have allowed the production and marketing of cage-side blood gas analyzers to private practitioners. The widespread use of cage-side portable blood gas analyzers in veterinary practices has increased the need to develop the basic skills of blood gas analysis as part of a tool kit for practicing veterinarians. Rapid expansion of emergency and critical care medicine as a specialty and increased numbers of veterinary emergency and veterinary specialty practices have occurred concurrently with the availability of blood gas analyzers that are affordable for private practitioners. As a result, evaluation of blood gas results is no longer an activity confined to academic institutions and has become a daily part of many practicing veterinarians' activities.  相似文献   

9.
10.
BACKGROUND: The CA530-VET is a completely automated impedance cell hematology analyzer, which yields a 16-parameter blood count including a 3-part leukocyte differential. OBJECTIVES: The aim of this study was to examine the operational potential of the CA530-VET and its value for use in veterinary practice. METHODS: The analyzer was tested for blood carry-over, precision, and accuracy. Comparison methods included the CELL-DYN 3500, microhematocrit centrifugation, manual platelet (PLT) counting for feline and equine species, and a 100-cell manual WBC differential. Blood samples for comparison of the methods were obtained from 242 dogs, 166 cats, and 144 horses. RESULTS: The carry-over ratio (K) was 0.28% for RBC, 0.59% for PLT, 0.32% for WBC, and 0.18% for hemoglobin (HGB) concentration. Coefficients of variation (CVs) for within-batch precision and duplicate measurement of blood samples were clearly within the required limits, except for duplicate platelet counts in cats (8.7%) and horses (9.5%). The WBC count was in excellent agreement for dogs and horses and RBC count was in excellent agreement for horses. The accuracy of feline WBC counts was not acceptable, with the exception of values at the high end of the range. RBC counts in dogs and cats, and HGB concentration and MCV in all 3 species were sufficiently accurate. The CA530-VET HCT results were in excellent agreement with microhematocrit results in horses but exceeded the maximum allowed inaccuracy for cats and dogs. In all species, PLT counts established mechanically and manually were not in adequate agreement. Large differences were found between the CA530-VET and the manual differential percentage for lymphocytes and "mid-sized cells" (monocytes and basophilic granulocytes). CONCLUSIONS: The CA530-VET can be considered useful for routine canine, feline, and equine blood cell analyses. It should not be considered accurate, however, for PLT counts, feline total WBC counts in the subnormal and normal range, and leukocyte differentials, except for granulocytes.  相似文献   

11.
Technical advances have made it possible for many private veterinary practices to purchase reasonably priced automated hematology instruments to perform in-clinic blood analyses. Although these instruments can quickly provide "numbers" to the clinician, evaluation of a well-made blood film can often provide information critical to the interpretation of those numbers. Blood film review is essential to identify important abnormalities such as neutrophilic left shifts and toxic change, neoplastic cells, hemoparasites, and erythrocyte morphologic changes that may suggest the cause of an anemia. Additionally, the blood film provides an important quality control measure for the automated hematology results. This article outlines a simple method of blood film evaluation, highlights the most common clinically important abnormalities, and reinforces the importance of blood film evaluation as a quality control measure.  相似文献   

12.
Practice-based large animal education at Michigan State University (MSU) was initiated in 1995. Urbanization of the area surrounding MSU and the declining number of livestock and farms to provide clinical experience under field conditions were the major reasons for adopting this educational model. Veterinary students, as a requirement for graduation from the professional program, must successfully complete a three-week clerkship in a private practice that has either a food animal or an equine emphasis. The objective of the practice-based program is to provide students with introductory on-the-farm experience, with emphasis on examination, diagnosis, treatment, and prevention of common medical and surgical conditions of horses and/or food animals. Participating practices must be located in Michigan, have a sufficient case load, be interested in teaching senior veterinary students, and be willing to interact with the program coordinator and attend annual meetings. Sixty-nine practices are currently participating. The program coordinator matches students to practices based on the students' species interest and background, the personalities of the student and practitioner, and any special concerns or needs of the students (health conditions, child care). Assessment of students includes a practitioner's performance evaluation and review of written assignments (case log, clinical case reports, and a practice management assessment report) by campus faculty. A pass/no pass grading system is used. Overall, the Practice-Based Ambulatory Program represents a successful model for meeting the clerkship objectives. Additionally, exposing students to a high volume of commonly encountered conditions in a private business setting complements the referral cases seen in our large animal teaching hospital.  相似文献   

13.
The complete blood count is one of the basic building blocks of the minimum database in veterinary medicine. Over the past 20 years, there has been a tremendous advancement in the technology of hematology analyzers and their availability to the general practitioner. There are 4 basic methodologies that can be used to generate data for a complete blood count: manual methods, quantitative buffy coat analysis, automated impedance analysis, and flow cytometric analysis. This article will review the principles of these methodologies, discuss some of their advantages and disadvantages, and describe some of the hematology analyzers that are available for the in-house veterinary laboratory.  相似文献   

14.
Quality control (QC) validation is used to determine: 1) whether statistical QC procedures are appropriate for detecting medically important errors; and 2) the equality of performance required by different laboratory tests. QC validation is well documented in the medical literature, but we are unaware of studies addressing its application, problems or unique differences in veterinary laboratories. We applied QC validation to automated hematology and biochemistry analyses in our laboratories, with goals of >/= 90% probability of error detection and 相似文献   

15.
Computer programs were developed to record and retrieve the diagnostic findings of a veterinary radiology department. The concluding statements of reports are abstracted into a data file. Records may be retrieved by the computer after selecting any of the following: owner's name, patient number, date, species, breed, sex, age, state of residence, imaging type and diagnosis (word or statement). Also, information retrieved from the hospital financial records (procedures performed) and medical record databases may be combined with imaging report information to provide a powerful tool for clinical research and teaching.  相似文献   

16.
As all laboratory equipment ages and contains components that may degrade with time, initial and periodically scheduled performance assessment is required to verify accurate and precise results over the life of the instrument. As veterinary patients may present to general practitioners and then to referral hospitals (both of which may each perform in‐clinic laboratory analyses using different instruments), and given that general practitioners may send samples to reference laboratories, there is a need for comparability of results across instruments and methods. Allowable total error (TEa) is a simple comparative quality concept used to define acceptable analytical performance. These guidelines are recommendations for determination and interpretation of TEa for commonly measured biochemical analytes in cats, dogs, and horses for equipment commonly used in veterinary diagnostic medicine. TEa values recommended herein are aimed at all veterinary settings, both private in‐clinic laboratories using point‐of‐care analyzers and larger reference laboratories using more complex equipment. They represent the largest TEa possible without generating laboratory variation that would impact clinical decision making. TEa can be used for (1) assessment of an individual instrument's analytical performance, which is of benefit if one uses this information during instrument selection or assessment of in‐clinic instrument performance, (2) Quality Control validation, and (3) as a measure of agreement or comparability of results from different laboratories (eg, between the in‐clinic analyzer and the reference laboratory). These guidelines define a straightforward approach to assessment of instrument analytical performance.  相似文献   

17.
Effects of low-dose LPS (0.1 μg/kg IV) on leukocyte and platelet parameters measured using an Advia 120 hematology analyzer were investigated. Five dogs received a saline sham treatment prior to LPS, and blood was collected before and 3, 6, and 24 h post-treatment. LPS-treated dogs had mild neutrophil toxic change and increased neutrophil bands at 3 and 6 h. Compared to saline-treated controls, total leukocyte, neutrophil, and monocyte counts of LPS-treated dogs were significantly decreased at 3 h and increased at 24 h. Compared to baseline, total leukocyte counts of LPS-treated dogs were significantly decreased at 3 h and increased at 24 h. Mean platelet volume was significantly increased and mean platelet component concentration was decreased at 3 h compared to baseline. Platelet count was significantly decreased at 3 and 6 h; plateletcrit did not change significantly. High dosage is not required in order to detect LPS-mediated hematologic effects in dogs. Low-dose LPS administration causes significant changes in leukocyte and platelet indices in dogs without causing severe clinical signs or death.  相似文献   

18.
Background: A CBC is an integral part of the assessment of health and disease in companion animals. While in the past newer technologies for CBC analysis were limited to large clinical pathology laboratories, several smaller and affordable automated hematology analyzers have been developed for in‐clinic use. Objectives: The purpose of this study was to compare CBC results generated by 7 in‐clinic laser‐ and impedance‐based hematology instruments and 2 commercial laboratory analyzers. Methods: Over a 3‐month period, fresh EDTA‐anticoagulated blood samples from healthy and diseased dogs (n=260) and cats (n=110) were analyzed on the LaserCyte, ForCyte, MS45, Heska CBC, Scil Vet ABC, VetScan HMT, QBC Vet Autoread, CELL‐DYN 3500, and ADVIA 120 analyzers. Results were compared by regression correlation (linear, Deming, Passing‐Bablok) and Bland–Altman bias plots using the ADVIA as the criterion standard for all analytes except HCT, which was compared with manual PCV. Precision, linearity, and carryover also were evaluated. Results: For most analytes, the in‐clinic analyzers and the CELL‐DYN performed similarly and correlated well with the ADVIA. The biases ranged from ?0.6 to 2.4 × 109/L for WBC count, 0 to 0.9 × 1012/L for RBC count, ?1.5 to 0.7 g/dL for hemoglobin concentration, ?4.3 to 8.3 fL for MCV, and ?69.3 to 77.2 × 109/L for platelet count. Compared with PCV, the HCT on most analyzers had a bias from 0.1% to 7.2%. Canine reticulocyte counts on the LaserCyte and ForCyte correlated but had a negative bias compared with those on the ADVIA. Precision, linearity, and carryover results were excellent for most analyzers. Conclusions: Total WBC and RBC counts were acceptable on all in‐clinic hematology instruments studied, with limitations for some RBC parameters and platelet counts. Together with evaluation of a blood film, these in‐clinic instruments can provide useful information on canine and feline patients in veterinary practices.  相似文献   

19.
Two populations of dogs with cutaneous hemangiomas and hemangiosarcomas were evaluated retrospectively. One population consisted of 96 dogs seen at the Veterinary Medical Teaching Hospital at the University of California, Davis. The second population consisted of 116 dogs that had skin biopsy specimens submitted to a private veterinary diagnostic laboratory for histologic diagnosis. Nine dogs from the teaching hospital and 2 dogs, from which samples had been submitted to the veterinary diagnostic laboratory, developed hemostatic defects in association with the tumors. Hemostatic defects included hemorrhage directly from the tumor, thrombocytopenia, hypofibrinogenemia, and findings associated with disseminated intravascular coagulation. Because bleeding during surgery can develop in animals with hemostatic defects, dogs with one or more tumors suspected of being vascular in origin should have platelet numbers and hemostatic analytes evaluated prior to surgery, especially if petechiae or ecchymoses are evident.  相似文献   

20.
This document is the consensus of the American Association of Veterinary Laboratory Diagnosticians (AAVLD) Subcommittee on Standardization of Immunohistochemistry on a set of guidelines for immunohistochemistry (IHC) testing in veterinary laboratories. Immunohistochemistry is a powerful ancillary methodology frequently used in many veterinary laboratories for both diagnostic and research purposes. However, neither standardization nor validation of IHC tests has been completely achieved in veterinary medicine. This document addresses both issues. Topics covered include antibody selection, fixation, antigen retrieval, antibody incubation, antibody dilutions, tissue and reagent controls, buffers, and detection systems. The validation of an IHC test is addressed for both infectious diseases and neoplastic processes. In addition, storage and handling of IHC reagents, interpretation, quality control and assurance, and troubleshooting are also discussed. Proper standardization and validation of IHC will improve the quality of diagnostics in veterinary laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号