首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information on the spatial distribution of soil texture and soil water is vital in understanding crop yield variation. Such information allows improved management of all agricultural inputs. One of the limiting factors in the mapping of soil texture information, however, is cost.Confusion matrix analysis was used to determine whether bulk apparent electrical conductivity (ECa) data derived from electro-magnetic induction (EMI) scanning at field capacity, and clustered using a k-means algorithm, accurately delineates soil textural boundaries in a field containing clay loam and sandy loam soils.The ECa map was compared to two soil surveys, the first conducted at one sample per hectare and the second at four to eight samples per hectare. Using confusion matrix analysis a significantly stronger relationship was measured between the ECa map and soil units of the more intensive soil map, than with the lower sampling density soil survey. This relationship was between two classes of soil with a difference in clay content of 12% and two clusters with a difference in mean ECa of 16·9 mS m−1.  相似文献   

2.
基于土壤表观电导率的变量灌溉管理分区方法   总被引:6,自引:5,他引:1  
科学划分田块管理小区是实现变量灌溉的前提,确定可快速、准确表征土壤空间变异性的指标是其中的关键环节。该研究利用Veris EC 3100大地电导率勘测仪对3块试验地的土壤表观电导率(ECa)进行了调查,获取了0~30 cm(ECash)与0~90 cm(ECadp)2种不同土层深度的数据,分析了ECa空间分布特征,并测定了土壤质地颗粒组成。研究结果表明,1~3号试验地ECa平均值变化范围分别为13.20~29.25、2.34~5.79、2.69~6.86 mS/m,对应的变异系数均值为25.60%、67.64%与64.20%。ECa与砂粒含量呈线性负相关,与粉粒、黏粒含量呈正相关。相比于ECash,ECadp与砂粒、粉粒与黏粒含量具有更强的线性关系,其R2分别可达0.83、0.90与0.86,可间接表征土壤质地分布情况。因此,可基于ECadp空间分布结果划分变量灌溉小区。在综合考虑ECadp的空间变异系数、分布特征以及喷灌系统变量灌溉控制能力的基础上,对试验地进行了变量灌溉管理小区的划分。基于Java语言开发了一款变量灌溉管理分区软件,可实现基于ECa的灌溉管理小区自动划分与实时管理。该研究为变量灌溉管理小区提供了快速、可靠、简单的划分方法。  相似文献   

3.
The electromagnetic induction (EMI) Geonics EM38 (G‐EM38) and Dualem 1S (D‐1S) sensors are used frequently for assessment of soil salinity and other soil characteristics in irrigated agriculture. We compared these two sensors to determine whether they could be used interchangeably for the measurement of apparent soil electrical conductivity (ECa) in horizontal (ECa‐h) and vertical (ECa‐v) coil receiver modes. Readings were taken at 201 locations identified in three irrigation districts in both modes, and statistical comparisons were made on the raw data and from maps of a 2‐ha irrigated field made using 1680 horizontal mode readings. Both sensors gave the same ECa‐v readings (mean G‐EM38 and D‐1S difference = 0), whereas the ECa‐h readings were slightly greater with the Geonics EM38 than with the Dualem D‐1S (mean difference = 0.075 and 0.05 dS/m for the 201 and 1680 observations, respectively). The degree of coincidence between both sensors for soil profile ECa classification was acceptable: 82% for normal profiles (i.e. ECa‐h/ECa‐v < 0.9) and 90% for inverted profiles (i.e. ECa‐h/ECa‐v > 1.1). In practical terms, Geonics EM38 and Dualem 1S sensors could be used interchangeably with similar or very close results.  相似文献   

4.
Apparent electrical conductivity of soil (ECa) is a property frequently used as a diagnostic tool in precision agriculture, and is measured using vehicle‐mounted proximal sensors. Crop‐yield data, which is measured by harvester‐mounted sensors, is usually collected at a higher spatial density compared to ECa. ECa and crop‐yield maps frequently exhibit similar spatial patterns because ECa is primarily controlled by the soil clay content and the interrelated soil moisture content, which are often significant contributors to crop‐yield potential. By quantifying the spatial relationship between soil ECa and crop yield, it is possible to estimate the value of ECa at the spatial resolution of the crop‐yield data. This is achieved through the use of a local regression kriging approach which uses the higher‐resolution crop‐yield data as a covariate to predict ECa at a higher spatial resolution than would be prudent with the original ECa data alone. The accuracy of the local regression kriging (LRK) method is evaluated against local kriging (LK) and local regression (LR) to predict ECa. The results indicate that the performance of LRK is dependent on the performance of the inherent local regression. Over a range of ECa transect survey densities, LRK provides greater accuracy than LK and LR, except at very low density. Maps of the regression coefficients demonstrated that the relationship between ECa and crop yield varies from year to year, and across a field. The application of LRK to commercial scale ECa survey data, using crop yield as a covariate, should improve the accuracy of the resultant maps. This has implications for employing the maps in crop‐management decisions and building more robust calibrations between field‐gathered soil ECa and primary soil properties such as clay content.  相似文献   

5.

Purpose

Mercury pollution in agricultural soils associated to the use of fertilizers and its influence on crops is a cause of major concern. The purpose of this work was to investigate the impact of the application of different organic and mineral fertilizers on the Hg concentration in the agricultural soils and its uptake by barley.

Materials and methods

Hg concentration was studied through a field test in an agricultural land located in the province of Palencia (Spain) over a 5-year period. The impact of irrigation and of four different fertilizers (a mineral one and three different organic waste materials, namely municipal solid waste compost, sewage sludge, and dehydrated sewage sludge) was assessed. The amounts of the mineral and organic fertilizers added to the soil were determined according to agricultural fertilization needs. The experimental crop was barley (Hordeum vulgare L.), planted as an annual crop. Mercury analyses were conducted using a direct mercury analyzer and validated according to EPA Method 7473. BCR-141R was used as a certified reference material.

Results and discussion

After 5 years, whereas the application of the mineral fertilizer did not increase the mercury content in the agricultural soils, the application of the organic residues led to Hg contents 1.7–7.6 times higher than that of the control soil. The treatment with solid municipal waste compost (MSWC) led to the largest increase in Hg content in the soil, followed by composted sewage sludge (CSS) and by dehydrated sewage sludge (DSS). No significant differences were observed in the Hg content in the barley grains, although the highest values were associated to the sludge-treated plots.

Conclusions

The application of organic fertilizers such as sewage sludges and municipal solid wastes led to an increase in the mercury concentration in the agricultural soils, noticeable for soils with low initial Hg concentrations (similar to background levels). This increase differed depending on the type of waste and on the intra-organic matter diffusion mechanisms, as well as on the type of irrigation of the agricultural land. Conversely, no significant differences in the Hg content in grains were found among the soils with the different fertilization treatments, although the highest values were observed for those treated with sewage sludge. The resulting Hg levels in both soils and grains were within legal limits, posing no danger to the environment or to human health.
  相似文献   

6.
邵月红  潘剑君  孙波 《土壤通报》2005,36(2):177-180
主要分析了长期施用有机肥对瘠薄红壤有效碳库(微生物量碳,易氧化碳,矿化碳)及碳库管理指数(CPMI)的影响.结果表明:长期施用有机肥对土壤有效碳库和碳素有效率有很大影响,绿肥,稻草秸秆肥和厩肥处理的土壤有机碳,微生物量碳、易氧化碳、矿化碳的数量、碳素有效率明显高于对照处理的土壤。施肥对全碳、矿化碳的影响为:厩肥>绿肥>秸秆稻草肥>本田还田>对照,对微生物量碳的影响为:绿肥>厩肥>稻草秸秆肥>本田还田>对照,对活性碳(CA)、CPMI,碳素有效率A、B、C的影响为:绿肥>稻草秸秆肥>厩肥>本田还田>对照。在提高CA、CPMI方面,绿肥和稻草秸秆肥优于厩肥。相关分析表明:土壤有效碳库和碳素有效率与土壤化学性质相关或极相关,CPMI与土壤养分因子相关或极相关,反映了农业生产措施对土壤碳库的影响,可以运用CPMI来评估土壤碳库的变化。  相似文献   

7.
Soils can naturally be a source of the potent greenhouse gas nitrous oxide (N2O). By contrast, the largest anthropogenic source of N2O is the application of nitrogen (N) fertilizer on agricultural soil, but it is unclear if fertilizer‐supported N2O emission only originates from the fertilizer N directly or through additionally stimulated N2O production from native soil N. Even though native soil N also includes mineral N already in soil before fertilizer application, organic N is the principal native N pool and thereby provides for mineral N cycling and N2O emission. Here, we tested (1) the contribution of native soil N to N2O emission after mineral N fertilizer application and (2) whether it is affected by different soil organic matter (SOM) contents by conducting a laboratory 15N‐tracing experiment with agricultural soil from a long‐term field trial with two treatments. Both field treatments are fertilized with mineral N, whereas only one of the two receives liquid manure causing higher SOM content. Soil sampling was conducted in March 2016 shortly before fertilizer application in the field. The application of 15N‐labeled fertilizer more than doubled the N2O production from native N sources compared to the non‐fertilized control incubations. This primed N2O production contributed by 5–8% to the fertilizer‐induced N2O emission after one week of incubation and was similar for both field treatments regardless of liquid manure application. Therefore, further research is needed to link N2O priming to its potential production pathways and sources. While the observed effect may be important in soils, the amount of applied N fertilizer remains the largest concern being responsible for the majority of N2O emission.  相似文献   

8.
Changes in land‐use and agricultural management affect soil organic C (SOC) storage and soil fertility. Grassland to cropland conversion is often accompanied by SOC losses. However, fertilization, crop rotation, and crop residue management can offset some SOC losses or even convert arable soils into C sinks. This paper presents the first assessment of changes in SOC stocks and crop yields in a 60‐year field trial, the Zurich Organic Fertilization Experiment A493 (ZOFE) in Switzerland. The experiment comprises 12 treatments with different organic, inorganic and combined fertilization regimes. Since conversion to arable land use in 1949, all treatments have lost SOC at annual rates of 0.10–0.25 t C ha?1, with estimated mean annual C inputs from organic fertilizers and aboveground and belowground plant residues of 0.6–2.4 t C ha?1. In all treatments, SOC losses are still in progress, indicating that a new equilibrium has not yet been reached. Crop yields have responded sensitively to advances in plant breeding and in fertilization. However, in ZOFE high yields can only be ensured when mineral fertilizer is applied at rates typical for modern agriculture, with yields of main crops (winter wheat, maize, potatoes, clover‐grass ley) decreasing by 25–50% when manure without additional mineral fertilizer is applied. ZOFE shows that land‐use change from non‐intensively managed grassland to cropland leads to soil C losses of 15–40%, even in rotations including legumes and intercrops, improved agricultural management and organic fertilizer application.  相似文献   

9.
针对中国黄河中上游河套灌区不合理灌溉和施肥造成的盐碱农田碳排放加剧和生态系统服务功能退化等问题,该研究以向日葵盐碱农田为研究对象,开展连续2 a的田间试验,探讨滴灌条件下有机肥施用对盐碱农田生态系统净碳收支和生态系统服务功能价值的影响。试验设置滴灌灌水下限及施肥模式2个因素。灌水下限设置2个水平(W1:土壤基质势阈值为−20 kPa,W2:土壤基质势阈值为−30 kPa),每个灌水下限下设置3种施肥模式(CK:纯施化肥,LBF:褐煤碳基有机肥4.5 t/hm2,SMF:羊粪堆肥5 t/hm2),采用完全随机区组设计。另设畦灌施加化肥处理作为对照(MCK)。对不同处理的生态系统净碳收支及其组成要素以及3种生态系统服务价值(农产品供给功能价值、积累有机质功能价值和气体调节价值)进行了对比分析。结果表明:相同施肥条件下,滴灌处理的土壤有机质含量、作物净初级生产力、籽粒碳输出和土壤碳排放高于畦灌处理,且这些指标的值均随土壤基质势升高而增加。相同灌溉条件下,施加有机肥处理可以显著提高土壤有机质含量、净初级生产力和籽粒碳输出并降低土壤碳排放。其中,滴灌灌水下限−20 kPa与褐煤碳基有机肥用量4.5 t/hm2(W1LBF)相结合的处理有效促进了作物生长,并获得了最高的净初级生产力以及较低的土壤碳排放量,最终获得了最高的生态系统碳汇能力。此外,净初级生产力、土壤有机质和土壤碳排放等指标的变化影响了生态系统服价值。与MCK处理相比,W1LBF处理能够显著提升农产品供给功能价值、积累有机质功能价值和气体调节价值,增幅分别为8004.20、923.9和2094.70元/hm2。综上所述,该研究发现在河套灌区向日葵盐碱农田中,采用滴灌−20 kPa灌水下限结合4.5 t/hm2褐煤碳基有机肥可以增加作物初级净生产力、提高盐碱农田系统的碳汇能力和生态系统服务功能价值。该研究可为干旱半干旱地区盐碱向日葵农田固碳减排和生态系统可持续发展提供科学依据。  相似文献   

10.
施肥对土壤不同碳形态及碳库管理指数的影响   总被引:77,自引:3,他引:77  
沈宏  曹志洪  徐志红 《土壤学报》2000,37(2):166-173
分析了施肥对土壤活性碳(CA)、微生物生物量碳(CMB)、矿化碳(CM)及碳库管理指数(CPMI)的影响。结果表明,不同土壤CA、CMB、CM及CPMI的大小为:水稻土〉黄棕壤〉红壤〉潮土。施肥对CA和CPMI,CMB和CM的影响分别为:处理3〉处理〉处理1〉处理4〉CK,处理3〉处理5〉处理4〉处理1〉CK。在提高CA、CMB、CM及CPMI方面,稻草肥、绿肥优于厩肥,厩肥高量施用优于常量施用。  相似文献   

11.
Fast and accurate large-scale localization and quantification of harmfully compacted soils in recultivated post-mining landscapes are of particular importance for mining companies and the following farmers. The use of heavy machinery during recultivation imposes soil stress and can cause irreversible subsoil compaction limiting crop growth in the long term. To overcome or guide classical point-scale methods to determine compaction, fast methods covering large areas are required. In our study, a recultivated field of the Garzweiler mine in North Rhine-Westphalia, Germany, with known variability in crop performance was intensively studied using non-invasive electromagnetic induction (EMI) and electrode-based electrical resistivity tomography (ERT). Additionally, soil bulk density, volumetric soil water content and soil textures were analysed along two transects covering different compaction levels. The results showed that the measured EMI apparent electrical conductivity (ECa) along the transects was highly correlated (R2 > .7 for different dates and depths below 0.3 m) to subsoil bulk density. Finally, the correlations established along the transects were used to predict harmful subsoil compaction within the field, whereby a spatial probabilistic map of zones of harmful compaction was developed. In general, the results revealed the feasibility of using the EMI derived ECa to predict harmful compaction. They can be the basis for quick monitoring of the recultivation process and implementation of necessary melioration to return a well-structured soil with good water and nutrient accessibility, and rooting depths for increased crop yields to the farmers.  相似文献   

12.
研究施肥对砂姜黑土可溶性碳淋溶的影响,对有机肥的可持续利用有重要意义。该研究依托33 a的长期试验,分析常规施肥(MF)、化肥+低量小麦秸秆(MFL)、化肥+高量小麦秸秆(MFH)、化肥+猪粪(MFP)和化肥+牛粪(MFC)等施肥方式对土壤剖面(0~60 cm)理化性质、微生物性状、可溶性有机碳(Dissolved Organic Carbon,DOC)和可溶性无机碳(Dissolved Inorganic Carbon,DIC)含量与分布的影响,探寻可持续的有机肥利用方式。结果表明,长期增施有机肥后0~60 cm剖面各土层有机碳、微生物量碳、氮均有不同程度提升,而对土壤全氮、容重和pH值的影响主要发生在0~20 cm表层。与MF处理相比,增施有机肥后0~20和>20~40 cm土层DOC含量均有显著(P <0.05)提高,而对>40~60 cm土层无显著影响。相对而言,0~60 cm各土层DIC的含量均有显著提升。长期增施有机肥后0~60 cm各土层DOC的UV280吸收值和芳香性指数分别较MF处理均有显著提高,其中以MFC处理最为显著,0~20、>20~40和>40~60 cm土层DOC的芳香性指数分别提高71.2%、153.3%和38.1%,这说明长期增施有机肥后土壤剖面DOC结构发生明显改变,芳香化合物含量提高,化合物结构变得更加复杂。逐步线性回归模型表明,土壤剖面DOC和DIC分布主要受pH值和微生物量碳的共同影响,且pH值的影响强度大于微生物量碳,而土壤剖面DOC化学结构受微生物量碳的影响。总体而言,外源有机物料投入的类型和数量是影响土壤剖面可溶性碳分布的重要措施,长期增施农家肥的碳淋失风险高于秸秆还田。  相似文献   

13.
The effects of municipal food waste compost addition and mineral fertilization on selected soil microbiological activities were investigated during 3 years of reiterated treatments on two Mediterranean agricultural soils with different organic carbon content. Compost at 15, 30 and 45 t ha−1 (dry matter), mineral (NPK) fertilizers and combined fertilizers with 15 t ha−1 of compost plus two reduced doses of mineral N were applied to both soils. At both sites, organic amendment increased soil respiration, fluorescein diacetate hydrolysis, phosphatase and arylsulphatase activities. The differences in soil microbial activities among treatments, found after 3 years of repeated treatments, were attributable to the variations of soil organic C content and to the impact of soil tillage. Our results show that, in Mediterranean intensively cultivated agroecosystems, annual organic amendments improve the microbial activity of soil and produce cumulative effects, suggesting the usefulness of repeated high-rate compost applications.  相似文献   

14.
为探讨再生水灌溉减量追氮对于设施番茄生产的可行性,以期确定再生水灌溉设施番茄合理氮肥追施量。通过田间小区试验,对再生水灌溉不同氮肥追施水平根层土壤氮素残留、 番茄生物量、 产量、 氮肥偏生产力及表观氮素损失量进行了对比分析。研究结果表明,设施番茄土壤矿质氮的消耗主要集中在30 cm以上根层土壤;与常规氮肥追施处理相比,减量追氮处理,可协调番茄营养生长和生殖生长平衡,番茄产量增加明显,同时显著提高氮肥偏生产力;番茄收获后,减量追氮处理的表观氮素损失量显著低于常规氮肥追施处理。因此,减少氮肥追施量辅以再生水灌溉可以实现番茄产量和氮肥偏生产力同步提升。  相似文献   

15.
Soil sodicity is an increasing problem in arid‐land irrigated soils that decreases soil permeability and crop production and increases soil erosion. The first step towards the control of sodic soils is the accurate diagnosis of the severity and spatial extent of the problem. Rapid identification and large‐scale mapping of sodium‐affected land will help to improve sodicity management. We evaluated the effectiveness of electromagnetic induction (EM) measurements in identifying, characterizing and mapping the spatial variability of sodicity in five saline‐sodic agricultural fields in Navarre (Spain). Each field was sampled at three 30‐cm soil depth increments at 10–30 sites for a total of 267 soil samples. The number of Geonics‐EM38 measurements in each field varied between 161 and 558, for a total of 1258 ECa (apparent electrical conductivity) readings. Multiple linear regression models established for each field predicted the average profile ECe (electrical conductivity of the saturation extract) and SAR (sodium adsorption ratio of the saturation extract) from ECa. Despite the lack of a direct causal relationship between ECa and SAR, EM measurements can be satisfactorily used for characterizing the spatial distribution of soil sodicity if ECe and SAR are significantly auto‐correlated. These results provide ancillary support for using EM measurements to indirectly characterize the spatial distribution of saline‐sodic soils. More research is needed to elucidate the usefulness of EM measurements in identifying soil sodicity in a wider range of salt and/or sodium‐affected soils.  相似文献   

16.
A field experiment was carried out in Southern Italy from 2007 to 2010 adopting a two-year rotation of tomato and maize. In this paper, the results of maize cultivation were reported, with the aim to investigate the effects of different water qualities and fertilizers on yield and soil properties. The following treatments were compared: mineral nitrogen (N) fertilizer and irrigation with fresh water (FWF); mineral N fertilizer and irrigation with saline water (SWF); Municipal Solid Waste (MSW) compost and irrigation with fresh water (FWC); MSW compost and irrigation with saline water (SWC). These treatments were compared with an unfertilized control and irrigation with fresh-water (FW0) and an unfertilized control and irrigation with saline water (SW0). At harvest, yield, grain moisture content, dry matter, grain protein, starch, fat content and soil characteristics were determined. The treatments with compost increased the average grain yield of the 11% compared to mineral fertilizer treatments. Furthermore, the grain yield in SWC increased of the 19% respect to average of SWF and SW0, indicating that MSW compost applied as amendment mitigated the adversely effects of saline water. Compost application significantly increased the Total Organic Carbon (TOC). In particular, the FWC and SWC treatments showed an average increase of the 25% compared to the mean TOC value of FWF and SWF. Moreover, at the end of the experiment, electrical conductivity decreased in SWC treatment respect to the SWF (?21%).  相似文献   

17.
Increasing organic matter stocks in soils reduce atmospheric carbon dioxide (CO2), but they may also promote emissions of nitrous oxide (N2O) by providing substrates for nitrification and denitrification and by increasing microbial O2 consumption. The objectives of this study were to determine the effects of fertilization history, which had resulted in different soil organic matter stocks on (1) the emission rates of N2O and CO2 at a constant soil moisture content of 60% water-holding capacity, (2) the short-term fluxes of N2O and CO2 following the application of different fertilizers (KNO3 vs. farmyard manure from cattle) and (3) the response to a simulated heavy rainfall event, which increased soil moisture to field capacity. Soil samples from different treatments of three long-term fertilization experiments in Germany (Methau, Spröda and Bad Lauchstädt) were incubated in a laboratory experiment with continuous determination of N2O and CO2 emissions and a monitoring of soil mineral N. The long-term fertilization treatments included application of mineral N (Methau and Spröda), farmyard manure + mineral N (Methau and Spröda), farmyard manure deposition in excess (Bad Lauchstädt) and nil fertilization (Bad Lauchstädt). Long-term addition of farmyard manure increased the soil organic C (SOC) content by 55% at Methau (silt loam), by 17% at Spröda (sandy loam) and by 88% at Bad Lauchstädt (silt loam; extreme treatment which does not represent common agricultural management). Increased soil organic matter stocks induced by long-term application of farmyard manure at Methau and Spröda resulted in slightly increased N2O emissions at a soil moisture content of 60% water-holding capacity. However, the effect of fertilization history and SOC content on N2O emissions was small compared to the short-term effects induced by the current fertilizer application. At Bad Lauchstädt, high N2O emissions from the treatment without fertilization for 25 years indicate the importance of a sustainable soil organic matter management to maintain soil structure and soil aeration. Emissions of N2O following the application of nitrate and farmyard manure differed because of their specific effects on soil nitrate availability and microbial oxygen consumption. At a soil moisture content of 60% water-holding capacity, fertilizer-induced emissions were higher for farmyard manure than for nitrate. At field capacity, nitrate application induced the highest emissions. Our results indicate that feedback mechanisms of soil C sequestration on N2O emissions have to be considered when discussing options to increase soil C stocks.  相似文献   

18.
为明确不同地貌类型下土壤理化性质对电磁感应式表观电导率测量精度的影响,该研究以新疆玛纳斯河流域3种典型地貌类型(冲积洪积扇缘、冲积平原、干三角洲)为研究对象,运用电磁感应仪EM38结合土壤采样室内测定方法,分析土壤剖面(100 cm)每20 cm土层的土壤性质对不同高度(130、110、90、70、50 cm)所测表观...  相似文献   

19.
Changes in the molecular composition of soil organic matter (SOM) resulting from compost application are not sufficiently known at the molecular scale even though this is a major issue for soil fertility and soil carbon sequestration. Therefore, the present study investigated effects of long-term compost application in comparison to mineral fertilizer on the molecular composition of SOM in a 34-year-old experiment. Soil samples were taken after 19 and 34 years of constant management and analyzed by Curie point Pyrolysis-Gas Chromatography/Mass Spectrometry (Cp Py-GC/MS) and Pyrolysis-Field Ionization Mass Spectrometry (Py-FIMS). In general, compost application increased the organic carbon (C) content. The Cp PyGC/MS revealed larger relative intensities of alkylphenols/lignin monomers at the expense of carbohydrates in the compost treatments. Py-FIMS indicated higher proportions of labile n-fatty acids, lipids and sterols in the compost than in the mineral fertilizer treatment. Permanent cropping of grass between years 19 and 34 revealed similar signal patterns, which is also maintained after conversion of soil from permanent grass to arable use. Thermograms of volatilization indicated enrichments of stable (compounds volatilized in between 370°C and 570°C) phenols/lignin monomers, lipids and alkylaromatics between years 19 and 34 in compost fertilized soils. This was a result of enhanced losses of compounds that are considered easily metabolized by microorganisms (e.g. carbohydrates) after compost addition as derived from Py-GC/MS and Py-FIMS. In summary, long-term application of mature compost was shown to have a positive, long lasting effect on the organic carbon sequestration in agricultural soils.  相似文献   

20.
干旱区灌溉及施肥措施下棉田土壤的呼吸特征   总被引:7,自引:0,他引:7  
为探讨干旱区不同灌溉方式及施肥措施对棉田土壤呼吸速率的影响及其与水热的关系,在新疆绿洲农田棉花生长季设滴灌和漫灌2种灌溉方式,每种灌溉方式设有机肥(OM)、氮磷钾化肥(NPK)、氮磷钾化肥与有机肥配施(NPK+OM)3种施肥处理,以不施肥处理为对照(CK),对不同灌溉方式及施肥措施下土壤呼吸速率及土壤温度、土壤含水率进行了测定和分析。结果表明,不同灌溉方式及施肥措施下,棉田土壤呼吸速率具有明显的季节变化特征,在7月中旬达到峰值,10月中旬降至最低;日变化呈单峰曲线,盛花期峰值出现在15:00~17:00,盛铃期峰值均出现在15:00,最低值均出现在04:00。滴灌各施肥处理平均土壤呼吸速率显著大于漫灌,施肥处理间平均土壤呼吸速率大小顺序为(NPK+OM)>OM>CK>NPK,灌溉与施肥互作条件下,滴灌方式下NPK+OM处理平均土壤呼吸速率最大。滴灌和漫灌方式下各施肥处理的温度敏感性系数(Q10值)平均值分别为2.03和2.43,不同年份漫灌Q10值均大于滴灌。不同灌溉方式及施肥措施下,用复合方程预测土壤呼吸速率的准确性较高,R2值均在0.64~0.72。综合考虑土壤温度和土壤含水率对土壤呼吸速率的影响,能够提高区域土壤呼吸作用研究的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号