首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This study evaluated effects of oats (Avena sativa L.) and grazing vetch (Vicia dasycarpa L.), bicultures, in rotation with summer maize (Zea mays), on soil organic matter fractions and activities of selected enzymes. The trial was initiated in April 2009. The treatments were 100% oat, 100% vetch, 90% oat + 10% vetch, 70% oat + 30% vetch, 50% oat + 50% vetch, and weedy fallow, in a randomized complete block design (RCBD) with three replications. Soil samples were collected in October 2011, from the 0–5 and 5–20 cm depths, and analyzed for total carbon (C), particulate organic matter (POM), water-soluble carbon (WSC), microbial biomass carbon (MBC) and activities of selected enzymes. Total C was higher in bicultures, particularly the 70% oat + 30% vetch, and 100% vetch than in 100% oats and the control. The greatest MBC, WSC, dehydrogenase, aryl-sulphatase and phosphomonoesterase activities were in the 70% oat + 30% vetch biculture, and declined where the proportion of oats or vetch was higher. Increasing proportions of vetch resulted in increases in urease and β-glucosidase activity and decrease in POM. The findings suggested that, in addition to increased maize yields, bicultures of oats and vetch also have synergistic effects on soil carbon pools and enzyme activities, with potential benefits of improved soil physical condition and nutrient cycling compared with the individual crops, under warm temperate conditions.  相似文献   

2.
The potential of cover crops (CC) to increase total soil organic C (SOC) concentration can be inconsistent, but labile SOC is considered to be more sensitive to management than total SOC. This leads to two questions: Do CCs impact labile SOC more than total SOC? Do CCs increase labile SOC more rapidly than total SOC? This review compares CC impacts on labile and total SOC based on CC studies reporting both parameters up to 31 Dec 2022. Labile and total SOC concentrations were measured in 31 CC study locations. Cover crops increased labile SOC concentration in 58% (18 of 31) and had no effect in 42% (13 of 31) of locations, suggesting CCs do not increase labile SOC in all cases. Within the 18 locations, CCs increased labile SOC without increasing total SOC in only 19% (6 of 31 locations), while in the rest (12 of 31) of locations, CCs increased both labile and total SOC. Thus, CCs increased labile SOC more rapidly than total SOC in only one-fifth of cases. Also, the few studies that monitored changes in labile SOC with time found CCs do not always increase labile more rapidly than total SOC. In the 12 locations where CCs increased both labile and total SOC, CCs increased labile SOC by 54 ± 30% and total SOC by 23 ± 10%, indicating CCs can increase labile SOC by about two times compared with total SOC in some locations. Increased CC biomass production and reduced residue decomposition can increase labile SOC. Overall, CCs increase labile SOC in most cases but may not always increase labile SOC more rapidly than total SOC although more CC studies monitoring changes in SOC pools with time are needed to better understand CC impacts on SOC fractions under different CC management scenarios and climatic conditions.  相似文献   

3.
外源有机碳对黑土有机碳及颗粒有机碳的影响   总被引:6,自引:3,他引:3  
为了阐释外源有机碳在土壤有机碳运转中的作用机制,以黑土为供试材料,进行了5年的室外培养试验,并结合室内全土及颗粒组分单独矿化培养试验,研究了不同外源有机碳对黑土有机碳(SOC)、颗粒有机碳(POC)含量及其矿化特征的影响。试验包括单施化肥、牛粪配施化肥、鸡粪配施化肥、秸秆配施化肥和树叶配施化肥5个处理。结果表明:(1)单施化肥黑土SOC的损失主要来源于POC的损失,外源有机碳有利于SOC和POC的累积,与对照相比,禽畜粪便处理的SOC和POC平均增加幅度分别为16.6%和27.8%,植物残体处理的SOC和POC平均增加幅度分别为27.0%和46.4%;(2)一级动力学方程能较好地描述SOC和POC的矿化动态(R~20.9),且POC比SOC易矿化,POC的60d累积矿化量是SOC的3倍以上;(3)禽畜粪便处理和植物残体处理的POC平均矿化率分别为31.5%和29.8%,禽畜粪便处理的POC更易矿化;(4)外源有机碳有效降低了黑土有机碳的矿化,尤其是牛粪,其SOC矿化率为1.9%,比对照低了3.4%,其POC矿化率为24.8%,比对照低17.4%;(5)外源有机碳在黑土中的碳累积能力表现为树叶秸秆牛粪鸡粪。  相似文献   

4.
    
Bauxite mining requires the removal of the vegetation and topsoil, thus causing considerable impacts on both natural and managed ecosystems. This is typically the case of agricultural activities across Minas Gerais, South‐eastern Brazil, where bauxite mining often displaces pastures and coffee plantations. In this study, our objective was to assess the effects of chemical and organic fertilizations combined with cover crops on the re‐establishment of coffee plantations following bauxite mining. The experiment consisted of a split‐plot design which main plot received 4 types of fertilization: no fertilization, chemical fertilization (CF), poultry litter (PL), and CF + PL. In subplots, 4 cover crops were cultivated in between the rows of the coffee plantation, including: no cover crops, grass (Brachiaria brizantha [B]), legume (Stylosanthes spp. [S]), and B + S. We had 4 blocks as replicates. Organic and chemical fertilization (PL + CF) combined with cover crops (B + S) led to significant recovery of soil organic carbon (SOC), soil organic nitrogen (SON), and KMnO4‐oxidizable SOC. PL + CF and B + S also led to SOC increments of 14.5 g kg−1 soil (0–10‐cm depth). Based on isotopic data (13C), both cover crops, isolated or combined, contributed to the recovery of SOC. Over 3 consecutive harvests, coffee bean yield was consistently above 1,800 kg ha−1 under PL or PL + CF, except when B was the only cover crop. Managing fertilization and cover crops can determine the recovery of SOC, SON and the capacity of soil to sustain the re‐establishment of coffee plantations following bauxite mining.  相似文献   

5.
    
Landuse can alter soil organic carbon (SOC) fractions by affecting carbon inflows and outflows. This study evaluated changes in SOC fractions in response to different landuses under variable rainfalls. We compared cropland, grassland and forest soils in high rainfall (Islamabad ~1142 mm) and low rainfall (Chakwal ~667 mm) areas of Pothwar dryland, Pakistan. Forest soils in both rainfall areas had highest SOC (11.32 g kg?1), particulate organic carbon (POC, 1.70 g kg?1), mineral-associated organic carbon (MOC, 7.17 g kg?1) and aggregate-associated organic carbon (AOC, 7.86 g kg?1). However, in rangeland and cropland soils, these varied with rainfall. Under high rainfall, SOC and MOC were 12% and 17% higher in rangeland than in cropland while POC and AOC were equal. Under low rainfall, SOC and MOC were higher in rangeland than in cropland by 7.21 and 1.79 g kg?1 at 0–15 cm and equal at 15–30 cm depth. POC and AOC were higher in rangeland than in cropland, in both depths. Averagely, SOC, POC, MOC and AOC were 26%, 68%, 76% and 30% higher in high rainfall than in low rainfall soils. Sensitivity of SOC fractions to landuses observed under different rainfalls could provide useful information for soil management in subtropical drylands.  相似文献   

6.
对重庆中梁山岩溶山地不同土地利用方式下0-40cm土壤颗粒有机碳和矿物结合态有机碳的含量和分布特征进行了研究.结果表明:不同土地利用方式土壤有机碳含量平均值表现为:林地>菜地>草地>橘园地>弃耕地.除橘园地外,其它各土地利用类型土壤细颗粒有机碳(FPOC)含量大于粗颗粒有机碳(CPOC).不同利用方式土壤颗粒有机碳含量在剖面层次中表现不同.0-20cm表层土壤CPOC含量表现为:橘园地>草地>菜地>林地>弃耕地,差异较大.土壤FPOC含量表现为:林地>草地>菜地>橘园地>弃耕地;20-40cm土壤CPOC和FPOC最高值出现在菜地,最低值出现在弃耕地.不同土地利用方式土壤矿物结合态有机碳(MOC)含量和土壤有机碳含量分布特征一致.除橘园地外土壤各组分有机碳分配比例大致表现为:MOC/SOC>CPOC/SOC>FPOC/SOC.相关分析表明,不同土地利用方式土壤SOC和POC呈正相关,相关性不一致.林地和草地呈极显著相关(P<0.01),弃耕地呈显著相关(P<0.05),菜地和橘园地相关性不显著.表明人为干扰和耕作措施会影响POC对SOC的贡献.  相似文献   

7.
祝滔  江长胜  郝庆菊  吴艳 《水土保持学报》2012,26(3):145-148,153
以西南大学试验农场的紫色水稻土试验田为研究对象,探讨颗粒有机质的季节变化。结果表明,在油菜生长季内,颗粒态土质量分数呈现先升高后降低趋势,变化范围为27.38%~32.15%,具有明显的季节变化。颗粒有机碳(POC)与颗粒有机氮(PON)含量具有相同的季节变化趋势,为"U"字形,主要影响因子为TOC、TN及pH值。POC与PON分配比例的季节变化特征大体相似且均较明显,POC分配比例变化范围为24.96%~42.39%,平均值为35.73%,PON分配比例变化范围为17.19%~30.98%,平均值为22.59%。有机质的输入及其矿化分解是造成POC、PON含量及其分配比例变化的主要原因。生长季内POC/PON介于13.96~17.28之间,极显著高于全土碳氮比,表明颗粒有机质更容易被分解和转化。  相似文献   

8.
研究了长期不同施肥处理(化肥与秸秆配施、化肥与猪粪配施、单施化肥和不施肥)下,水稻土总有机碳和颗粒态有机碳的深度变化。结果表明,总有机碳(TOC)和颗粒态有机碳(POC)的深度分布都符合幂函数方程(Y=aX-b);不同的施肥处理主要影响耕层土壤的TOC和POC含量,POC分配比例在土壤深度上也有差异。其中,化肥与猪粪配施处理,由于有机物质的输入其TOC和POC含量显著高于其它3种处理;不施肥处理的POC含量显著高于单施化肥和秸秆配施化肥。并且,没有观察到耕层POC含量与不同小区的作物平均产量间的显著线性关系,这意味着土壤POC仅从含量来说,与作物生物量的输入并没有直接关系。而可能与施肥中的直接输入有较大关系。同时,POC含量与大团聚体颗粒组含量间的相关性不显著,说明不同施肥处理下POC的结构和性质可能发生了变异,导致其对大团聚体颗粒组形成及其稳定性的作用存在差异。可见,不同的施肥处理并没有改变TOC和POC的深度分布格局,只是改变了它们在耕层土壤的含量以及POC的分配比例。不同施肥处理下POC的结构性质及其稳定性的变化还有待于进一步的研究。  相似文献   

9.
ABSTRACT

In order to understand how soil microbial biomass was influenced by incorporated residues of summer cover crops and by water regimes, soil microbial biomass carbon (C) and nitrogen (N) were investigated in tomato field plots in which three leguminous and a non-leguminous cover crop had been grown and incorporated into the soil. The cover crops were sunn hemp (Crotalaria juncea L., cv ‘Tropic Sun’), cowpea (Vigna unguiculata L. Walp, cv ‘Iron clay’), velvetbean (Mucuna deeringiana (Bort) Merr.), and sorghum sudangrass (Sorghum bicolor × S. bicolor var. sudanense (Piper) Stapf) vs. a fallow (bare soil). The tomato crop was irrigated at four different rates, i.e., irrigation initiated only when the water tension had reached ?5, ?10, ?20, or ?30 kPa, respectively. The results showed that sorghum sudangrass, cowpea, sunn hemp, and velvetbean increased microbial biomass C by 68.9%, 89.8%, 116.8%, and 137.7%, and microbial N by 58.3%, 100.0%, 297.3%, and 261.3%, respectively. A legume cover crop, cowpea, had no statistically significant greater effect on soil microbial C and N than the non-legume cover crop, sorghum sudangrass. The tropical legumes, velvetbean and sunn hemp, increased the microbial biomass N markedly. However, the various irrigation rates did not cause significant changes in either microbial N or microbial C. Soil microbial biomass was strongly related to the N concentration and/or the inverse of the C:N ratio of the cover crops and in the soil. Tomato plant biomass and tomato fruit yields correlated well with the level of soil microbial N and inversely with the soil C:N ratio. These results suggest that cover crops increase soil microbiological biomass through the decomposition of organic C. Legumes are more effective than non-legumes, because they contain larger quantities of N and lower C:N ratios than non-legumes.  相似文献   

10.
耕作年限对棉田土壤颗粒及矿物结合态有机碳的影响   总被引:5,自引:1,他引:5  
研究耕作年限对棉田土壤颗粒及矿物结合态有机碳的影响.以相应荒地为对照,选取南北疆兰州湾、31团和普惠农场3个典型绿洲不同耕作年限土壤为研究对象,应用物理分组方法研究颗粒及矿物结合态有机碳的变化规律.结果表明:耕作有利于棉田土壤总有机碳的积累,耕作(0~5年)总有机碳增加迅速,年均增加在0.65 g/kg以上;颗粒有机物、有机碳和颗粒有机碳的分配比例在耕作0~10年间增加,较荒地分别增加50.12%,263.64%,79.79%,10年后下降.矿物结合态有机碳含量则随耕作年限的延长递增,矿物结合态有机物含量变化趋势与颗粒有机物相反.土壤有机碳在耕作1~10年增加,有利于土壤质量的提高,是荒漠区土壤碳汇,是合理的耕作年限.  相似文献   

11.
西藏色季拉山典型植被类型土壤活性有机碳分布特征   总被引:13,自引:0,他引:13  
周晨霓  马和平 《土壤学报》2013,50(6):1246-1251
研究土壤活性有机碳含量及分配比例是揭示土壤有机碳库周转及调控机理的重要途径。为探讨不同森林植被类型对土壤活性有机碳库的影响,以西藏色季拉山(西坡)的高山灌丛(AS)、杜鹃林(RF)、急尖长苞冷杉林(AGSF)和林芝云杉林(PLLF)为试验对象,研究了林地土壤总有机碳、总氮含量、各活性有机碳组分及其分配比例。结果表明:高海拔植被类型具有较高的土壤活性有机碳含量和分配比例。在不同植被类型的生态系统中,土壤总有机碳含量、土壤颗粒有机碳和土壤易氧化碳含量均呈现出随土层深度增加而递减的变化趋势。土壤颗粒有机碳含量占土壤总有机碳含量和土壤易氧化有机碳含量占土壤总有机碳含量的比率范围不同,且随土层深度增加比率减小,且颗粒有机碳分配比例表现的更为明显。土壤颗粒有机碳含量和土壤易氧化有机碳含量与土壤总有机碳含量和总氮之间的相关性均达到了极显著水平(p<0.05),土壤颗粒有机碳含量和土壤易氧化有机碳含量的相关性在在不同土层表现出显著性。  相似文献   

12.
Soil degradation and associated depletion of soil organic carbon (SOC) have been major concerns in intensive farming systems because of the subsequent decline in crop yields. We assessed temporal changes in SOC and its fractions under different tillage systems for wheat (Triticum aestivum L.) – maize (Zea mays L.) cropping in the North China Plain. Four tillage systems were established in 2001: plow tillage (PT), rotary tillage (RT), no‐till (NT), and plow tillage with residues removed (PT0). Concentrations of SOC, particulate organic carbon (POC), non‐POC (NPOC), labile organic carbon (LOC), non‐LOC (NLOC), heavy fraction carbon (HFC) and light fraction carbon (LFC) were determined to assess tillage‐induced changes in the top 50 cm. Concentrations of SOC and C fractions declined with soil depth and were significantly affected by tillage over time. The results showed that SOC and its fractions were enhanced under NT and RT from 0 to 10 cm depth compared with values for PT and PT0. Significant decreases were observed below 10 cm depths (P < 0.05) regardless of the tillage system. The SOC concentration under NT for 0–5 cm depth was 18%, 8%, and 10% higher than that under PT0 after 7, 9, and 12 yr of NT adoption, respectively. Apparent stratification of SOC occurred under NT compared with PT and PT0 for depths >10 cm. All parameters were positively correlated (P < 0.01); linear regressions exhibited similar patterns (P < 0.01). Therefore, to maintain and improve SOC levels, residue inputs should be complemented by the adoption of suitable tillage systems.  相似文献   

13.
CENTURY模型在土壤有机碳研究中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对CENTURY模型在土壤有机碳研究中的应用和研究成果进行总结,结果表明,对于不同的生态系统,CENTURY模型只要输入有效的参数就能够顺利运行,在土壤有机碳研究中有较强的适用性。利用该模型对土壤有机质积累和分解过程及其含量的变化进行研究,可为土壤肥力、土壤质量、土壤健康的评价及科学管理陆地生态系统提供依据,也为全球碳循环研究提供基础依据。据此得出CENTURY模型有着广泛的应用前景,在不同生态系统土壤有机碳研究中的应用会更加广泛和深入。  相似文献   

14.
[目的] 为了探究针阔混交改造措施对红壤侵蚀区恢复马尾松林土壤碳库稳定性的影响。[方法] 以福建长汀不同恢复年限(Y10、Y20、Y41)马尾松林(CF)和相对应的针阔改造林(MF)作为研究对象,通过物理分组方法将土壤有机碳分为颗粒态有机碳(POC)和矿质结合态有机碳(MAOC),分析林分改造过程对不同土壤剖面土壤有机碳组分的影响。[结果] (1)相比于马尾松纯林,混交林显著增加MAOC和0—10 cm土层SOC、POC含量,并避免长期恢复马尾松林MAOC的消耗;(2)林分改造显著降低Y20-MF中10—20,40—60 cm土层及Y41-MF中0—20 cm土层POC/SOC,但显著增加Y10-MF中20—60 cm土层及Y41-MF中0—10 cm土层MAOC/SOC;(3)随着年限的增加,混交林中0—10 cm土层MAOC/SOC持续增加,POC/SOC显著降低,而马尾松林则相反;(4)线性拟合发现,POC、MAOC均与SOC呈显著正相关,但混交林土壤SOC增加更多依赖MAOC的增加,而马尾松土壤SOC的增加更多的以非稳定性碳组分(POC)为主;(5)冗余分析表明,DOC、TN、TP、NH+4共同解释碳组分变化的66.2%,表明林分改造后土壤养分有效性的增加是混交林MAOC积累的关键。[结论] 亚热带红壤侵蚀区林分改造通过提升土壤养分有效性,增加稳定碳库的积累从而避免长期恢复过程中土壤碳库流失。  相似文献   

15.
土壤颗粒有机碳和矿质结合有机碳对4种耕作措施的响应   总被引:3,自引:1,他引:3  
以陕西关中平原中部耕作定位试验为研究对象,研究深松、旋耕、免耕和统耕作4种耕作方式在秸秆还田和不还田条件下对土壤颗粒有机碳和矿质结合态有机碳的影响。结果表明,相对于传统耕作,深松、旋耕和免耕处理都使土壤颗粒碳(POC)含量增加,但在秸秆还田下相应增加幅度更大,在0-10cm土层颗粒碳增加20.71%~69.25%,表现出深松>旋耕>免耕>传统耕作的顺序,而对其他10-20cm,20-30cm,30-40cm土层的颗粒碳影响较小。在同一种耕作模式下,秸秆还田的与无秸秆还田的相比,深松、旋耕、传统耕作使土壤POC增加了9.17%~26.61%,其中以传统耕作措施的提高幅度最大。在秸秆不还田条件下,各耕作处理矿质结合态有机碳的差异较小,但在秸秆还田条件下,旋耕促进了土壤矿质结合态有机碳(MOC)的增加,比对照(传统耕作)提高了22.98%。从土壤有机碳的角度考虑,深松和旋耕并结合秸秆还田是较适合于当地土壤条件的耕作模式。  相似文献   

16.
火烧对大兴安岭樟子松天然林土壤有机碳组分的影响   总被引:1,自引:1,他引:1  
以大兴安岭轻度火烧迹地为研究对象,通过对比研究,探讨火烧对樟子松天然林土壤有机碳组分的影响。结果表明:轻度火烧改变了樟子松天然林土壤有机碳的组成和含量。轻度火烧使樟子松天然林0—5cm土层土壤有机碳、易氧化碳和颗粒有机碳含量分别下降了8.52g/kg,1.36g/kg和5.85g/kg;5—10cm土层分别下降了4.78g/kg,0.19g/kg和2.98g/kg,与对照样地差异达到显著水平(P0.05)。轻度火烧使樟子松天然林表层土壤黑碳含量显著增加,0—5cm土层黑碳含量较对照样地增加了9.95g/kg,与对照样地差异达到显著水平(P0.05)。火烧迹地0—5cm和5—10cm土层BC/SOC分别增加了25.4%和6.12%,ROC/SOC分别减小了1.49%和0.65%,与对照样地差异达到显著水平(P0.05)。轻度火烧对樟子松天然林土壤POC/SOC影响不大。回归分析表明,火烧迹地和对照样地土壤有机碳各组分与有机碳之间都呈极显著的线性关系(P0.01)。  相似文献   

17.
Land-use change (LUC) is widely considered a major factor that affects soil organic carbon (SOC) sequestration. The impacts of four LUC types on soil properties, SOC, particulate organic carbon (POC) and labile organic carbon (LOC) at the 0–100 cm depth were examined in the west of Loess Plateau, northwest China. Bulk density at the 20–40 cm depth increased significantly after native grassland conversion to cropland, while artificial grassland establishment and abandonment on former cropland caused reverse change. Soil water content in the profile increased 60–230% after cultivation and decreased 32–49% after abandonment (< 0.01). The particle size distribution also showed a response to LUC. Only artificial grassland establishment caused an SOC sink of 32% at the 0–10 cm depth as well as two labile fractions. SOC tended to increase after cultivation and after abandonment, with 6% and 20% at soil surface, respectively. There were increasing trends in POC and LOC. After afforestation on former native grassland, SOC tended to decrease (23%) at the 0–10 cm depth while POC and LOC tended to increase (33% and 6%, respectively). Principal component analysis was successful in separating LUC through soil property parameters. Carbon sequestration is largely ascribed to increased below-ground production and tillage elimination after perennial alfalfa (Medicago sativa L.) plantation. Irrigation and fertilization activities contribute to SOC accumulation after cultivation to some extent. The self-restoration dynamic depending on time since abandonment is important to SOC change. A lower proportion of stabilized carbon results in a slow rate of SOC accumulation after afforestation. It is necessary to investigate the long-term dynamic after LUC.  相似文献   

18.
秸秆覆盖对冬小麦农田土壤有机碳及其组分的影响   总被引:4,自引:1,他引:3  
通过对黄土高原旱塬区冬小麦地4种覆盖方式下(无覆盖对照处理(CK)、全生育期9 000kg/hm~2秸秆覆盖(M1)、全生育期4 500kg/hm~2秸秆覆盖(M2)和夏闲期9 000kg/hm~2秸秆覆盖(SM))土壤的田间定位试验和室内分析,探讨不同秸秆覆方式对冬小麦地土壤有机碳及其组分含量以及各组分之间相关性的影响。结果表明:(1)较CK(无覆盖对照)处理,M1(全生育期9 000kg/hm~2)、M2(全生育期4 500kg/hm~2)和SM(夏闲期9 000kg/hm~2)处理,均显著增加0—10cm和10—20cm土层的土壤有机碳、微生物量碳、潜在矿化碳和颗粒有机碳含量(p0.05),而20—40cm土层差异不明显,其中M1(全生育期9 000kg/hm~2)处理效果最佳,SM(夏闲期9 000kg/hm~2)处理作用相对较弱。(2)不同覆盖方式影响土壤微生物量碳、潜在矿化碳和颗粒有机碳在总有机碳中的分配比例,土壤微生物量碳、潜在矿化碳和颗粒有机碳的相对含量变化范围分别为1.96%~3.31%,2.83%~3.78%,18.13%~37.25%。(3)各覆盖方式下土壤有机碳及其组分含量都随着土层的逐渐深入而下降,且土层越深,变化越趋于缓慢。(4)不同覆盖方式下的土壤有机碳及其组分含量两两之间均达到了极显著正相关关系(p0.01),颗粒有机碳、微生物量碳和潜在矿化碳与土壤有机碳的相关系数依次为:0.847,0.700,0.614,可见微生物量碳、潜在矿化碳、颗粒有机碳含量在一定程度上决定于土壤有机碳的贮存量。综上所述,秸秆覆盖对土壤有机碳及其组分含量具有增加效应,全生育期9 000kg/hm~2秸秆覆盖方式实际运用价值较高。颗粒有机碳和微生物量碳的动态变化更能反映土壤有机碳的早期变化,是土壤肥力变化更加敏感的指标。  相似文献   

19.
Fundamental knowledge about decomposition, fate of crop residue, and allocation of residue-derived carbon (C) in soil aggregates is essential to understand the C dynamics in soil. The incorporation of C derived from corn residue in water-stable aggregate fractions, particulate organic C (POC), and mineral-associated C (MAC) in soil were examined using the 13C tracer technique. Soil was treated with corn straw at the rate of 1% dry mass of soil brought to 66% of field capacity and incubated for 70 days at 25 °C. Samples were taken at 20, 35, and 70 days and analyzed for water-stable aggregates. Values for POC and MAC were analyzed for total C and 13C enrichment. The addition of corn straw caused a shift in the distribution of recoverable particles with significant decreases in <53-μm silts and clays, microaggregrates (53–250 μm), and smaller macroaggegates (250–2000 μm); however, the large macroaggegates (>2000 μm) increased significantly. Macroaggregates contained greater amount of C than microaggregates. The proportion of 13C recovered in the fractions <53 μm (silt and clay), 53–250 μm, and 250–2000 μm increased during decomposition of corn straw, whereas there was no significant change in >2000-μm fraction. Most (70–76%) of the soil organic C was affiliated with MAC (<53 μm). Carbon (13C) derived from corn straw decreased in POC but increased in MAC as decomposition proceeded. In the long term, microaggregate fraction appears to be involved in storage and stabilization of the C derived from corn straw and is important for soil quality and soil C sequestration point of view.  相似文献   

20.
    
Soil total organic carbon (TOC) is a composite indicator of soil quality with implications for crop production and the regulation of soil ecosystem services. Research reports on the dynamics of TOC as a consequence of soil management practices in subtropical climatic conditions, where microbial carbon(C) loss is high, are very limited. The objective of our study was to evaluate the impact of seven years of continuous tillage and residue management on soil TOC dynamics (quantitative and qualitati...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号