首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of redox reactions involving carbon-iron coupling (organic carbon and iron oxides) on nitrous oxide (N2O) production in paddy soils remains poorly understood. In this study, two microcosm experiments were conducted to investigate the effects of carbon-iron coupling on N2O emissions, and the underlying mechanisms were verified using quantitative denitrification functional genes (nirS, nirK, nosZI and nosZII) and high-throughput sequencing. The results showed that ferrihydrite (iron) significantly promoted N2O-N emissions (p < 0.05) after adding ammonium nitrogen, while glucose (carbon) significantly inhibited N2O-N emissions (p < 0.05). Carbon-iron coupling significantly decreased N2O-N emissions (p < 0.05) but did not affect soil total nitrogen loss and increased nitrogen (N2) emissions. After adding high concentrations of acetylene (10% C2H2), the N2O-N emissions from carbon-iron coupling treatment increased significantly from 6.4 to 11.9 mg N kg−1 (p < 0.05), which confirmed that the carbon-iron coupling reduced the N2O emissions by promoting the conversion of N2O to N2. The mechanisms behind carbon-iron coupling promoting complete denitrification and reducing N2O emissions were attributed to glucose promoting iron reduction and carbon-iron coupling enhancing the abundance of nosZI (42.7%) and nosZII (16.6%).  相似文献   

2.
Abstract

Denitrification products nitrous oxide ((N2O) and nitrogen (N2)) were measured in three flooded soils (paddy soil from Vietnam, PV; mangrove soil from Vietnam, MV; paddy soil from Japan, PJ) with different nitrate (NO3) concentrations. Closed incubation experiments were conducted in 100-mL bottles for 7 d at 25°C. Each bottle contained 2 g of air-dried soil and 25 mL solution with NO3 (concentration 0, 5 or 10 mg N L?1) with or without acetylene (C2H2). The N2O + N2 emissions were estimated by the C2H2 inhibition method. Results showed that N2O + N2 emissions for 7 d were positively correlated with those of NO3 removal from solution with C2H2 (R2 = 0.9872), indicating that most removed NO3 was transformed to N2O and N2 by denitrification. In PJ soil, N2O and N2 emissions were increased significantly (P < 0.05) by the addition of greater NO3 concentrations. However, N2O and N2 emissions from PV and MV soils were increased by the addition of 0 to 5 mg N L?1, but not by 5 to 10 mg N L?1. At 10 mg N L?1, N2 emissions for 7 d were greater in PJ soil (pH 7.0) than in PV (pH 5.8) or MV (pH 4.3) soils, while N2O emissions were higher in PV and MV soils than in PJ soil. In MV soil, N2O was the main product throughout the experiment. In conclusion, NO3 concentration and soil pH affected N2O and N2 emissions from three flooded soils.  相似文献   

3.
In the context of sustainable soil-quality management and mitigating global warming, the impacts of incorporating raw or field-burned adzuki bean (Vigna angularis (Willd.) Ohwi & Ohashi) and wheat (Triticum aestivum L.) straw residues on carbon dioxide (CO2) and nitrous oxide (N2O) emission rates from soil were assessed in an Andosol field in northern Japan. Losses of carbon (C) and nitrogen (N) in residue biomass during field burning were much greater from adzuki bean residue (98.6% of C and 98.1% of N) than from wheat straw (85.3% and 75.3%, respectively). Although we noted considerable inputs of carbon (499 ± 119 kg C ha–1) and nitrogen (5.97 ± 0.76 kg N ha–1) from burned wheat straw into the soil, neither CO2 nor N2O emission rates from soil (over 210 d) increased significantly after the incorporation of field-burned wheat straw. Thus, the field-burned wheat straw contained organic carbon fractions that were more resistant to decomposition in soil in comparison with the unburned wheat straw. Our results and previously reported rates of CO2, methane (CH4) and N2O emission during wheat straw burning showed that CO2-equivalent greenhouse gas emissions under raw residue incorporation were similar to or slightly higher than those under burned residue incorporation when emission rates were assessed during residue burning and after subsequent soil incorporation.  相似文献   

4.
【目的】N2O 是重要的温室气体之一,主要来源于农田土壤。华北平原是我国的粮食主产区,秸秆还田是该地区主要的农田管理措施,明确不同秸秆还田量对小麦玉米农田周年土壤温度和含水量的影响以及与 N2O 排放之间的量化关系,对发挥秸秆还田的生态效应,明确硝化和反硝化作用机制具有重要意义。【方法】以冬小麦、夏玉米为研究对象,设置 5 种不同秸秆还田量处理:小麦、玉米秸秆均不还田 (T0);小麦秸秆 1875 kg/hm2 + 玉米秸秆 2000 kg/hm2 还田 (T1);小麦秸秆 3750 kg/hm2 + 玉米秸秆 4000 kg/hm2 还田 (T2);小麦秸秆 5625 kg/hm2 + 玉米秸秆 6000 kg/hm2 还田 (T3);小麦秸秆 7500 kg/hm2 + 玉米秸秆 8000 kg/hm2 还田 (T4)。于 2014 年 10 月~2015 年 10 月,采用静态箱–气相色谱法对农田 N2O 排放进行测定,探究不同秸秆还田量下小麦玉米农田 N2O 排放的周年变化,并量化分析土壤温度、含水量与 N2O 排放的关系。【结果】秸秆还田量显著影响 N2O 的排放,随着秸秆还田量的增加,周年内 N2O 排放总量呈增加的趋势,增加量为 1.33~3.50 kg/hm2,增加率为 32.3%~85.0%;通量增加量为 15.52~40.87 μg/(m2·h),增加率为 32.3%~85.1%。玉米季 N2O 排放通量和总量分别是小麦季的 2.42~2.62 和 1.05~1.14 倍。秸秆还田可提高 0—10 cm 土壤温度和 0—20 cm 土壤含水量,增加范围分别为 0.63~2.14℃ 和 0.6%~1.8%。相关性分析表明,各处理土壤温度和 N2O 排放通量无相关关系(P > 0.05)。T0、T1、T2 处理土壤含水量与 N2O 排放通量呈显著正相关(P < 0.05),而 T3、T4 处理与 N2O 排放通量之间不相关(P > 0.05)。【结论】随着秸秆还田量的增加,N2O 排放通量和总量均呈现增加趋势,且玉米季高于小麦季。秸秆还田显著促进 N2O 排放并可提高 0—20 cm 土壤含水量和 0—10 cm 土壤温度,周年秸秆还田量在 7750 kg/hm2 及以下时,N2O 排放通量与土壤含水量之间呈显著正相关,而与土壤温度之间不相关。  相似文献   

5.
奶牛场粪便的自然堆放过程中会造成大量的温室气体排放,排放过程和排放量受表面风速和自然降水等环境因素的影响显著。该文针对中国常用的奶牛粪便管理方式,采用动态箱法研究了不同表面风速(0.5、0.8、1.2、1.6 m/s)和模拟降水(降水量9.9 mm)对奶牛粪便自然堆放过程中典型的温室气体氧化亚氮(N2O)排放的影响。结果表明,在0.5~1.2 m/s风速范围内,奶牛粪便自然堆放过程中的N2O排放量随风速升高逐渐增加,1.2 m/s达到最大值,且不同风速下N2O的排放量存在显著差异。模拟降水后N2O排放量在短时间内急剧升高,之后迅速下降至降水前的排放水平,整个过程持续约10 h。由于降低了二氧化碳(CO2)和甲烷(CH4)的排放,与降水前一天相比2次降水分别降低了12.9%和10.9%的温室气体排放量。  相似文献   

6.
Abstract

An incubation experiment was conducted to examine the effects of the phosphorus (P) application on nitrous oxide (N2O) and nitric oxide (NO) emissions from soils of an Acacia mangium plantation in Indonesia. The soils were incubated with and without the addition of P (Ca[H2PO4]2; 2 mg P g soil)?1) after adjusting the water-filled pore space (WFPS) to 75% or 100%. The P addition increased N2O emissions under both WFPS conditions and NO emissions at 75% WFPS. Some possible mechanisms are considered. First, the P addition stimulated nitrogen (N) cycling, and N used for nitrification and/or denitrification also increased. Second, the P addition could have relieved the P shortage for nitrifying and/or denitrifying bacteria, producing N2O and NO. Our results suggest that the application of P fertilizer has the potential to stimulate N2O and NO emissions from Acacia mangium plantations, at least when soils are under relatively wet conditions.  相似文献   

7.
The application of nitrogen (N) fertilizers and liming (CaCO3) to improve soil quality and crop productivity are regarded as effective and important agricultural practices. However, they may increase greenhouse gas (GHG) emissions. There is limited information on the GHG emissions of tropical soils, specifically when liming is combined with N fertilization. We therefore conducted a full factorial laboratory incubation experiment to investigate how N fertilizer (0 kg N ha−1, 12.5 kg N ha−1 and 50 kg N ha−1) and liming (target pH = 6.5) affect GHG emissions and soil N availability. We focussed on three common acidic soils (two ferralsols and one vertisol) from Lake Victoria (Kenya). After 8 weeks, the most significant increase in cumulative carbon dioxide (CO2) and nitrous oxide (N2O) fluxes compared with the unfertilized control was found for the two ferralsols in the N + lime treatment, with five to six times higher CO2 fluxes than the control. The δ13C signature of soil-emitted CO2 revealed that for the ferralsols, liming (i.e. the addition of CaCO3) was the dominant source of CO2, followed by urea (N fertilization), whereas no significant effect of liming or of N fertilization on CO2 flux was found for the vertisol. In addition, the N2O fluxes were most significantly increased by the high N + lime treatment in the two ferralsols, with four times and 13 times greater N2O flux than that of the control. No treatment effects on N2O fluxes were observed for the vertisol. Liming in combination with N fertilization significantly increased the final nitrate content by 14.5%–39% compared with N fertilization alone in all treatment combinations and soils. We conclude that consideration should be given to the GHG budgets of agricultural ferralsols since liming is associated with high liming-induced CO2 and N2O emissions. Therefore, nature-based and sustainable sources should be explored as an alternative to liming in order to manage the pH and the associated fertility of acidic tropical soils.  相似文献   

8.
中国农田秸秆还田土壤N_2O排放及其影响因素的Meta分析   总被引:3,自引:3,他引:3  
农田N2O排放是全球人为温室气体主要的来源之一,了解农作措施对其排放的影响对中国农田减排具有重要的意义。该研究采用Meta分析方法,定量分析了秸秆还田对中国农田土壤N2O排放的影响,并对其影响因素进行解析。研究结果表明,在中国不同区域秸秆还田对土壤N2O排放有一定的差异,其中华东地区显著减排18.61%(P0.05),而华中和华北地区则分别显著增加排放62.3%和27.73%(P0.05)。同时,施氮量介于0~240 kg/hm2(以N计,下同)时,随着施氮量的增加,秸秆还田对土壤N2O影响的效应值逐渐由负值增加为正值;当施氮量介于241~300 kg/hm2时,秸秆还田有显著降低土壤N2O排放的趋势。当土壤p H值介于6.5~7.5时,秸秆还田对N2O排放影响的效应值为正值;当黏粒质量分数为15%~25%时,秸秆还田对N2O排放影响的效应值为正值,当黏粒质量分数15%时,秸秆还田显著降低土壤N2O排放。秸秆的碳氮比与秸秆还田量对N2O的排放也有不同程度的影响,另外,秸秆还田下不同的种植制度间N2O的排放也有差异。因此,秸秆还田下实施农田N2O减排措施应综合考虑区域农业资源特点、种植制度、土壤类型和水肥管理因素。研究可为科学管理秸秆与减少农田N2O排放提出理论支撑。  相似文献   

9.
10.
外加可溶性碳源对华北典型农田土壤N2O、CO2排放的影响   总被引:1,自引:0,他引:1  
以华北平原典型农田土壤为对象,运用静态培养系统研究方法,设置室内培养试验,研究添加不同浓度葡萄糖对土壤N2O、CO2排放的影响.结果表明:碳氮配施的外源添加方式明显促进N2O和CO2排放,其排放通量均高于对照组和只添加氮源的处理.在配施碳源葡萄糖浓度为0.5 g/kg时N2O排放通量最高(NH4+组2 500 μg/(kg·d),单位以N计,下同,NO3-组1 500 μg/(kg·d)),4.0 g/kg时N2O排放通量最低(NH4+组500 μg/(kg·d),NO3-组800 μg/(kg·d));葡萄糖浓度为2.0 g/kg时CO2排放通量最高(NH+组500mg/(kg· d)),0.5 g/kg时CO2排放通量最低(NH+组100 mg/(kg,d)).从培养开始到结束,只添加氮源的土壤NH+含量变化不明显,NO3-含量增至29.21 mg/kg(NH4+组)和62.25 mg/kg(NO3-组);而配施葡萄糖的土壤NH+含量降为不足1 mg/kg(NH4+组),NO3-含量明显减少.N2O累积排放通量与葡萄糖浓度呈负相关(NH4+组),CO2累积排放通量与葡萄糖浓度呈正相关.分析结果表明,外加可溶性碳源明显减少土壤中NH4+和NO3-含量,并且促进土壤N2O、CO2排放,其排放通量大小与C/N比有关.  相似文献   

11.
12.
It has been assumed that high winter N2O emissions from soils are the result of increased amounts of microbially available organic C liberated during freezing and metabolized during subsequent thawing. In a laboratory experiment, we attempted to simulate freeze‐thaw events by adding dissolved organic C (DOC) to sieved soil of high water content (95% water‐filled pore space). In a full factorial design, CO2 and N2O emissions of a) soil samples provided with DOC extracted from frozen soil and b) soil samples frozen for 46 days and thawed were compared. Additionally, NO , DOC and microbial ATP contents of all treatments were repeatedly analyzed during the experiment. The addition of DOC to unfrozen soil (–F+C) resulted in a substantial (22‐fold) increase in N2O emissions as compared to the control (–F–C). However, following thawing, the increase in N2O emissions was much larger (828‐fold in +F–C and 1243‐fold in +F+C). Freezing, but not the addition of DOC led to increased CO2 emissions. Neither treatment affected microbial adenylate content. By adding 15N‐labeled nitrate to the soil samples, the main process leading to elevated N2O flux rates after both DOC addition and freeze‐thaw treatment was identified as denitrification. We conclude that the availability of C substrate plays an important role for freeze‐thaw‐related N2O emissions. However, the fact that the simulated treatment and the freeze‐thaw treatment yielded significantly different amounts of N2O suggests that both quantity and quality of available C differed between the treatments. The localization of the liberated substrate, i.e., the availability in situ, seems to be of major importance for the amount of N2O produced.  相似文献   

13.
以华北平原农田土壤为对象,通过室内静态培养系统研究NO_3~--N与不同碳源组合对土壤N_2O和CO_2排放的影响。结果表明,NO_3~--N作为氮源和不同碳源施入土壤,除NO_3~-+纤维素,其余土壤N_2O排放通量均高于对照组和只添加氮源土壤;NO_3~--N和不同碳源组合的CO_2累积排放量均高于对照和只添加氮源土壤。NO_3~-+果胶的N_2O排放量在第1 d达到最大值1 383.42μg N·kg~(-1)·d~(-1);NO_3~-+葡萄糖的CO_2排放量在第1 d达到最大值370.13 mg C·kg~(-1)·d~(-1),CO_2累积排放量顺序为:葡萄糖果胶秸秆纤维素淀粉木质素。土壤NO_3~--N含量与N_2O排放呈极显著正相关。总之,添加纤维素可以抑制N_2O的排放,促进CO_2排放,并增加土壤中NO_3~--N含量,添加其余碳源均会促进土壤N_2O和CO_2排放。  相似文献   

14.
畜禽粪便堆放管理会造成甲烷(CH_4)和氧化亚氮(N_2O)等温室气体的大量排放。通过联合国政府间气候变化专门委员会(IPCC)建议的排放系数等方法,可以实现对某一区域范围内畜禽粪便管理系统的温室气体排放总量的估算,但由于其排放受粪便管理、气候条件等因素的显著影响,直接套用IPCC的默认系数会产生较大的误差。为更加准确估算中国奶牛粪便管理所造成的CH_4、N_2O排放,该文在对北京延庆区奶牛生产与粪便管理模式进行了实地调研的基础上,采用动态箱法模拟了奶牛粪便不同季节短时自然堆放管理模式下的CH_4、N_2O排放过程,并对区域内的年温室气体排放总量进行了测算。研究结果表明,奶牛粪便在一个月的自然堆放管理模式下,每千克牛粪挥发性固体在春、夏、秋季的CH_4排放量分别为223.97、4 603.31、351.38 mg,每千克牛粪N_2O排放量分别为5.86、9.43、0.81 mg。2016年北京延庆区全年奶牛粪便CH_4、N_2O排放总量分别为13 342.50、347.87 kg。延庆区奶牛粪便堆放管理过程的CH_4排放因子为1.50kg/(头·a),小于IPCC指南中的1.78 kg/(头·a);受堆放时间较短的影响,N_2O的排放因子则显著小于IPCC的推荐值。若直接使用IPCC默认参数估算延庆区奶牛粪便堆放管理过程中的CH_4和N_2O排放量,会造成排放量的高估。  相似文献   

15.
不同氮水平下黄瓜-番茄日光温室栽培土壤N_2O排放特征   总被引:4,自引:3,他引:4  
为探讨日光温室黄瓜—番茄种植体系内N2O排放动态变化及其对不同氮水平的响应规律,采用密闭静态箱法,研究了常规氮量(黄瓜季1 200 kg/hm2,番茄季900 kg/hm2)、比常规氮量减25%(黄瓜季900 kg/hm2,番茄季675 kg/hm2)、减50%(黄瓜季600 kg/hm2,番茄季450 kg/hm2)以及不施氮对日光温室土壤N2O排放的影响。结果表明,温度是影响日光温室土壤N2O排放强度的重要因素,4-10月(平均气温为27.4℃)的N2O排放通量最高达818.4μg/(m2·h);而2-3月(平均气温15.1℃)以及11-12月(平均气温14.7℃)期间的N2O排放通量最高仅为464.5μg/(m2·h),比4-10月的N2O排放峰值降低了43.2%。N2O排放峰值在氮肥追施后5 d内出现,N2O排放量集中在氮肥施用后7 d内,可占整个监测期(271 d)排放量的64.7%~67.8%。施氮因增加了土壤硝态氮含量而引起N2O排放爆发式增长,0~10 cm土壤硝态氮含量与N2O排放量呈指数函数关系(P0.01)。日光温室黄瓜—番茄种植体系内的N2O排放量为0.99~9.92 kg/hm2,其中75.6%~90.0%由施氮造成。与常规氮用量相比,氮减量25%和50%处理的N2O排放量分别降低了40.4%和59.3%,总产量却增加4.9%和7.4%。综上所述,合理减少氮用量不仅可显著降低日光温室土壤N2O排放,而且不会引起产量的降低。该研究为日光温室蔬菜生产构建科学合理的施氮技术及估算中国设施农田温室气体排放量提供参考。  相似文献   

16.
The availability of O2 is one of the most important factors controlling the chemical and biological reactions in soils. In this study, the effects of different aeration conditions on the dynamics of the emission of trace gases (CO2, N2O, CH4) and the leachate composition (NO3, DOC, Mn, Fe) were determined. The experiment was conducted with naturally structured soil columns (silty clay, Vertisol) from a well aerated forest site. The soil monoliths were incubated in a microcosm system at different O2 concentrations (0, 0.001, 0.005, 0.01, 0.05, and 0.205 m3 m‐3 in the air flow through the headspace of the microcosms) for 85 days. Reduced O2 availability resulted in a decreased CO2 release but in increased N2O emission rates. The greatest cumulative N2O emissions (= 1.6 g N2O‐N m‐2) were observed at intermediate O2 concentrations (0.005 and 0.01 m3 m‐3) when both nitrification and denitrification occurred simultaneously in the soil. Cumulative N2O emissions were smallest (= 0.05 g N2O‐N m‐2) for the aeration with ambient air (O2 concentration: 0.205 m3 m‐3), although nitrate availability was greatest in this treatment. The emission of CH4 and leaching of Mn and Fe were restricted to the soil columns incubated under completely anoxic conditions. The sequence of the reduction processes under completely anoxic conditions complied with the thermodynamic theory: soil nitrate was reduced first, followed by the reduction of Mn(IV) and Fe(III) and finally CO2 was reduced to CH4. The re‐aeration of the soil columns after 85 days of anoxic incubation terminated the production of CH4 and dissolved Fe and Mn in the soil but strongly increased the emission rates of CO2 and N2O and the leaching of NO3 probably because of the accumulation of DOC and NH4+ during the previous anoxic period.  相似文献   

17.
【目的】全球46%~52%的N2O来自农田土壤,农田土壤N2O排放的研究具有重要的环境和经济意义。量化各影响因素对夏玉米农田N2O排放的影响,可为合理减少施肥产生的N2O排放提供依据。【方法】于2012和2013年连续两年进行了夏玉米裂区田间试验。试验主区为作物处理,副区为氮肥处理(0、 150、 300、 450 kg/hm2)。采用暗箱静态法-气相色谱法测定了不同处理N2O的排放通量,比较了不同温度和降雨量条件下不同处理的N2O排放量,计算了气温、 降雨量、 氮肥管理和夏玉米吸收对夏玉米农田N2O排放的影响。【结果】温度及降雨量的变化明显影响N2O的排放。2012年和2013年气温和降雨量对夏玉米生长期间N2O总排放量的影响分别为-0.24和-0.07。随着施氮量的增加,施氮对N2O排放的影响率呈线性增加(R2 = 0.923),施氮量0、 150、 300和450 kg/hm2,对玉米田N2O排放的影响分别为0、 0.38、 1.63、 3.54。夏玉米生长吸收对N2O排放量的平均影响因子为-0.33,年际间差异不显著(P = 0.07)。在苗期、 穗期、 花粒期,夏玉米生长吸收的影响因子分别为-0.57、 -0.29和-0.13,不同生育期的影响因子差异显著(P = 0.0015)。不同施氮量下,气候条件对夏玉米农田N2O排放影响率差异不显著(P 0.05); 不同气温和降雨量,夏玉米生长吸收对N2O排放的影响在同一施氮量下差异不显著(P 0.05),且均随施氮量的增加而减小。【结论】通过量化分析,气候条件对N2O排放的影响与气温和降雨量密切相关,温度升高影响增大,反之则减小,降雨后排放显著增大。施氮对N2O排放的影响随施氮量增加线性增加。夏玉米生长吸收降低了N2O排放,且在不同生育时期的影响差异显著。综合各影响因子,低氮量条件下(≦150 kg/hm2),气候因素和玉米生长对N2O排放的影响较大,高氮量下(≧300 kg/hm2),氮肥的施用是影响N2O排放的主要因子。  相似文献   

18.
19.
The amounts of N2O released in periods of alternate freezing and thawing depend on site and freezing conditions, and contribute considerably to the annual N2O emissions. However, quantitative information on the N2O emission level of forest soils in freeze‐thaw cycles is scarce, especially with regard to the direct and indirect effect of tree species and the duration of freezing. Our objectives were (i) to quantify the CO2 and N2O emissions of three soils under beech which differed in their texture, C and N contents, and humus types in freeze‐thaw cycles, and (ii) to study the effects of the tree species (beech (Fagus sylvatica L.) and spruce (Picea abies (L.) Karst.)) for silty soils from two adjacent sites and the duration of freezing (three and eleven days) on the emissions. Soils were adjusted to a matric potential of –0.5 kPa, and emissions were measured in 3‐hr intervals for 33 days. CO2 emissions of all soils were similar in the two freeze‐thaw cycles, and followed the temperature course. In contrast, the N2O emissions during thawing differed considerably. Large N2O emissions were found on the loamy soil under beech (Loam‐beech) with a maximum N2O emission of 1200 μg N m–2 h–1 and a cumulative emission of 0.15 g N m–2 in the two thawing periods. However, the sandy soil under beech (Sand‐beech) emitted only 1 mg N2O‐N m–2 in the two thawing periods probably because of a low water‐filled pore space of 44 %. The N2O emissions of the silty soil under beech (Silt‐beech) were small (9 mg N m–2 in the two thawing periods) with a maximum emission of 150 μg N m–2 h–1 while insignificant N2O emissions were found on the silty soil under spruce (0.2 mg N m–2 in the two thawing periods). The cumulative N2O emissions of the short freeze‐thaw cycles were 17 % (Sand‐beech) or 22 % (Loam‐beech, Silt‐beech) less than those of the long freeze‐thaw cycles, but the differences between the emissions of the two periods were not significant (P ≤ 0.05). The results of the study show that the amounts of N2O emitted in freeze‐thaw cycles vary markedly among different forest soils and that the tree species influence the N2O thawing emissions in forests considerably due to direct and indirect impacts on soil physical and chemical properties, soil structure, and properties of the humus layer.  相似文献   

20.
农田土壤N2O和NO排放的影响因素及其作用机制   总被引:3,自引:2,他引:3  
蔡延江  丁维新  项剑 《土壤》2012,44(6):881-887
农田土壤作为N2O和NO的重要排放源而备受关注。硝化和反硝化是土壤N2O和NO产生的两个主要微生物过程,环境因子和农田管理措施等因素强烈影响着这两个过程以及N2O和NO的排放。本文重点论述了土壤水热状况、土壤质地、pH、肥料施用、耕作措施变更等关键性影响因素对农田土壤N2O和NO排放的影响及其影响机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号