首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用盆栽研究了3种典型土壤(潮土、黑土和红壤)中添加不同浓度的阿特拉津和丁草胺对小白菜生长以及其在土壤中残留的影响。结果表明,阿特拉津的生物效应及其在植株中的残留随土壤类型和浓度变化而变化,阿特拉津很容易从土壤转移至小白菜植物体内积累;未观察到丁草胺对小白菜植株生长的影响及其在植物体内的残留,适用于小白菜前茬或当茬作物杂草防除。  相似文献   

2.
为探讨除草剂施用对柑橘园土壤氮转化及温室气体排放的影响,在实验室培养条件下,研究了0年(林地)、种植10年和30年的柑橘园土壤中分别添加除草剂草甘膦和丁草胺后,尿素态氮含量、硝化和反硝化作用以及温室气体排放的变化。研究结果表明,橘园土壤中尿素第1 d的水解率、氮肥硝化率、反硝化作用损失总量以及N_2O和CO_2排放量显著高于林地土壤(P0.05)。与10年橘园土壤相比,30年橘园土壤显著增加了尿素的水解速率、氮肥硝化率和CO_2排放量(P0.05),但二者的反硝化损失量没有显著差异。施用草甘膦和丁草胺都显著促进了林地土壤的尿素水解(P0.05),第1 d尿素态氮含量分别降低11.20%和12.43%;但对3种土壤氮肥的硝化率均没有明显影响。施用丁草胺显著降低了林地土壤的CO_2排放量(P0.05),对两种橘园土壤的CO_2排放没有明显影响,但明显增加了两种橘园土壤的N_2O排放总量(P0.05),分别比不施除草剂增加56.27%和85.41%;施用草甘膦对3种土壤的N_2O和CO_2排放均没有明显影响。可见,草甘膦和丁草胺的施用不会对柑橘园土壤的氮转化过程产生影响,但丁草胺显著增加了柑橘园土壤的N_2O排放。  相似文献   

3.
 Application of a commercial formulation of the herbicide butachlor (N-butoxymethyl-2-chloro-2′,6′-diethyl acetanilide) at 1 kg a.i. ha–1 to an alluvial soil planted with direct-seeded flooded rice (cv. Annada), significantly inhibited both crop-mediated emission and ebullition fluxes of methane (CH4). Over a cropping period of 110 days, the crop-mediated cumulative emission flux of CH4 was lowered by ∼20% in butachlor-treated field plots compared with that of an untreated control. Concurrently, ebollition flux of CH4 was also retarded in butachlor-treated field plots by about 81% compared with that of control plots. Significant relationships existed between CH4 emission and redox potential (E h) and Fe2+ content of the flooded soil. Application of butachlor retarded a drop in soil redox potential as well as accumulation of Fe2+ in treated field plots. Methanogenic bacterial population, counted at the maturity stage of the crop, was also low in butachlor-treated plots, indicating both direct and indirect inhibitory effects of butachlor on methanogenic bacterial populations and their activity. Results indicate that butachlor, even at field-application level, can effectively abate CH4 emission and ebollition from flooded soils planted to rice whilst maintaining grain yield. Received: 15 March 2000  相似文献   

4.
湿地土壤质量退化的模糊综合评价   总被引:2,自引:0,他引:2  
Due to frequent soil Cd contamination and wide use of butachlor in China,there is a need to assess their combined toxicity to soil microorganisms.The combined effects of cadmium (Cd,10 mg kg-1 soil) and herbicide butachlor (10,50,and 100 mg kg-1 soil) on enzyme activities and microbial community structure in a paddy soil were assessed using the traditional enzyme assays and random amplified polymorphic DNA (RAPD) analysis.The results showed that urease and phosphatase activities were significantly reduced by high butachlor concentration (100 mg kg-1 soil).When the concentrations of Cd and butachlor added were at a ratio of 1:10,urease and phosphatase activities were significantly decreased whereas enzyme activities were greatly improved at the ratio of 1:5,which indicated that the combined effects of Cd and butachlor on soil urease and phosphatase activities depended largely on their addition concentration ratios.Random amplified polymorphic DNA (RAPD) analysis showed loss of original bands and appearance of new bands when compared with the control soil.Random amplified polymorphic DNA fingerprints suggested substantial differences between the control and treated soil samples,with apparent changes in the number and size of amplified DNA fragments.The addition of high concentration butachlor and the combined impacts of Cd and butachlor significantly affected the diversity of the microbial community.RAPD analysis in conjunction with other biomarkers such as soil enzyme parameters would prove a powerful ecotoxicological tool.Further investigations should be carried out to understand the clear link between RAPD patterns and enzyme activity.  相似文献   

5.
The influences of herbicide alone and in combination with the soil amendments with contrasting resource qualities on dynamics of soil microbial biomass C (MBC), N (MBN), and P (MBP) were studied through two annual cycles in rice-wheat-summer fallow crop sequence in a tropical dryland agroecosystem. The experiment included application of herbicide (butachlor) alone or in combination with various soil amendments having equivalent amount of N in the forms of chemical fertilizer, wheat straw, Sesbania aculeata, and farm yard manure (FYM). Soil microbial biomass showed distinct temporal variations in both crop cycles, decreased from vegetative to grain-forming stage, and then increased to maximum at crop maturity stage. Soil MBC was the highest in herbicide + Sesbania aculeata treatment followed by herbicide + FYM, herbicide + wheat straw, herbicide + chemical fertilizer, and herbicide alone treatments in decreasing order during the rice-growing period. During wheat-growing period and summer fallow, soil MBC attained maximum for herbicide + wheat straw treatment whereas herbicide + FYM, herbicide + Sesbania, and herbicide + chemical fertilizer treatments showed similar levels. The overall trend of soil MBN was similar to those of soil MBC and MBP except that soil MBN was higher in herbicide + chemical fertilizer treatment over the herbicide + wheat straw treatment during rice-growing period. In spite of the addition of equivalent amount of N through exogenous soil amendments in combination with the herbicide, soil microbial biomass responded differentially to the treatments. The resource quality of the amendments had more pronounced impact on the dynamics of soil microbial biomass, which may have implications for long-term sustainability of rainfed agroecosystems in dry tropics.  相似文献   

6.
Wu  Pan  Shi  Jiarong  Zhang  Ying  Wang  Yanling  Ou  Xiaoxia  Han  Ziqiao  Wu  Xiaozhen  Zhao  Rou  Yang  Weiguang 《Journal of Soils and Sediments》2019,19(10):3534-3544
Purpose

Reliable and effective techniques for removing contaminants from soil are highly desirable. However, metolachlor residue bioremediation and soil fertility improvement by Rhodospirillum rubrum (R. rubrum) in effluent after wastewater treatment have not yet been investigated. The aims of this study were to investigate the feasibility of bioremediation of metolachlor residues in soil and soil fertility improvement by R. rubrum in effluent and to explain the mechanism that R. rubrum in effluent was induced to express the regulatory gene.

Materials and methods

Soybean processing wastewater was obtained from Harbin Soybean Products Machining Factory. Soil samples were the surface soil (0–30 cm) from campus (1.77 g/kg total N, 4.15 g/kg total P, 1.58 g/kg total K, 17 g/kg SOM, 0.07 g/kg SMBC). Cytochrome P450 monooxygenase regulatory gene, MAPKKKs gene, was measured by RT-PCR.

Results and discussion

Compared to control treatment, metolachlor was removed efficiently and soil fertility was remediated by effluent containing R. rubrum. The removal in concentrations reached 2.97 mg/L (99%). Soil organic matter (SOM) and SMBC were enhanced 42 times. Molecular analysis revealed that metolachlor induced cpm gene expression to synthesize cytochrome P450 monooxygenase through activating MAPKKKs gene in MAPK signal transduction pathway.

Conclusions

Bioremediation of metolachlor in soil and improvement of soil fertility using R. rubrum in effluent were feasible. Metolachlor, as environmental pressure, induced cpm gene expression to synthesize cytochrome P450 monooxygenase and to remove metolachlor through activating MAPKKKs, MAPKKs, MAPKs genes in MAPK signal transduction pathway.

  相似文献   

7.
The application of butachlor as an herbicide in paddy fields is widely practiced,aiming to increase rice yield by directly or indirectly influencing the paddy environment.Periphytic biofilms,which form at the soil-water interface in paddy fields,are complex bioaggregates that play an important role in nitrogen (N) cycling.The objective of this study was to investigate the effect of butachlor on periphytic biofilm growth and N cycling under both light and dark conditions in the laboratory.The res...  相似文献   

8.
在实验室条件下 ,施用杀虫剂 (呋喃丹 )、杀菌剂 (多菌灵 )和除草剂 (丁草胺 )后 ,对黄松稻田土壤、紫色稻田土壤和红壤稻田土的硫酸盐还原细菌 (Sulfate reducingbacteria ,SRB)种群数量和硫酸盐还原活性的影响。结果表明 ,紫色稻田土壤、黄松稻田土壤和红壤稻田土的SRB种群数量和硫酸盐还原活性的范围分别为 (66 83~ 12 7 81)× 10 4 cfug- 1干土、(45 87~ 10 5 0 7)× 10 4 cfug- 1干土和 (3 81~ 61 62 )× 10 4 cfug- 1干土和S- 2 (7 14~ 11 57) μgg- 1d- 1干土、S- 2 (6 84~ 9 0 7) μgg- 1d- 1干土、S- 2 (1 91~ 6 67) μgg- 1d- 1干土 ,且稻田土SRB种群数量和土壤硫酸盐还原活性之间具有正相关性。每kg干土中加入 1mg的丁草胺或呋喃丹 ,能促进SRB的生长及其硫酸盐还原活性。 1kg干土中加入 5mg的多菌灵、50mg的丁草胺或呋喃丹 ,对SRB的生长和硫酸盐还原活性有明显的抑制作用。施用丁草胺和呋喃丹 7d时 ,多菌灵 14d时 ,对水稻田土壤的SRB种群数量和硫酸盐还原活性的抑制影响最大 ,然后逐渐减轻 ,最后显示出某种程度的促进作用  相似文献   

9.
苯噻草胺对水田土壤呼吸强度和酶活性的影响   总被引:22,自引:2,他引:22       下载免费PDF全文
研究了除草剂苯噻草胺对水稻田土壤呼吸强度和酶活性的影响。表明苯噻草胺使用后初期刺激土壤呼吸作用但随后产生轻微抑制 ,能激活脱氢酶的活性 ,但抑制过氧化氢酶活性随后产生一定的刺激作用。苯噻草胺强烈抑制脲酶活性 ,轻微抑制蛋白酶活性 ,但对磷酸酶具有刺激作用 ,而且随苯噻草胺施用浓度的增加而刺激作用增强。苯噻草胺比上一代除草剂丁草胺所造成的对水稻田土壤呼吸强度和酶活性的影响小  相似文献   

10.
Motz  Erin C.  Cey  Edwin  Ryan  M. Cathy  Chu  Angus 《Water, air, and soil pollution》2012,223(2):771-785
The attenuation of Escherichia coli and total coliform from secondary treated wastewater effluent under two “at-grade” effluent distribution systems was evaluated in a sandy silt vadose zone in a cold climate. The two at-grade distribution lines had different designs and hydraulic loading rates. Effluent transport was examined using chloride as a tracer. Coliform fate was evaluated relative to the chloride using a combination of in situ pore water sampling and destructive soil sampling, combined with the observation of a dye tracer along excavation sidewalls. Although bacteria attenuation in the subsoil appeared to decrease during colder, winter temperatures (likely due to decreased viability and decreased predation), the subsoil provided about a four log reduction in E. coli over 90 cm of vertical transport. Horizontal transport of bacteria (up to 1.5 m from the line) was likely aided by flow on top of a microbial biomat observed at the soil surface. Both the subsurface dye patterns and the E. coli sampling suggested less preferential flow occurred below the lower loading rate design. At-grade distribution of secondary treated wastewater appears to be a viable alternative to conventional distribution fields at sites with similar climate and soils.  相似文献   

11.

Purpose

Sorption and desorption of butachlor were simultaneously investigated on synthesized pure amorphous hydrated Fe oxides (AHOs Fe), and soils both with and without surface coating of AHOs Fe, with special interest towards how amorphous sesquioxides affect and contribute to butachlor retention in soils.

Materials and methods

The AHOs Fe was artificially synthesized pure materials. Two soils with contrasting physicochemical properties selected for study were black soil and latosol, belonging to permanent charged soil and variable charged soil, respectively. Both soils were further treated using AHOs Fe for detecting the differentiation from native soils regarding butachlor retention produced after the soils were surface-coated by AHOs Fe. A sorption experiment was conducted using a batch equilibrium technique, and desorption was carried out immediately following sorption by three sequential dilution. Hysteresis index (HI) values were calculated to investigate desorption hysteresis by developing desorption isotherms concentration dependent and time dependent, respectively.

Results and discussion

The sorption capacity for butachlor increased in the order of AHOs Fe, uncoated soils, and soils with surface coating of AHOs Fe. The sorption capacity of both soils significantly increased after surface coating by AHOs Fe (p?<?0.01), with a bigger increase achieved by black soil (52.0 %) as compared with that by latosol (45.3 %). Desorption of butachlor was coincidently hysteretic on AHOs Fe, and soils both uncoated and coated, whereas variation in desorption hysteresis was different between AHOs Fe and soils with increasing butachlor sorption loading, indicating different sorption mechanisms were operative for AHOs Fe and soils across the entire butachlor concentration range. Hysteresis of butachlor desorption was weakened after the soils were surface coated by AHOs Fe, as suggested by the changed HI values.

Conclusions

With high specific surface area and highly reactive surfaces, the “active” AHOs Fe originally has a relatively high sorption capacity and affinity for butachlor. While in natural soils, where the inevitable association derived from soil organic matter (SOM) would restrain AHOs Fe from sequestrating butachlor directly, AHOs Fe may likely contribute in a mediator way by coordinating active sites both on and within SOM. This may enhance the availability of sorption domains both on and within soils, thereby achieved an enhanced but more reversible retention for butachlor in soils after their surfaces were coated by AHOs Fe. This study has extended the observations of the role of noncrystalline sesquioxides in retention of pesticides such as butachlor from pure clay mineral systems to natural soils.  相似文献   

12.
Butachlor is a chloroacetanilide herbicide successfully employed in weeding some important crops, and benoxacor is a safening compound able to induce the enzymatic mechanism of chloroacetanilide detoxification in plants. A practical method for a simultaneous detection of butachlor and benoxacor residues in wheat and in soil is described. The procedure can be performed by GC and HPLC. They were extracted with methanol and cleaned up by solid phase extraction (SPE). The analytes were satisfactorily separated via both GC and HPLC techniques, and no interferences were observed coming from plant or soil matrixes or reagents. The limit of quantitation was found to be 5.0 ng by GC and 20.0 ng by HPLC for butachlor and 2.5 ng by GC and 15.0 ng by HPLC for benoxacor. Butachlor recovery tests ranged from 85.4% to 91.7% in wheat shoots and 84.0% to 93.2% in soil; benoxacor recovery tests ranged from 86.5% to 90.8% in wheat shoots and 85.7% to 90.7% in soil. The reproducibility and the accuracy make this method a selective and sensitive tool for routine analyses.  相似文献   

13.
《土壤圈》2016,(2)
The influences of herbicide alone and in combination with the soil amendments with contrasting resource qualities on dynamics of soil microbial biomass C(MBC),N(MBN),and P(MBP) were studied through two annual cycles in rice-wheat-summer fallow crop sequence in a tropical dryland agroecosystem.The experiment included application of herbicide(butachlor) alone or in combination with various soil amendments having equivalent amount of N in the forms of chemical fertilizer,wheat straw,Sesbania aculeata,and farm yard manure(FYM).Soil microbial biomass showed distinct temporal variations in both crop cycles,decreased from vegetative to grain-forming stage,and then increased to maximum at crop maturity stage.Soil MBC was the highest in herbicide + Sesbania aculeata treatment followed by herbicide 4- FYM,herbicide + wheat straw,herbicide + chemical fertilizer,and herbicide alone treatments in decreasing order during the rice-growing period.During wheat-growing period and summer fallow,soil MBC attained maximum for herbicide + wheat straw treatment whereas herbicide + FYM,herbicide 4- Sesbania,and herbicide 4 chemical fertilizer treatments showed similar levels.The overall trend of soil MBN was similar to those of soil MBC and MBP except that soil MBN was higher in herbicide 4 chemical fertilizer treatment over the herbicide + wheat straw treatment during rice-growing period.In spite of the addition of equivalent amount of N through exogenous soil amendments in combination with the herbicide,soil microbial biomass responded differentially to the treatments.The resource quality of the amendments had more pronounced impact on the dynamics of soil microbial biomass,which may have implications for long-term sustainability of rainfed agroecosystems in dry tropics.  相似文献   

14.
As metropolitan areas expand, the municipal and industrial uses of freshwater increase. Therefore, water resources for irrigation become limited and wastewater reuse for irrigation becomes a good alternative. For this purpose, the effects of suspended solids in wastewater on the soil physical properties, i.e., saturated hydraulic conductivity, Ks, have to be considered. The objectives of this research were to study the effects of applying freshwater and differently treated wastewater on Ks in the surface and subsurface layers of sandy‐loam, loam, and clay‐loam soils. This effect was studied by investigating the ratio of Ks for wastewater to Ks for fresh water in soil surface as Kr1 and in soil subsurface as Kr2. The results showed that the application of freshwater did not reduce the Kr1 considerably. However, the reduction in Kr1 mainly occurred in soil depth of 0–50 mm due to the application of wastewater. This effect is more pronounced in clay‐loam soil than in loam and sandy‐loam soils. It is concluded that application of wastewater with TSS (total suspended solid) of ≥ 40 mg L–1 resulted in Kr1 reduction of >50% in different soil textures. However, the Kr2 reduction at soil depth of 100–300 mm is not considerable by application of wastewater for different soil textures. Further, it is concluded that less purified wastewater can be used in light‐texture soils resulting in less reduction in Kr1. Empirical models were developed for predicting the value of Kr1 as a function of amounts of wastewater application and TSS for different soil textures that can be used in management of wastewater application for preventing deterioration of soil hydraulic conductivity.  相似文献   

15.
The Soreq recharge basins, used for wastewater reclamation employing the Soil-Aquifer Treatment (SAT) system, have been recharged, on average, by about 1,800 m depth of secondary effluent during their operation period of ~25 years. An estimated amount of ~6 kg P m?2 was added to the soil/sediment column during this period. The objective of this study was to compare phosphorous sorption characteristics of representative pristine soils in the Soreq recharge site to those of the basin soils sampled after a long period of effluent recharge. Batch isotherm experiments were conducted: samples of one g of soil were equilibrated with 25 mL of 0.02 M NaCl solution containing 0–3.2 mM of phosphate for 7 days at 25± 1°C and P sorption was measured. Long-term effluent recharge significantly decreased the maximum P sorption capacity of the top sandy soil (0.15–0.3 m) and only very slightly decreased maximum P isotherm capacity of the deep clayey-sand soil (10–10.5 m). The retention of P in the basin sandy soil primarily involved sorption and surface precipitation reactions on soil carbonates. In the basin clayey-sand soil, P was retained by its sorption on surfaces of Fe, Al, Mn oxide/hydroxides and clay minerals. Long-term effluent recharge increased EPC0, (the equilibrium P concentration in solution at which there is no sorption or desorption to or from the soil under the given conditions), of the basin soils compared to the pristine soils. Due to loading of the top horizons with P by prolonged recharge and reduced P concentration in the effluent, EPC0 of the basin sandy soil is now equal to the average P concentration of the recharged effluents. If effluent P concentration will decrease further, the top sandy soil will become a source of P to the reclaimed water, rather than a sink. The clayey-sand layers and lenses in the vadose zone of the SAT system of the Soreq site offer a large capacity for P adsorption. With gradual leaching of carbonate minerals and synthesis of secondary clay minerals, driven by long-term effluent recharge, P retention mechanisms in the basin soil may be changed, but this process would be extremely slow.  相似文献   

16.
The effect of the application of three herbicide formulations namely: Preforan (2,4-dinitro-4-trifluoromethyl-diphenyl ether), Dacthal (dimethyl 2,3,5,6-tetrachloroterepthalate) and Dual (2,ethyl-6-methyl-N-(2-methoxy-1-ethyl-a-chloro-acetanilide)) on legume-Rhizobium symbiosis was evaluated by incorporating these herbicide formulations into plate agar cultures of two Rhizobium strains and into soil carrying cowpea (Vigna unguiculata (L.) Walp.). Results indicated that Dual is bactericidal — giving the lowest mean cell count for strain TAL 385 in agar culture, 3.04 × 106 compared to 3.51 and 3.43 × 106 for Dacthal and Preforan respectively. In the soil system, while the highest rate of Dacthal and Preforan merely decreased nodulation, Dual highest rate completely killed the plants within 14 days after planting. The rate of herbicide application and the herbicide type were both important factors which affected vital parameters of the legume — Rhizobium symbiosis in soil culture.  相似文献   

17.
The herbicide terbuthylazine is widely used within the EU; however, its frequent detection in surface and groundwater, together with its intrinsic toxicological properties, may pose a risk both for human and environmental health. Organic amendments have recently been proposed as a possible herbicide sorbent in soil, in order to limit herbicide movement from soil to water. The environmental fate of terbuthylazine depends not only in its mobility but also in its persistence. The latter is directly dependent on microbial degradation. For this reason, the effects of pine and oak residues on terbuthylazine soil microbial community functioning and on the potential of this community for terbuthylazine degradation were studied. For this purpose, degradation kinetics, soil dehydrogenase activity and the number of live bacteria were assessed in a clay loam soil treated with terbuthylazine and either amended with pine or oak wood or unamended (sterilised and non-sterilised). At day 65, 85?% of the herbicide applied still persisted in the sterile soil, 73?% in the pine-amended one and 63?% in the oak-amended and unamended ones. Pine residues increased the sorption of terbuthylazine to soil and hampered microbial degradation owing to its high terbuthylazine sorption capacity and a decrease in the bioavailability of the herbicide. On the contrary, in the presence of oak residues, the herbicide sorption did not increase significantly. The overall results confirm the active role of the soil microbial community in terbuthylazine degradation in amended and unamended soils and in a liquid enrichment culture performed using an aliquot of the same soil as the inoculum. In this clay loam soil, in the absence of amendments, the herbicide was found to be quite persistent (t 1/2?>?95?days), while in the enrichment culture, the same natural soil bacterial community was able to halve terbuthylazine in 24?days. The high terbuthylazine persistence in this soil was presumably ascribable to its texture and in particular to the mineralogy of the clay fraction.  相似文献   

18.
We studied the long‐term accumulation processes and material balances of phosphorus (P) in the soil/sediment profiles of large‐scale effluent recharge basins used for wastewater reclamation by the soil aquifer treatment (SAT) system. The objective was to quantify and clarify the long‐term performance of soil/sediment in the SAT system as a sorbent to filter out P from the recharged effluent. Total P concentration in the soil/sediment profiles of the Shafdan wastewater treatment plant (WWTP) increased over 25 years of operation (1977–2001) by 20–220 mg kg?1, as a result of adding loads of 0.17–6.2 kg m?2 of P. Retained P in the 0–2.0 m soil layer increased from 0.06 to 0.31 kg m?2 with increasing cumulative load of P while the retained percentage gradually decreased from 19 to 5% of the cumulative P load. Accumulation rate of P in the 0–0.15 m horizon in the basins was inversely proportional to recharge time, decreasing from ~28 mg P kg?1 year?1 during the first 3 years of operation, to <2.3 mg P kg?1 year?1 between the 20th and 25th years of operation. Thus, P content in this horizon approached a steady state after about 10–15 years of effluent recharge under the operational conditions of the Shafdan WWTP. Phosphorus concentration in deeper horizons increased at constant rates of approximately 7.8, 5.9 and 2.9 mg P kg ?1 year?1 in the 0.15–0.30, 0.30–0.60 and 1.80 to 2.10‐m horizons, respectively, over the 25 years of effluent recharge. However, the accumulation front of P appears gradually to have moved deeper in the soil profile. In general, this phenomenon may be explained by kinetic limitations to the achievement of full adsorption equilibrium for P between the flowing solution and the solid phase components of the soil. In addition, both the increase of EPC0(the equilibrium P concentration in solution at which there is no sorption or desorption to or from the soil under the given conditions), caused by long‐term effluent recharge, and gradual decrease of the annual average concentration of P in the effluent input after 1995, may result in the steady‐state level of P in the topsoil of the basin.  相似文献   

19.
The use of reclaimed wastewater in agriculture can be a solution for regions with water shortages or low rainfall periods; besides fulfilling the crop's water needs, it would also promote the recycle of nutrients. However, care should be taken regarding soil salinization, especially in closed environments such as greenhouses for the cultivation of ornamental plants. The domestic effluents are rich in sodium which can accumulate on soil and cause soil sealing. This study evaluated the use of effluents from anaerobic filters and intermittent sand filters in the production of rosebushes (Rosa hybridaAmbiance”). The crop yield of the rosebushes irrigated with reclaimed wastewater exceeded the one obtained with traditional cultivation, reaching a value 31.8 % higher when employing nitrified effluent originated from intermittent sand filters, with no difference in the product quality. The salinity levels are below the critical limits found in the literature; however, there was a significant increase compared to the irrigation with drinking water.  相似文献   

20.
The potential of domestic wastewater treatment plants to contribute for the dissemination of ciprofloxacin-resistant bacteria was assessed. Differences on bacterial counts and percentage of resistance in the raw wastewater could not be explained on basis of the size of the plant or demographic characteristics of population served. In contrast, the treated effluent of the larger plants had significantly more heterotrophs and enterobacteria, including ciprofloxacin-resistant organisms, than the smaller (p?<?0.01). Moreover, longer hydraulic retention times were associated with significantly higher percentages of resistant enterobacteria in the treated effluent (p?<?0.05). Independently of the size or type of treatment used, domestic wastewater treatment plants discharged per day at least 1010–1014 colony forming units of ciprofloxacin-resistant bacteria into the receiving environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号