首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
周冬林  王立东  焦雨佳 《油气储运》2019,(10):1130-1135
中国盐岩大多以层状产出为主,盐岩地质条件复杂多变,盐层溶腔形态各异,研究层状盐岩溶蚀成腔的形态特征和主要影响因素,可以为优化造腔工程设计、高效建设储气库提供参考。利用金坛、楚州、五里铺及应城等盐矿的盐层地质资料、生产资料、腔体声呐检测数据,从生产方式、造腔排量、埋藏深度、盐岩品位、夹层厚度及地层倾角等方面分析了各因素对盐腔形态的影响。结果表明:金坛和楚州地区盐腔形态较为规则,五里铺腔体形态和应城盐矿盐腔形态不规则,单井对流或双井对流溶蚀形成的腔体形态相近,盐腔的溶蚀形态是多种因素综合作用的结果,其中盐岩品位和夹层是影响腔体形态规则的主要因素,地层倾角是造成腔体偏溶的决定性因素。研究结果可为储气库井位设计和造腔设计提供依据。  相似文献   

2.
盐穴储气库由于其吞吐量大,注采灵活等优势受到越来越多的关注。大量腔体的完腔数据显示,盐穴储气库的完腔体积与初始设计体积存在一定差距,因此保证盐层利用率达到最大化尤为重要。结合金坛盐穴储气库水溶造腔实例,详细分析了井下异常情况以及地面临井的相互影响这两大因素在造腔过程中对腔体体积的影响,认为建槽期腔体直径、夹层的存在以及腔体偏溶、井眼轨迹偏离等因素对造腔有较大影响。提出造腔过程中应在建槽期充分扩容,制定有效的夹层处理方案并监控各动态参数,防止造腔过程中出现偏溶以及管柱脱落等异常情况,从而保证盐层利用率最大化。(图8,参24)  相似文献   

3.
国内盐穴储气库造腔层段岩性复杂,不同深度存在不同厚度的夹层,夹层厚度从1 m至10 m以上,造腔结果相差较大。以金坛储气库8口造腔井为例,通过造腔参数分析,研究不同夹层处理工艺下的造腔效果,总结出多夹层盐岩段造腔工艺技术方案:使油水界面在夹层上部且距离夹层至少3~4 m;当油水界面在夹层下部时,控制油垫厚度小于0.1 m且腔顶直径不要太大;当前阶段油水界面位于夹层下部且腔体需要扩容时,将油水界面调整至夹层上部;当处理腔体下部夹层时,使内管位于夹层下部,至少在夹层位置。上述技术方案可为其他盐穴储气库建设提供参考和技术支持。  相似文献   

4.
为指导存在偏溶、形状不规则特点的腔体进行天然气阻溶造腔修复作业,开展了相关数值模拟研究。盐穴修复过程中,为保证腔顶安全,仅对目标深度段进行造腔修复,防止腔顶继续拓展,阻溶剂需求量大,因此选择来源便捷的天然气作为阻溶剂。建立数学模型,考虑盐岩上溶特征,编写盐穴储气库天然气阻溶造腔模拟程序,并针对金坛盐穴储气库L井进行天然气阻溶造腔模拟。天然气阻溶造腔可优化单腔形状和体积,提高优质盐层利用率,降低腔体不规则对注气排卤作业的影响风险,保证腔体满足安全要求。研究结果表明:编制的程序可有效模拟天然气阻溶造腔过程中腔体形状的发展,模拟结果与现场工程作业一致,研究成果对提高单个腔体有效体积及腔体稳定性具有重要意义。  相似文献   

5.
中国盐穴储气库在溶腔过程中为保证腔体形状和腔体侧溶,在腔体顶部注入柴油,若溶腔过程中油水界面位置不精准或失控,将会造成腔体顶板溶蚀、腔体形状不受控制、腔体体积损失及生产套管鞋处溶穿等问题,腔体稳定性遭到破坏,直接影响储气库的经济效益和运行安全,甚至导致腔体报废。传统工艺利用中子测井方法监测油水界面,作业程序较复杂、费用高且无法实现连续监测。利用腔体内柴油和卤水比热容不同,研发光纤测油水界面技术及设备(光纤油水界面仪),应用于金坛盐穴储气库8口溶腔井,实现了在不停产的情况下对油水界面深度的连续监测。现场试验应用表明:该技术具有可连续监测、精度高、费用低及操作简便等优点,目前已在金坛盐穴储气库全面推广应用。(图1,表1,参18)  相似文献   

6.
金坛盐穴储气库采用单井双管油垫法分步式进行造腔。由于地下情况复杂,盐穴腔体在建造期间可能会遇到注水排卤井口泄漏、井筒泄漏、阻溶剂界面异常、造腔管柱故障及腔体泄漏等问题,若不能及时发现并采取应对措施,将会导致阻溶剂界面失控、造腔中断以及腔体体积损失等后果。金坛盐穴储气库通过在造腔实践中解决现场问题,形成了完善的造腔现场应对措施和监控体系,积累了处理造腔突发异常情况的经验,有效地保证了造腔的连续性,缩短了建腔周期,对后续盐穴储气库建设提供了理论依据和技术支持。  相似文献   

7.
盐穴储气库完腔后无法继续使用柴油阻溶剂对不规则腔体进行回溶造腔,因此迫切需要发展天然气阻溶回溶造腔技术。研究了该技术的工艺流程、工艺参数、造腔模拟技术,并在西气东输金坛储气库开展现场试验,效果超出预期:A腔体增加自由体积14 000 m3,腔体上部突出的岩脊发生自然垮塌,排除了后期注气排卤过程中盐层垮塌砸坏排卤管柱的风险。该试验为国内首次腔体扩容及修复试验,对今后盐穴储气库建腔技术的推广及削减造腔成本具有重要的工程指导意义。  相似文献   

8.
在金坛储气库造腔过程中,盐腔偏溶问题层出不穷,对腔体体积、造腔进度、注气排卤、运行安全等的不良影响不容小觑。为此,对金坛储气库28口造腔井的声呐数据、连斜数据、管柱提升记录、施工记录和原始溶腔设计等资料进行统计分析。结果表明:金坛储气库多口盐井偏移方向规律明显,大多偏北,少数偏南;多数盐腔偏溶方向与井轨迹偏移方向一致。由此提出盐腔偏溶与井斜有着密不可分的关系,并初步认定地应力对盐腔偏溶起到一定作用。  相似文献   

9.
为了充分利用金坛盐矿区有限的盐矿资源,使整个库区盐腔的总体积最大化,需要从金坛储气库正在造腔的井中,筛选出直径可适当增大的盐腔,并优化腔体体积。首先排除即将完腔的、严重偏溶的、临腔最小矿柱比小于2.3的3类直径不可增大的腔体,然后通过临腔腔体评价,从金坛库区26口正在造腔的井中筛选出10口腔体,确定最大直径后,重新对腔体体积进行模拟。优化后,10口腔体的总体积约增加26×10~4 m~3,不仅充分利用了盐岩资源,而且降低了造腔成本,可为今后其他盐穴储气库的建设提供参考。  相似文献   

10.
在盐穴储气库的建设过程中,巨厚夹层的存在不仅使造腔难度大幅增大,而且在不同程度上影响腔体形状。为了充分利用盐层,对巨厚夹层的垮塌过程及其控制工艺进行研究。以国内某储气库12 m的厚夹层为例,选取2口井进行现场试验。结果表明:巨厚夹层作为直接腔体顶板时,出现整体失稳垮塌的概率较小;在巨厚夹层达到一定跨度后,上下同时造腔,井眼处易产生局部破坏,从而引起夹层的大面积垮塌。结合现场数据分析可得:通过控制井下工艺使厚夹层跨度达到60 m时,既可以使厚夹层大面积垮塌,又可以减小井下工艺的复杂程度。研究结果对盐穴储气库厚夹层处理具有一定借鉴的意义。  相似文献   

11.
金坛盐穴储气库单腔库容计算及运行动态模拟   总被引:1,自引:0,他引:1  
丁国生 《油气储运》2007,26(1):23-27
概述了金坛盐穴储气库单腔库容的计算方法,并对其最大工作气量进行了静态分析。结果表明,单个溶腔的储气能力和溶腔个数决定了盐穴储气库的储气能力,在溶腔体积一定的情况下,单个溶腔的储气库能力主要取决于溶腔的运行温度和压力。为防止热物理性能参数对储气库运行的变化,提出储气库运行可以通过建立相关数学模型进行预测。运行模拟预测发现,盐穴运行条件下最恶劣工况是注气排卤后的运行工况。通过对溶腔不同的开采状态进行模拟,分析了不同开采状态对采出气在井口的温度压力变化,可为地面设施的配套提供参数。  相似文献   

12.
利用地下盐穴实施战略石油储备   总被引:2,自引:1,他引:2  
丁国生  谢萍 《油气储运》2006,25(12):16-19
论述了我国利用盐穴建设战略石油储备库的重要性和必要性.从建设盐穴石油储备库的基本条件、工艺流程、关键技术等方面,对我国利用盐穴建造地下储油库的可行性进行了分析.提出国内很多含盐盆地具备了建设盐穴石油储备库的基本地质条件和技术基础.提出应开展建库选址的分析和研究并进行前期规划,以加快我国盐穴储备库的建设步伐.  相似文献   

13.
纪文栋  杨春和  屈丹安  马洪岭 《油气储运》2012,31(2):121-124,168
盐穴地下储库的天然气注采性能是衡量储气库效能的重要指标,也是影响储气库稳定性的重要因素。依据实测地层信息建立两种不同形状的储库模型,基于天然气的市场需求规律制定盐穴储气库的注采方案,进行30年的蠕变模拟运行,研究注采方案变化对盐穴体积收缩、塑性区发展及盐穴腔壁位移量的影响。结果表明:形状差异对盐穴腔体性质的影响不明显;体积收缩随着时间的延长而增大,但增大速度逐渐变缓,低压运行期是引起盐穴腔体收缩的主要阶段;紧急采气后的低压运行期会对盐穴腔体产生不利影响,建议对不同盐穴轮流紧急采气以降低单个盐穴腔体紧急采气频率,或者采用在采气结束后立刻跟进注气的方法,保证盐穴的长期有效运行。  相似文献   

14.
地下储气库在调峰保供中发挥着不可替代的作用。盐穴地下储气库属于洞穴型储库,在建设方面具有建设周期长、投资高、工艺技术复杂等特点,但其无需达容时间,可边建设边投产,垫底气比例低且可完全回收。盐穴地下储气库具有采气能力大、注采气灵活、天然气耗损率低等运行特征,不仅能够满足常规季节调峰需求,也能满足日、小时调峰及应急调峰需求。通过分析国内外盐穴地下储气库建设运行数据,梳理金坛地下储气库在实际运行中发挥的重要作用,针对盐穴地下储气库功能定位进行思考,为盐穴储气库的进一步优化合理发展提供参考。  相似文献   

15.
利用盐化企业采卤形成的盐腔改建储气库,是加快盐穴储气库建设进度的有效方法。中国各地盐化企业由于长期生产形成的盐腔数量众多,快速、准确地评价其密封性是老腔改造过程中的重要问题。卤水试压法利用泵车和管道从井口注入饱和卤水,通过监测注入压力和卤水流量,计算腔体漏失量来评价盐腔的密封性,其无需向井下下入任何仪器和设备,对井况条件要求低,具有操作简单,测试成本低的优点。现场应用结果表明:该方法可以有效判断盐穴是否发生明显泄漏,是评价老腔前期密封性的可行方法。  相似文献   

16.
完整性管理是储气库安全管理的发展方向,储气与注采气系统是盐穴型储气库最重要的组成部分,研究并实施储气与注采气系统的完整性管理对保障盐穴型储气库安全运行具有重要意义。综述了在盐穴型储气库储气与注采气系统完整性管理中风险评估和完整性评价两项关键技术的研究进展。在风险评估方面,识别出了风险因素,建立了定量风险评估方法,包括失效概率计算方法、失效后果估算方法及风险评估方法;在完整性评价方面,分析了井筒损伤因素及其类型,提出了储气库溶腔稳定性评价、含缺陷套管完整性评价以及注采气管的疲劳寿命和冲蚀寿命预测方法。(图8,表1,参10)  相似文献   

17.
何俊  赵岩  井岗  李建君 《油气储运》2019,(6):649-654,661
目前,在盐穴储气库造腔过程中,处理不溶物夹层的方式多为使其充分浸泡至弱化后自然垮塌,但对于厚度超过10 m的巨厚不溶物隔层,使其垮塌十分困难,巨厚隔层垮塌的极限跨度可达60 m左右,通过浸泡使其垮塌需要的时间长,造腔效率低,还可能损坏厚隔层下部的造腔管柱。以淮安储气库某井地质参数为例,提出一种在允许巨厚隔层存在的基础上进行造腔的新思路,即在隔层上下分别造腔,上部常规造腔、下部造水平腔,上下部的腔体在水平方向错开分布,以保证巨厚隔层作为下部水平腔顶板的稳定性。模拟结果表明:这种造腔方式比同等盐层条件下可多造约5×104 m3腔体,并且避免了下部造腔管柱被垮塌隔层损坏的风险。此外,提出在地面采用丛式井技术布井,以降低征地和钻机搬家安装费用,并使用移动式钻机优化钻井程序,改善造腔过程中钻井作业的经济性。  相似文献   

18.
随着国家战略储备规模的不断扩大,中国块状结晶岩体的可选范围受到诸多因素限制,突破砂岩区地下水封洞库建设技术可以极大提高地下洞库选址适用范围。为探究在砂岩区建库的可行性,以西南某砂岩区建库选址为背景,利用FEFLOW软件建立水平层理、倾斜10°层理、倾斜50°层理3种工况对应的砂岩区地下水封洞库渗流场模型,并假定2~3条厚层泥岩,放大低渗透性泥岩层对于水封环境的破坏程度,模拟分析砂岩韵律层理对地下洞库水封效果的影响。结果表明:厚层泥岩对于倾斜50°层理工况的影响最小,对于水平层理工况的影响最大,而厚层泥岩已成为地下水环境中的隔水层,严重影响甚至破坏了水封环境。基于此,在模型中针对性设置水平水幕孔、垂直水幕或斜向水幕系统,模拟结果表明:水封效果得到明显改善。在实际工程中,可通过下移水平水幕系统、特定区域增设垂直水幕或斜向水幕系统等实现更好的水封效果。研究成果可为砂岩区地下储油洞库水封设计及选址提供理论参考。  相似文献   

19.
随着国家战略储备规模的不断扩大,中国块状结晶岩体的可选范围受到诸多因素限制,突破砂岩区地下水封洞库建设技术可以极大提高地下洞库选址适用范围。为探究在砂岩区建库的可行性,以西南某砂岩区建库选址为背景,利用FEFLOW软件建立水平层理、倾斜10°层理、倾斜50°层理3种工况对应的砂岩区地下水封洞库渗流场模型,并假定2~3条厚层泥岩,放大低渗透性泥岩层对于水封环境的破坏程度,模拟分析砂岩韵律层理对地下洞库水封效果的影响。结果表明:厚层泥岩对于倾斜50°层理工况的影响最小,对于水平层理工况的影响最大,而厚层泥岩已成为地下水环境中的隔水层,严重影响甚至破坏了水封环境。基于此,在模型中针对性设置水平水幕孔、垂直水幕或斜向水幕系统,模拟结果表明:水封效果得到明显改善。在实际工程中,可通过下移水平水幕系统、特定区域增设垂直水幕或斜向水幕系统等实现更好的水封效果。研究成果可为砂岩区地下储油洞库水封设计及选址提供理论参考。  相似文献   

20.
牛传凯  谭羽非  宋传亮 《油气储运》2013,(11):1217-1222
随着我国石油资源对外依存度的逐年增加,建立完善的战略石油储备已经成为当务之急.针对盐穴型战略储油库储存运行的关键技术,结合盐岩力学特性和我国地质状况,对战略储油库造腔设计、建腔参数选择、运行参数确定以及影响储油库稳定性因素等问题进行了详细分析.研究结果表明:当储油库安全运行时,注采速率不超过4.5 m/s,并确保运行压力符合储油库的最大内压准则;溶腔内流体的热压膨胀对战略储油库前期运行安全影响较大,在长期稳定储油后,容易造成储油库内压增大,导致储存原油发生泄漏,在储油库安全运行时应尤为重视.研究成果可为今后我国盐穴战略储油库工程实践提供理论依据和技术支持.(表1,图2,参14)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号