首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
An interspecific cross was made to transfer leaf rust and stripe rust resistance from an accession of Aegilops ovata (UUMM) to susceptible Triticum aestivum (AABBDD) cv. WL711. The F1was backcrossed to the recurrent wheat parent, and after two to three backcrosses and selfing, rust resistant progenies were selected. The C-banding study in a uniformly leaf rust and stripe rust resistant derivative showed a substitution of the 5M chromosome of Ae. ovata for 5D of wheat. Analysis of rust resistant derivatives with mapped wheat microsatellite makers confirmed the substitution of 5M for 5D. Some of these derivatives also possessed one or more of the three alien translocations involving 1BL, 2AL and 5BS wheat chromosomes which could not be detected through C-banding. A translocation involving 5DSof wheat and the substituted chromosome 5M of Ae. ovata was also observed in one of the derivatives. Susceptibility of this derivative to leaf rust showed that the leaf rust resistance gene(s) is/are located on short arm of 5M chromosome of Ae. ovata. Though the Ae. ovatasegment translocated to 1BL and 2AL did not seem to possess any rust resistance gene, the alien segment translocated to 5BS may also possess gene(s) for rust resistance. The study demonstrated the usefulness of microsatellite markers in characterisation of interspecific derivatives. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Arachis kempff‐mercadoi is a wild species from the section Arachis. All kempff‐mercadoi accessions originate from the Santa Cruz province of Bolivia and they represent Arachis species with the A genome. From molecular analysis it was found that although cultivated A. hypogaea is made up of A and B genomes, A. kempff‐mercadoi may not be as closely related to it as are some of the other A genome species. Arachis kempff‐mercadoi is of interest because it has multiple disease resistance. It was crossed with a Spanish A. hypogaea cultivar which is susceptible to foliar diseases and to the insect pest Spodoptera litura. The success rate of the cross A. hypogaea (2n = 40) ×A. kempff‐mercadoi (2n = 20) was very low, but it could be increased by culturing immature seeds in vitro. Although the hybrids were triploids, a few fertile pollen grains were obtained due to the formation of restitution nuclei in the F1 plants. Interspecific derivatives at the BC2F2 generation were scored for early leaf spot, late leaf spot and to Spodoptera damage. Screening results showed that 29% of the derivatives had both early and late leaf spot resistance and that less than 5% of the derivatives had resistance to both the foliar diseases and to Spodoptera.  相似文献   

3.
Leaf and stripe rusts are severe foliar diseases of bread wheat. Recently, chromosomes 5Mg from the related species Aegilops geniculata that confers resistance to both leaf and stripe rust and 5Ut from Ae. triuncialis conferring resistance to leaf rust have been transferred to bread wheat in the form of disomic DS5Mg(5D) and DS5Ut(5A) chromosome substitution lines. The objective of this study was to shorten the alien segments in these lines using Ph I-mediated, induced homoeologous recombination. Putativerecombinants were evaluated for their rust resistance, and by genomic in situ hybridization and microsatellite analyses. One agronomically useful wheat-Ae. geniculata recombinant resistant to leaf and stripe rust was identified that had only a small terminal segment of the 5MgL arm transferred to the long arm of an unidentified wheat chromosome. This germplasm can be used directly in breeding programs. Only one leaf rust-resistant wheat-Ae. triuncialis recombinant, which consists of most of the complete 5Ut chromosome with a small terminal segment derived from 5AS, was identified. This germplasm will need further chromosome engineering before it can be used in wheat improvement. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Effect of seed coat color on seed dormancy in different environments   总被引:5,自引:0,他引:5  
Arachis glabrata Benth, variety glabrata coll. GK 10596 (PI 276233; ICG8176) belonging to section Rhizomatosae has multiple disease resistance. Fertile hybrids between A. hypogaea L. and A. glabrata, A. duranensis Krapov & W.C. Gregory and A. glabrata and A. diogoi Hoehne and A. glabrata were produced. Introgression of DNA from A. glabrata into A. hypogaea, A. duranensis and A. diogoi was analyzed by isozyme and RAPD analyses. Hybrids were backcrossed and BC1 seeds were obtained in all the three hybrids. Hybrids were evaluated for the transfer of disease resistance genes from A. glabrata, which was confirmed. RAPD analysis with several primers showed that DNA fragment pattern were not simply represented, instead there were new bands and several parental bands were absent in the interspecific derivatives. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Summary A set of 21 monosomics of Novosadska Rana-1 was used to locate the rust resistance genes of Lüqiyu, a stripe rust resistant line developed by BAU and Yantar, a leaf rust resistant wheat introduced from Bulgaria. The resistance of the former to p. striiformis race C25 was conditioned by a dominant gene located on chromosome 2B, whereas that of the latter to P. recondita race CL3 was controlled by two complementary dominant genes located on chromosomes 5A and 1D, respectively. The relationship of the stripe rust resistance gene in Lüqiyu to Yr5, Yr7 or Yr Suwon' all located on chromosome 2B is unknown. The two complementary leaf rust resistance factors in Yantar appear to be new.  相似文献   

6.
Summary The embryos of a cultivated tetraploid peanut (Arachis hypogaea), a wild diploid species (A. villosa), and their hybrid embryos, which generally abort in nature, were cultured in vitro and the plants have been successfully transferred to the soil. The hybrids showed triploid chromosome number (3x=30). The significance of wide hybridization in peanut-improvement programs is discussed.  相似文献   

7.
Aseptic culture of gynophores to obtain peanut intersectional hybrids   总被引:2,自引:0,他引:2  
Summary Cross-incompatibility between cultivated peanuts and their wild relatives outside the section Arachis has impeded the utilization of many species possessing high resistances or good qualities. Despite the great efforts made to culture immature ovules or embryos, few hybrid offspring have been obtained. In this study, gynophores from Arachis hypogaea L. pollinated with A. glabrata Benth. were cultured and F1 hybrids seeds were harvested, and F2 and F3 generations produced. The characters of F2 generation exhibited a wide range of segregation. Leaf peroxidase isozyme PAGE analysis revealed that the hybrids were quite different from their parents in relation to band number, width and isozyme activity. The zymograms of the hybrids and their parents were partially alike. This verified the authenticity of the hybrids.  相似文献   

8.
Aegilops triuncialis (UUCC) is an excellent source of resistance to various wheat diseases, including leaf rust. Leaf rust‐resistant derivatives from a cross of a highly susceptible Triticum aestivum cv.‘WL711’ as the recurrent parent and Ae. triuncialis Ace.3549 as the donor and with and without a pair of acrocentric chromosomes were used for molecular tagging. The use of a set of sequence tagged microsatellite (STMS) markers already mapped to different wheat chromosomes unequivocally indicated that STMS marker gwm368 of chromosome 4BS was tightly linked to the Ae. triuncialis leaf rust resistance gene transferred to wheat. The presence of the Ae. Triuncialis‐specific STMS gwm368 homoeoallele along with the non‐polymorphic 4BS allele in the rust‐resistant derivatives with and without the acrocentric chromosome indicates that the resistance has been transferred from the acrocentric chromosome to either the A or the D genome of wheat. This alien leaf rust resistance gene has been temporarily named as LrTr.  相似文献   

9.
Molecular genetics of race non-specific rust resistance in wheat   总被引:1,自引:0,他引:1  
Over 150 resistance genes that confer resistance to either leaf rust, stripe rust or stem rust have been catalogued in wheat or introgressed into wheat from related species. A few of these genes from the ‘slow-rusting’ adult plant resistance (APR) class confer partial resistance in a race non-specific manner to one or multiple rust diseases. The recent cloning of two of these genes, Lr34/Yr18, a dual APR for leaf rust and stripe rust, and Yr36, a stripe rust APR gene, showed that they differ from other classes of plant resistance genes. Currently, seven Lr34/Yr18 haplotypes have been identified from sequencing the encoding ATP Binding Cassette transporter gene from diverse wheat germplasm of which one haplotype is commonly associated with the resistance phenotype. The paucity of well characterised APR genes, particularly for stem rust, calls for a focused effort in developing critical genetic stocks to delineate quantitative trait loci, construct specific BAC libraries for targeted APR genes to facilitate robust marker development for breeding applications, and the eventual cloning of the encoding genes.  相似文献   

10.
Late leaf spot (LLS) and rust cause substantial yield losses and reduce the fodder and seed quality in groundnut (Arachis hypogaea L.). Adoption of resistant cultivars by the semi-arid tropic farmers is the best option to overcome yield losses. Knowledge on components of resistance to these diseases should facilitate the development of groundnut cultivars with enhanced resistance to LLS and rust. The objectives of the experiments were to study the genetic variability and relationships among components of resistance to LLS and rust, and assess their significance in disease resistance breeding. Fifteen interspecific derivatives for LLS and 14 for rust and a susceptible control, TMV 2, were evaluated in a randomised complete block design with two or three replications under greenhouse conditions. The experiments were repeated twice. Genotypic differences were highly significant for all the traits studied. Resistance to LLS is due to longer incubation and latent periods, lesser lesions per leaf, smaller lesion diameter, lower sporulation index, and lesser leaf area damage and disease score. Selection based on components of resistance to LLS may not lead to plants with higher retained green leaf area. The remaining green leaf area on the plant should, therefore, be the major selection criteria for resistance to LLS in breeding programs. Resistance to rust is due to longer incubation and latent periods, fewer pustules per leaf, smaller pustule diameter, lower sporulation index, and lesser leaf area damage and disease score. Rust resistant components appear to work additively, therefore, selection based on resistance components together with green leaf area retained on the plant should be the basis of selecting for resistance to rust in breeding programs. ICGV 99005, 99003, 99012, and 99015 for rust and ICGV 99006, 99013, 99004, 99003, and 99001 for LLS are the better parents for use in resistance breeding programs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Summary Seedling responses to one Australian isolate of each of the stripe rust, stem rust and leaf rust pathogens were determined for 541 accessions of T. dicoccoides collected from 23 locations in Israel. Resistance to stripe rust was more frequent than resistance to stem rust. Stripe rust responses showed a wide range of variability indicative of a number of genes for resistance. Comparison of the present stem rust data and that reported for the same accessions tested in Israel indicated that different genes were operating in each country. Only moderately resistant responses to stem rust were obtained. This level of resistance is probably inadequate for transfer to commercial wheat cultivars. We found no potentially useful seedling resistance to leaf rust.  相似文献   

12.
Summary The leaf rust responses of wheat lines carrying the complementary genes Lr27 and Lr31 and the same genes in a Chinese Spring background which contains Lr34, indicate that Lr34 interacts with the complementary genes to give enhanced levels of field resistance to leaf rust. Lr34, particularly in combination with other genes, is considered to be an important gene for imparting a high degree of durable resistance to leaf rust. Its similarity to Sr2, an adult plant gene for resistance to stem rust and its association with adult plant resistances to stem and stripe rusts are discussed.  相似文献   

13.
Cultivated groundnut (Arachis hypogaea L.) is an agronomically and economically important oilseed crop grown extensively throughout the semi-arid tropics of Asia, Africa and Latin America. Rust (Puccinia arachidis) and late leaf spot (LLS, Phaseoisariopsis personata) are among the major diseases causing significant yield loss in groundnut. The development of varieties with high levels of resistance has been constrained by adaptation of disease isolates to resistance sources and incomplete resistance in resistant sources. Despite the wide range of morphological diversity observed in the cultivated groundnut gene pool, molecular marker analyses have thus far been unable to detect a parallel level of genetic diversity. However, the recent development of simple sequence repeat (SSR) markers presents new opportunities for molecular diversity analysis of cultivate groundnut. The current study was conducted to identify diverse disease resistant germplasm for the development of mapping populations and for their introduction into breeding programs. Twenty-three SSRs were screened across 22 groundnut genotypes with differing levels of resistance to rust and LLS. Overall, 135 alleles across 23 loci were observed in the 22 genotypes screened. Twelve of the 23 SSRs (52%) showed a high level of polymorphism, with PIC values ≥0.5. This is the first report detecting such high levels of genetic polymorphism in cultivated groundnut. Multi-dimensional scaling and cluster analyses revealed three well-separated groups of genotypes. Locus by locus AMOVA and Kruskal–Wallis one-way ANOVA identified candidate SSR loci that may be valuable for mapping rust and LLS resistance. The molecular diversity analysis presented here provides valuable information for groundnut breeders designing strategies for incorporating and pyramiding rust and late leaf spot resistances and for molecular biologists wishing to create recombinant inbred line populations to map these traits.E.S. Mace and D.T. Phong contributed equally to this work.  相似文献   

14.
Summary Cytological studies of wild diploid Arachis species in the same section of the genus (sect. Arachis) as the cultivated peanut A. hypogaea L. show, with one exception, a karyotype characterized by the presence of 9 pairs of larger chromosomes and one pair of small (A) chromosomes. The exceptional species A. batozocoi Krap. et Greg. has a more uniform karyotype. Interspecific hybrids between diploid species of similar karyotype have moderate to high pollen stainability, those involving A. batizocoi have zero pollen stainability and a very irregular PMC meiosis. Such infertile hybrids are the most likely to produce fertile, stable amphidiploids on doubling the chromosome complement. It is suggested that the cultivated peanut could have originated from such a sterile interspecific hybrid and on morphological and phytogeographic grounds the most likely genome donors are A. cardenasii (nomen nudum) and A. batizocoi of the species within section Arachis, which have been collected up to the present time.Paper number 5560 of the Journal Series of the North Carolina Agricultural Experiment Station, Raleigh, NC 27650  相似文献   

15.
J. A. Kolmer 《Euphytica》1992,61(2):123-130
Summary Leaf rust resistance gene Lr13 is present in many North American hard red spring wheat cultivars that have shown durable resistance to leaf rust. Fifteen pair-wise combinations of Lr13 and seedling leaf rust resistance genes were developed by intercrossing near isogenic Thatcher lines. In both seedling and adult plant tests, homozygous paired combinations of specific resistance genes with Lr13 had enhanced resistance relative to either parent to rust isolates that had intermediate avirulent infection types to the additional genes. In field tests, homozygous lines were more resistant than either parent if the additional leaf rust gene conditioned an effective level of resistance when present singly.  相似文献   

16.
A partial amphiploid, TE-3, between Triticum aestivum cv. Chinese Spring (CS) and Thinopyrum intermedium ssp. trichophorum was characterized by cytological observation, genomic in situ hybridization (GISH), seed storage protein electrophoresis and disease resistance screening. The TE-3 plants were deeply covered with pubescence, which is characteristic of the Th. intermedium ssp. trichophorum parent. Feulgen staining of the somatic metaphases revealed that the chromosome number varied from 52 to 56. TE-3 pollen mother cells (PMCs) regularly showed two to four univalents and 25 to 27 bivalents, indicating a degree of cytological instability. Giemsa-C banding showed that the Thinopyrum chromosomes in TE-3 produced strong heterochromatin bands. GISH analysis suggested that the alien chromosomes in TE-3 consisted of eight St chromosomes, four Js chromosomes, and two J genome chromosomes, as well as two St-J translocation chromosomes. Seeds storage proteins separated by acid polyacrylamide gel electrophoresis (APAGE) and sodium dodecyl sulphate – polyacrylamide gel electrophoresis (SDS-PAGE) showed that TE-3 expressed some of Th. intermedium ssp. trichophorum specific gliadin and glutenin bands. When inoculated with stripe rust and powdery mildew isolates, TE-3 expressed resistance derived from its Thinopyrum parent. It appears that TE-3 can be used as a donor source in wheat breeding programs to introduce novel variation for quality and disease resistance.  相似文献   

17.
The main goal of this work was to introduce resistance genes for rust, caused by Uromyces appendiculatus, and anthracnose, caused by Colletotrichum lindemuthianum, in an adapted common bean cultivar through marker-assisted backcrossing. DNA fingerprinting was used to select plants genetically closer to the recurrent parent which were also resistant to rust and to race 89 of C. lindemuthianum. DNA samples extracted from the resistant parent (cv. Ouro Negro), the recurrent parent (cv. Rudá), and from BC1, BC2 and BC3 resistant plants were amplified by the RAPD technique. The relative genetic distances in relation to the recurrent parent varied between 9 and 59% for BC1, 7 and 33% for BC2, and 0 and 7% for BC3 resistant plants. After only three backcrosses, five lines resistant to rust and anthracnose with, approximately, 0% genetic distance in relation to the recurrent parent were obtained. These lines underwent field yield tests in two consecutive growing seasons and three of them presented a good yield performance, surpassing in that sense their parents and most of the reference cultivars tested.  相似文献   

18.
J. Šebesta  F. Kühn 《Euphytica》1990,50(1):51-55
Summary An accession of Avena fatua L. subsp. fatua v. glabrata Peterm. subv. pseudo-basifixa Thell. (A. fatua L. CS Sel. No. 1), collected in Czechoslovakia in 1971, was found to be resistant to a wide range of crown rust races. Analyses of crosses of this oat with cvs. Weikuss, Leanda, Mona, Rodney A, Rodney B, Rodney M, Dodge and K 316 indicated that the resistance of A. fatua CS Sel. No. 1 is conditioned by one recessive gene which is in interaction with one partially dominant gene with additive effect. The expression of rust reaction was affected by temperature. The crown rust resistance genes of A. fatua L. CS Sel. No. 1 were non-allelic with stem rust resistance genes Pg-2 (A) and Pg-4(B).  相似文献   

19.
Summary Interspecific crosses were carried out between the three Lactuca species L. virosa, L. serriola and L. sativa to transfer resistance to the leaf aphid Nasonovia ribis nigri from L. virosa to the cultivated lettuce. L. sativa, L. serriola was used as an intermediate parent between the other two species. Many irregularities were observed in the interspecific hybrids, ranging from premature dying of F1 plants resulting from a kind of bastard necrosis till complete male and female sterility and deviating microsporogenesis. Using in vitro culture and after several backcrosses male and female fertile plants were obtained with a L. sativa habit and with resistance to the leaf aphid.  相似文献   

20.
H. T. Stalker 《Euphytica》1984,33(2):529-538
Summary Advanced generation 40-chromosome hybrids between A. hypogaea (2n=4x=40) and a wild diploid species. A. cardenasii were evaluated for early leafspot, Cercospora arachidicola resistance and agronomic potential. The objective of this investigation was to determine if early leafspot resistance derived from a wild species could be incorporated into the A. hypogaea genome. Interspecific hybrid selections were made and then compared in the field and greenhouse to susceptible cultivars and to A. hypogaea lines which are reported to be resistant to early leafspot. Significantly higher levels of resistance were found in five hybrid selections than in cultivated lines based on numbers of lesions per leaf. In a greenhouse study, several hybrid selections also had greatly reduced sporulation from lesions as compared to A. hypogaea. Several mechanisms of resistance are believed to be present. Although hybrid selections had small seeds and low yields as compared to A. hypogaea, a new and valuable source of early leafspot resistance derived from the species A. cardenasii is present.Paper no. 8814 of the journal series of the North Carolina Agricultural Research Service, Raleigh, NC 27695. This research was partially funded by AID-Peanut CRSP grant DAN-4048-G-SS-2065-00.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号