首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 435 毫秒
1.
Poly(ethylene 2,6-naphthalate) (PEN)/Poly(ethylene glycol) (PEG) copolymers were synthesized by two step reaction during the melt copolymerization process. The first step was the esterification reaction of dimethyl-2,6-naphthalenedicarboxylate (2,6-NDC) and ethylene glycol (EG). The second step was the condensation polymerization of bishydroxyethylnaphthalate (BHEN) and PEG. The copolymers contained 10 mol% of PEG units with different molecular weights. Structures and thermal properties of the copolymers were studied by using1H-NMR, DSC, TGA, etc. Especially, while the intrinsic viscosities of PEN/PEG copolymers increased with increasing molecular weights of PEG, but the glass transition temperature, the cold crystallization temperature, and the weight loss temperature of the copolymers decreased with increasing molecular weights of PEG. Consequently, the hydrophilicities by means of contact angle measurement and moisture content of the copolymer films were found to be significantly improved with increasing molecular weights of PEG.  相似文献   

2.
Poly(trimethylene 2,6-naphthalate) (PTN)/poly(ethylene glycol) (PEG) copolymers were synthesized by the two-step melt copolymerization process of dimethyl-2,6-naphthalenedicarboxylate (2,6-NDC) with 1,3-propanediol (PD) and PEG. The copolymers produced had different PEG molecular weights and contents. The structure, thermal property, and hydrophilicity of these copolymers were studied by proton nuclear magnetic resonance (1H-NMR) analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and by contact angle, moisture content, and instantaneous elastic recovery measurements. The intrinsic viscosity and the instantaneous elastic recovery of the PTN/PEG copolymers increased with increasing PEG molecular weight and content, whereas the glass transition, melting, and cold crystallization temperatures, and the heat of fusion of the PTN/PEG copolymers all decreased with increasing PEG molecular weight or content. The thermal stability of the copolymers was not affected by PEG molecular weight or content. The hydrophilicity, as determined by contact angle and moisture content measurements of the copolymer films, was significantly improved with increasing PEG molecular weight and content.  相似文献   

3.
To synthesize a series of novel temperature sensitive hydrogels, N-tert-butylacrylamide (NtBA) and acrylamide (AAm) were used as the comonomers and polymerized by free-radical crosslinking copolymerizarion. The poly(ethylene glycol) (PEG) with molecular weight of 400, 4000 and 6000 g·mol-1 was used as the porogen. The equilibrium swelling capacity, swelling/deswelling kinetics and diffusion parameters of obtained hydrogels were systematically evaluated. As revealed by SEM micrographs, the macroporous structure of hydrogels can be modulated by the crosslinking level, PEG molecular weight and dosage. FTIR analysis demonstrated that the porogen PEG was completely leached out of the gel matrix. Compared with the conventional hydrogels, the PEG-modified (PGel) hydrogels exhibited enhanced temperature sensitivity and superior kinetics during the swelling, deswelling and pulsatile swelling processes. Controlled release of salicylic acid also demonstrated the good usability of PGel hydrogel, which rendered it great potential for controlled drug delivery systems.  相似文献   

4.
Epoxidized polybutadiene (EPB) was prepared by polybutadiene (PB) withm-chloroperbenzoic acid (MCPBA) in homogeneous solution. EPB was blended with poly(3-hydroxybutyrate) (PHB) up to 30 wt% by solution-precipitation procedure. The thermal decomposition of PHB/EPB blends was studied by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and differential thermal analysis (DTA). The thermograms of PHB/EPB blends contained a two-step degradation process, while that of pure PHB sample exhibited only one-step degradation process. This degradation behavior of PHB/EPB blends, which have a higher thermal stability as measured by maximum decomposition temperature and residual weight, is probably due to crosslinking reactions of the epoxide groups in the EPB component with the carboxyl chain ends of PHB fragments during the degradation process, and the occurrence of such reactions can be assigned to the exothermic peaks in their DTA thermograms.  相似文献   

5.
The thermal degradation of poly(ethylene terephthalate-co-isophthalate)s (PETIs) is investigated by using isothermal thermogravimetric analysis at the temperature range of 280–310°C. The degradation rate of PETIs is increased as the mole ratio of ethylene isophthaloyl (EI) units in PETIs increases. The activation energies for the thermal degradation of poly(ethylene terephthalate), PETI(5/5), and poly(ethylene isophthalate) are 33.4, 16.6, and 8.9 kcal/mole, respectively. The degradation rate of PETIs is influenced by their volatile cyclic oligomer components formed during the polymerization and the thermal degradation. It is simulated by the rotational isomeric state model that the content of cyclic dimer in PETIs, which is the most volatile cyclic oligomer component, increases with the EI units in PETIs.  相似文献   

6.
Biodegradable block copolymers containing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly (ɛ-caprolactone) (PCL) units (PHCLs) with different contents of PCL block were synthesized successfully by using telechelic hydroxylated PHBV (PHBV-diol) with low molecular weight as a macroinitiator to initiate ring-opening bulk polymerization of ɛ-caprolactone (ɛ-CL). The chemical structure and molecular weight were characterized by 1H NMR, FTIR and GPC. The PHBV and PCL blocks in PHCLs were miscible in amorphous state, and formed separate crystalline phases with lower crystallinity than corresponding homopolymers, which was characterized by DSC and WAXD. The results of TGA showed that PHCLs underwent a two-step thermal degradation process. The thermal degradation process of PCL blocks was significantly different from PCL homopolymers. The activation energies of thermal degradation of PCL blocks calculated by Horowitz and Metzger method were much higher than that of each step of thermal degradation of PCL homopolymers.  相似文献   

7.
A simple and practical strategy has been developed for preparing polyaniline(PANi)-doped TiO2/poly(l-lactide) (P@TiP-C) fibers by a combination of coaxial-electrospinning and in-situ polymerization. The TiO2/PLLA composite fibers with TiO2 located on the surface were fabricated by coaxial-electrospinning, with PLLA as the core phase and a dispersion of TiO2 particles, a well-known photocatalyst, in the sheath phase. The aniline monomers were also located in the core phase and in-situ polymerized by ammonium persulfate (APS) after electrospinning. SEM images show that TiO2 particles were located on the surface of PLLA fibers. Photocatalytic degradation tests show that the P@TiP-C fibers exhibit enhanced photocatalytic activity for degradation of methyl orange under visible light, likely due to the synergistic effect of PANi and TiO2.  相似文献   

8.
Blended nanofiber webs of poly(L-lactic acid) (PLLA)/poly(L-lysine) (PLys) with a PLys content of up to 3 % were prepared using an electro-spinning process with trifluoroacetic acid as the spinning solvent, and employed as a substrate for silicification. Silica formation on the surface of the PLLA/PLys nanofibers was carried out by immersing the nanofiber webs in silicic acid solutions at various concentrations for different times. The effects of the silicification conditions and PLys content on silicification were examined by scanning electron microscopy, FT-IR, energy dispersive spectroscopy, and the increase in weight of the substrates. Although the amount of silica formed on the PLLA nanofibers increased with increasing silicification time and silicic acid concentration, the uniformity of the coated layer was not controlled. However, the incorporation of small amounts of PLys in the PLLA nanofibers increased the amount and uniformity of the silica formed on the nanofibers.  相似文献   

9.
Ionic conductivity and mechanical properties of a mixed polymer matrix consisting of poly(ethylene glycol) (PEG) and cyanoresin type M (CRM) with various lithium salts and plasticizer were examined. The CRM used was a copolymer of cyanoethyl pullulan and cyanoethyl poly(vinyl alcohol) with a molar ratio of 1:1, mixed plasticizer was ethylene carbonate (EC) and propylene carbonate (PC) at a volume ratio of 1:1. The conductive behavior of polymer electrolytes in the temperature range of 298∼338 K was investigated. The PEG/LiClO4 complexes exhibited the highest ionic conductivity of ∼10−5 S/cm at 25°C with the salt concentration of 1.5 M. In addition, the plasticized PEG/LiClO4 complexes exhibited improvement of ionic conductivity. However, their complexes showed decreased mechanical properties. The improvement of ionic conductivity and mechanical properties could be obtained from the polymer electrolytes by using CRM. The highest ionic conductivity of PEG/CRM/LiClO4/(EC-PC) was 5.33×10−4 S/cm at 25°C.  相似文献   

10.
Cellulose nanowhiskers were used to improve the performance of poly (lactic acid) (PLA). The nanocomposites mixed with three different molecular weight of poly (ethylene glycol) (PEG) were characterized by mechanical testing, thermal gravimetry and differential scanning calorimetry. The tensile test showed an increase in tensile strength and elongation at break with the addition of PEG to PLA/CNW nanocomposites, the thermal analysis results showed an increase of crystallization temperature (T c) and crystallization compatibility (larger crystallization and melting areas), which indicated that the cellulose nanowhiskers (CNW) and PEG or CNW alone should not be considered as nucleating agents for the PLA matrix; The CNW was homo-dispersed which contributed to decreasing mobility of polymer chain segments. The compatibility between hydrophobic PLA matrix and the hydrophilic CNW was improved by the addition of different molecular weight polymeric-PEG. The thermo gravimetric analysis indicated that the thermal stability of the different composites were reflected well in the region between 25 °C and 245 oC. The structure of the PLA/CNW/PEG composites was characterized by AFM, which showed that the CNW dispersed in the PLA matrix evenly.  相似文献   

11.
Poly(L-lactide) (PLLA)/poly(D-lactide) (PDLA)/poly(ethylene octene) grafted with glycidyl methacrylate (GPOE) were prepared by simple melt blending method at PDLA loadings from 1 to 5 wt%. Differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) demonstrated the formation of the stereocomplex in the blends. The addition of PDLA led to the increase of nucleation density from polarized microscope (POM) observations. Rheological measurements indicated that the blends exhibited a rheological fluid-solid transition and an enhanced elastic behavior in that ternary system as the PDLA loadings reached up to 5 wt%. By adding 1-2 wt% PDLA, the ternary system has better tensile and impact properties. Dynamic Mechanical Analysis (DMA) results showed that SC crystal formation and its effect on the enhancement of thermal stability at higher temperature. It is interesting that the enzymatic degradation rates have been enhanced clearly in the PLLA/PDLA/GPOE blends than in the PLLA/GPOE blend, which may be of great use and significance for the wider practical application of PLLA/GPOE blends.  相似文献   

12.
An attempt was made to correlate the polymerization temperature and rheological and thermal properties of acrylonitrile (AN)-acrylamide (AM) copolymers. The copolymers were synthesized at different polymerization temperature. The copolymer structure was characterized by gel permeation chromatography (GPC) and Infrared spectrum (IR). The rheological and thermal properties were investigated by a viscometer and differential scanning calorimeter-thermogrametric (DSCTG) analysis, respectively. When the polymerization temperature increased from 41 °C to 65 °C, the molecular weight ([`(M)] w )(\overline M _w ) of copolymers decreased from 1,090,000 to 250,000, while its conversion increased from 18% to 63%, and the polymer composition changed slightly. To meet the requirements of carbon fibers, the rheological and thermal properties of products were also investigated. It was found that the relationship between viscosity and [`(M)] w\overline M _w was nonlinear and the viscosity index (n) decreased from 3.13 to 2.69, when the solution temperature increased from 30 °C to 65 °C. This suggests the dependence of viscosity upon [`(M)] w\overline M _w is higher at lower solution temperature. According to the result of activation energy, the sensivity of viscosity to solution temperature is higher for AN-AM copolymers synthesized at higher polymerization temperature. The result of thermal analysis shows that the copolymers obtained at higher polymerization temperature are easier to cyclization evidenced from lower initiation temperature. The weight loss behavior changed irregularly with polymerization temperature due to irregular change of liberation heat.  相似文献   

13.
深松与施氮方式对春玉米子粒灌浆及产量和品质的影响   总被引:7,自引:3,他引:4  
在等氮量条件下研究深松与施氮方式对玉米子粒灌浆特性及产量和品质的影响。结果表明,深松使玉米灌浆后期百粒重增加,隔行深松(T1)对灌浆后期百粒重的增加作用大于行行深松(T2);追氮处理最大灌浆速率(Gmax)、平均灌浆速率(G)、灌浆后期百粒重与灌浆活跃生长期(P)均大于一次性基施氮肥处理,且随追氮次数的增加灌浆后期百粒重增加;深松使Gmax增加,最大灌浆速率出现的天数(Tmax)提前,对灌浆速率的增加作用T1处理大于T2处理;各施氮处理对灌浆速率的影响表现为拔节期、灌浆期分别追施氮肥>拔节期追施氮肥>一次性基施氮肥。追氮对子粒灌浆的促进作用大于深松措施。灌浆后期百粒重与产量极显著正相关。G和Gmax与灌浆后期百粒重的相关系数较大,其他灌浆参数相关性较小。子粒蛋白质含量与产量呈极显著正相关;淀粉含量与产量呈显著负相关;油分含量与产量间的相关性较小。  相似文献   

14.
脱落酸(ABA)信号通路在植物对干旱胁迫的响应中扮演着至关重要的角色;作为ABA受体,PYL家族蛋白在ABA信号转导中发挥核心作用。小麦TaPYL8是PYL家族的成员。为了明确TaPYL8是否参与小麦干旱胁迫响应,本研究分析了TaPYL8的表达模式,创建过表达TaPYL8拟南芥,并探讨了干旱对拟南芥生理生化及胁迫相关基因表达的影响。结果表明,TaPYL8表达量在干旱胁迫、外源ABA及PEG6000处理后上调。干旱胁迫下,过表达TaPYL8增强了拟南芥的存活率,降低了叶片失水率和MDA含量,提高了SOD、POD和CAT等抗氧化酶活性及AtSODAtP5CS1AtABF3等胁迫相关基因的表达量。推测TaPYL8通过促进胁迫相关基因表达增强植物抗旱能力。  相似文献   

15.
为了解施用不同量尿素(N)、缓释尿素(CN)及其配施黄腐酸(FA)对黑青稞籽粒灌浆特性的影响,以隆子黑为材料,测定并分析了不同氮肥处理下其籽粒灌浆相关指标及其相关性。结果表明:(1)相同施氮量下,较N处理,CN处理下隆子黑渐增期、快增期灌浆速率(R1R2)及最大灌浆速率(Rmax)分别提高11.84%、2.65%、0.46%,渐增期持续时间(Ta)缩短,快增期持续时间(Tb)延长,籽粒产量、千粒重分别提高13.8%、4.11%;(2)较单施氮肥,氮肥配施黄腐酸可提高隆子黑灌浆速率,延长灌浆持续时间,CN+FA处理增效作用最好,其较CN处理的产量、有效穗数、千粒重、穗粒数分别提高21.66%、17.88%、2.87%、20.24%;(3)减氮20%处理下,隆子黑灌浆指标均呈下降趋势,缓释尿素处理无显著的减氮增效优势,CN80%较N、CN处理产量分别下降5.51%、12.08%;(4)快增期灌浆速率、最大灌浆速率、灌浆持续时间、快增期持续时间、缓增期持续时间与千粒重呈极显著正相关(P<0.01),提高灌浆速率、延长灌浆持续时间是增加隆子黑产量的有效措施。缓释尿素配施黄腐酸提高了黑青稞籽粒灌浆能力、千粒重和产量,生产上推荐135 kg·hm-2缓释尿素配施45 kg·hm-2黄腐酸为黑青稞的最佳施肥方案。  相似文献   

16.
Polyurethane block copolymers chemically cross-linked by pentaerythritol, a four-way cross-linker, are tested for the shape memory effect. One of the copolymers shows higher shape recovery than any other shape memory copolymer synthesized by us so far. The copolymer maintains a surprising 94 % shape recovery after the third cyclic test. The four-way cross-linking by pentaerythritol and interaction between hard segments are mainly responsible for the very high shape recovery. Tensile mechanical properties also significantly improve by cross-linking. Glass transition temperature (T g ) slightly increases with cross-linking content. Other characterization such molecular weight, IR, and X-ray diffraction is also carried out to understand the arrangement of copolymer chains.  相似文献   

17.
PLA/LPCL/HPCL blends composed of poly(lactic acid) (PLA), low molecular weight poly(ε-caprolactone) (LPCL), and high molecular weight poly(ε-caprolactone) (HPCL) were prepared by melt blending for bioabsorbable filament sutures. The effects of blend composition and blending time on the ester interchange reaction by alcoholysis in the PLA/LPCL/HPCL blends were studied. Their thermal properties and the miscibility due to the ester interchange reaction were investigated by1H-NMR, DSC, X-ray, and UTM analyses. The hydroxyl group contents of LPCL in the blends decreased by the ester interchange reaction due to alcoholysis. Thus, the copolymer was formed by the ester interchange reaction at 220 °C for 30–60 minutes. The thermal properties of PLA/LPCL/HPCL blends such as melting temperature and heat of fusion decreased with increasing ester interchange reaction levels. However, the miscibility among the three polymers was improved greatly by ester interchange reaction. Tensile strength and modulus of PLA/LPCL/HPCL blend fibers increased with increasing HPCL content, while the elongation at break of the blend fibers increased with increasing LPCL content.  相似文献   

18.
Low molecular weight copolymers of maleic anhydride and vinyl acetate were prepared to develop formaldehyde free cross-linking agents. Since lower molecular weight is favorable for efficient penetration of the finishing agent into the cotton fibers in the padding process, the concentration of the initiator, chain transfer agent and the monomer ratios were varied to obtain copolymers of low molecular weights. The prepared polymers were characterized by GPC,1H-NMR, FTIR, DSC and TGA. Copolymers of molecular weights of 2 000 to 10 000 were obtained and it was found that the most efficient method of controlling the molecular weight was by varying the monomer ratios. Poly(maleic anhydride-co-vinyl acetate) did not dissolve in water, but the maleic anhydride residue hydrolyzed within a few minutes to form poly(maleic acid-co-vinyl acetate) and dissolved in water. However, the maleic acid units undergo dehydration to form anhydride groups on heating above 160 °C to some extent even in the absence of catalysts. The possibility of using the copolymers as durable press finishing agent for cotton fabric was investigated. Lower molecular weight poly(maleic anhydride-co-vinyl acetate) copolymers were more efficient in introducing crease resistance, which appears to be due to the more efficient penetration of the crosslinking agent into cotton fabrics. The wrinkle recovery angles of cotton fabrics treated with poly(maleic anhydride-co-vinyl acetate) copolymers were slightly lower than those treated with DMDHEU and were higher when higher curing temperatures or higher concentrations of copolymer were used, and when catalyst, NaH2PO2, was added. The strength retention of the poly(maleic anhydride-co-vinyl acetate) treated cotton fabrics was excellent.  相似文献   

19.
A series of shape memory polyurethane (PU) copolymers synthesized from 1,4-phenyldiisocyanate (PDI), poly(tetramethyleneglycol) (PTMG), 1,4-butanediol (BD) as a chain extender, and glycerol as a cross-linking agent were tested for the mechanical properties and the shape memory effect at the temperature 20 °C above melting temperature (T m), and were compared with other PUs synthesized from 4,4′-methylene-bis-phenyldiisocyanate (MDI), PTMG, and BD. Mechanical properties and shape memory effect were improved substantially by adopting both PDI and glycerol. Interestingly, enthalpy of melting and T m were not affected by the glycerol content. Vibration and shock absorption ability was investigated by measuring both loss tan δ and storage modulus with dynamic mechanical analyzer (DMA).  相似文献   

20.
为进一步明确小麦脱水素基因WDHN1-2在逆境条件下的功能,以伞穗山羊草DHN1基因为探针,通过电子克隆及RT-PCR技术获得WDHN1-2基因后对其序列特征进行分析,同时利用基因表达综合数据库及半定量RT-PCR技术对该基因的表达模式进行解析。结果表明,WDHN1-2基因编码区(CDS)长为548bp,编码的氨基酸具有脱水素保守序列K、Y和S片段,与山羊草脱水素EMT25371亲缘关系最近。WDHN1-2蛋白属于稳定且高度亲水蛋白,二级结构以α-螺旋和无规则卷曲为主;该蛋白在亚细胞中定位的可能性:过氧化物酶体细胞核线粒体基质,可能行使转录调控的功能。表达模式分析发现,WDHN1-2基因在小麦开花后22d的胚乳中表达量最高,在ABA、PEG、NaCl及4℃低温胁迫下表达量均先上升后下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号